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electron impact: Rotational excitation of H2
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The adiabatic-nuclei (AN) theory of nuclear excitation in molecules is critically examined for
low-energy e-H2 collisions in the context of the rigid-rotor approximation. Theoretical concerns
relevant to near-threshold scattering processes, where the AN theory is expected to be invalid, are
discussed for rotational and vibrational excitation. A quantitative assessment of the AN theory for
rotation and of an energy-modified approximation to this theory is obtained by comparison of ap-
proximate cross sections to results from 1aboratory-frame close-coupling calculations. The break-
down of the AN theory for rotation is found to be more severe at energies a few times threshold
than was anticipated by rough qualitative arguments made heretofore.

I. INTRODUCTION

Adiabatic approximations abound in physics. In quan-
tum theory, the idea of treating certain relatively slowly
varying coordinates as parameters in the study of the oth-
er degrees of freedom and subsequently folding in the
motion of the slowly varying coordinates via product
wave functions is widely used in the study of both bound
and continuum states. Thus, the Born-Oppenheimer ap-
proximation, in which the nuclear coordinates are treated
parametrically, forms the cornerstone of much of the
theory of molecular structure and the band theory of
solids. In the scattering of charged particles by atoms and
molecules, an adiabatic approximation for the coordinates
of the scattering particle is used to develop a model of
induced-polarization effects.

The most useful implementation of this idea in the
quantum theory of electron-molecule scattering is the
adiabatic-nuclei (AN) formulation, in which the nu-
clear degrees of freedom of the target are "frozen" during
the collision, the nuclear dynainics being taken into ac-
count only in the asymptotic region. This formulation is
essentially an extension of the Born-Oppenheimer approx-
imation of molecular bound-state theory' to the
continuum-state problem for the electron-molecule sys-
tem. ' Because it allows for a separation of the nuclear
and scattering-electron's dynamics, the AN theory has
considerable conceptual advantages over a more accurate
formulation, such as the laboratory-frame close-coupling
(I FCC) theory, 3 34 37 in which the interaction of the
motion of the nuclei and that of the scattering electron is
fully taken into account. Computationally, such an "ex-
act" treatment is infeasible except for extremely simple
systems (e.g., e-Hz). ' The AN theory, although non-
trivial to apply to relatively complicated systems, is tract-
able and consequently has been used to determine cross
sections for low- and intermediate-energy nuclear excita-
tions in a huge array of studies that vary widely in their
treatment of the collision dynamics and/or of the interac-
tion potential.

The adiabatic approximation was introduced to scatter-
ing theory by Chase, who derived approximate expres-
sions for inelastic scattering amplitudes as matrix ele-
ments (in the space of the target) of the elastic scattering
amplitude for fixed target coordinates. Oksyuk first par-
ticularized Chase's theory to electron-molecule scattering,
and Temkin (and co-workers' '

) and Hara' subsequent-
ly developed the AN formulation as it is used today and
demonstrated the feasibility of using it to study rotational
and vibrational excitation of molecules.

Like all useful approximations, this one runs into trou-
ble in certain circumstances. In particular, the approxi-
mations underlying the AN theory are expected to break
down for electron collisions with polar molecules, for
scattering near a resonance, or for near-threshold excita-
tions. The reasons for the anticipated breakdown have
been discussed, and rough qualitative criteria for energies
at which it should occur have been articulated. ' More re-
cently, some attention has been given to formulating alter-
natives to the AN theory that can be used where it is in-
valid but which avoid the specter of a full LFCC calcula-
tion. Thus, Shugard and Hazi' have proposed a modified
expression for the inelastic scattering amplitude that re-
quires evaluation of an elastic amplitude off the energy
shell, Domcke et al. and Nesbet have independently
developed nonadiabatic treatments for resonant vibration-
al excitation, Varracchio has evaluated correction terms
to the fixed-nuclei scattering amplitude that incorporate
nuclear dynamics, and Norcross and Padial have intro-
duced a modification suitable for electron-polar molecule
collisions.

The present paper reports the first detailed quantita-
tive evaluation of the AN theory under conditions where
it is expected to break down. In addition to probing the
nature and extent of the breakdown of the AN theory, we
are investigating alternative formulations for treating col-
lisions under conditions where use of the AN theory is
ill-advised; one such alternative, an energy-modified ap-
proximation (EMA), is examined herein. An additional
long-term goal of this project is the generation of a set of
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highly accurate cross sections for very-low-energy nuclear
excitations of molecules; such data are essential for appli-
cations ranging from analysis of the results of swarm ex-
periments to modeling of planetary atmospheres to
understanding the physics of e-beam-initiated gas-
discharge lasers.

To accomplish these goals we must use a highly accu-
rate representation of the electron-molecule interaction
potential, impose exacting standards of numerical accura-
cy in the scattering calculations, and, ideally, be able to
calculate (or access) benchmark cross sections from a
nonadiabatic theory such as LFCC. These requisites can
be most fully met for the e-Hi system, which is the subject
of the present inquiry. This system is especially well suit-
ed for an investigation of the breakdown of the AN ap-
proximation because the nuclear kinetic energy operator is
an especially important term in the e-H2 Hamiltonian;
e.g., the spacing of the rotational energy levels in Hz is on
the order of tenths of an eV, rather than, say, 10 —10
eV, which is typical of other small molecules. This
feature of the target in e-H2 scattering exacerbates the
theoretical deficiencies of the AN theory.

The adiabatic approximation can be applied to the rota-
tional motion, the vibrational motion, or both. Most ap-
plications to date have used this theory to study rotational
excitation in the rigid-rotator approximation, ' in which
the internuclear separation is fixed at its equilibrium
value. The resulting adiabatic-nuclear-rotation (ANR)
theory is the focus of the calculations presented here. The
present paper is, however, the first of a series on nuclear
excitations, so the discussions of the theory (Sec. II) and
of the model interaction potential (Sec. III) encompass ro-
tational and vibrational degrees of freedom.

In Sec. IV, we briefly describe salient computational de-
tails of this work, focusing on problems that arise for
near-threshold scattering. Differential and integrated
rotational-excitation cross sections from ANR calcula-
tions are presented in Sec. V and are compared to those of
fully converged LFCC calculations. This section also con-
tains a discussion of the validity of the ANR theory and
comments on the EMA and the first Born approximation
(FBA). Our conclusions and remarks on the effects of vi-

brational motion are presented in Sec. VI. Unless other-
wise noted, atomic units are used throughout. '

Since the scattering energies of primary interest in this
research are well below the threshold for electronic excita-
tion, we do not allow for such excitation in the theory of
this section. ' (Virtual electronic excitations, which corre-
spond to induced polarization of the target, are included
approximately, as described in Sec. IIID.) Therefore, we
begin with the coordinate-space projection of the
continuum-state wave function of the system onto the
(Born-Oppenheimer) electronic wave function of the
X 'Xs+ ground state of Hz. The resulting function depends
on the scattering electron's spatial coordinates in the
space-fixed reference frame, r ', and on the coordinates
of the internuclear axis R. It is labeled by the total energy
of the system, E, and by the quantum numbers of the ini-
tial nuclear target state, which we collectively denote by
vp. For a linear molecule, vp=(vp Jp, mi ), where the

quantum numbers v, I, and mj correspond to the vibra-
tional Hamiltonian A „b, the rotational angular momen-

turn operator j, and the projection of j on the space-
fixed polar (z') axis, respectively.

The "reduced" wave function %~ (r ', R) is an eigen-
0

function of the effective scattering Hamiltonian

In space-fixed coordinates, T, (r ') is the kinetic-energy

operator for the scattered electron, A '"'(R) is the nuclear

Hamiltonian of the target, and V;„,(r ', R) is the electron-
molecule interaction potential averaged over the ground
electronic state of the molecule. The nuclear
Hamiltonian —in the Born-Oppenheimer approxi-
mation —is just the sum of the rotational kinetic-energy

operator A „,(R), the vibrational Hamiltonian 4 „;b(R),
and the electronic energy of the ground state. The corre-
sponding nuclear Schrodinger equation determines the tar-

get eigenstates X„(R) and the Born-Oppenheimer approxi-
mation to the total energy of the molecule in state
v=(v, g, mi), e„,, i.e.,

For a diatomic molecule, the target eigenfunctions X,(R)
are approximated by products of vibrational and rotation-
al functions (spherical harmonics), viz. ,

II. THEORY X„(R)=$,(&)&J .(&),

A. Laboratory-frame close coupling

Over 20 years ago, Arthurs and Dalgarno introduced
the LFCC theory for the rotational excitation of mole-

cules. This theory has been applied to a few electron-
molecule systems and has been extended to incorporate
the vibrational degrees of freedom of the nuclei. The
LFCC formalism, which fully takes account of the
dynamical interaction of the nuclear motion with that of
the scattering electron, serves in the present study as the
exact theory against which the adiabatic-nuclei and relat-
ed approximations are assessed. In this subsection, we
shall summarize the essential equations and concepts of
the LFCC theory.

the dependence of the vibrational functions on the rota-
tional quantum number j being neglected.

A.
The interaction potential V;„,(r ', R) is, strictly speak-

ing, nonlocal owing to terms arising from antisymmetriza-
tion of the electron-molecule system wave function. The
nature and treatment of these "exchange terms" has been
discussed extensively elsewhere. In the present study
they are approximated by local terms; V;„, therefore in-
cludes local static, exchange, and polarization contribu-
tions (see Sec. III).

The total energy of the system —the eigenvalue of
VE„(r ',R)—is related to the incident and outgoing wave

numbers for the excitation Up, jp~u, j by the energy-



conservation relationship

2 t 2E—,kQ+Eug —,kuj+Cuj (4)

where kc —
ku@ is the incident wave number.

The LFCC theory (in the coupled-angular-momentum
representation ) is defined by the laboratory represen-

tation —a set of mutually commuting operators the simul-
taneous eigenfunctions of which constitute the laboratory
basis. Introducing J and J, for the square and z' com-
ponents of the total angular momentum, we have the
laboratory-frame representation:

where C(jo, lo,J;mj, ,mI, ,M) is just the appropriate

Clebsch-Gordan coefficient. The LFCC expansion

The reduced system wave function appropriate to this rep-

resentation, %P» I ( r ', R), can be expanded in the labora-

tory bRsis to obtaiII tllc collplcd radial dlffcrcIltial cqlla-
tions of the LFCC theory. The simultaneous eigenfunc-
tions of the operators in (5) are

@uJI(r,R)=P„(R) g C(j,l,J;mj, m&, M)
Nlp P8)

leads to the coupled radial scattering equations

l(i+1) +T uj uujl, uojoIO (

''I'(r)II 'p I (r) ~ (8)

The matrix elements that couple asymptotic channels

(u,j,l;J) and (u',j', l'; J),

V„ i „'i (r) = ( 4&„ I (r,R)
i V;„,( r ', R).

i @, 'I (r, R) ), (9)

are conveniently evaluated by expanding V;„,(r ', R) in
Legendre polynomials. ' " In terms of the resulting ex-

pansion coefficients ui(r, R), the matrix element (9) be-
comes

&~JI,j p(r)= gfi(J', l;J', l',J)(p, (R)
~
ui(r, R)

~
$„(R)),

where the indicated integration is over the coordinate R
and where fi(j,l;j', l';J) are angular coupli-ng (Percival-
Seaton) coefficients. For electron scattering from non-
polar targets, only even non-negative values of A, appear in
(10). If the internuclear separation is fixed, say, at its
equilibrium value R =R,q, as in the rigid-rotor approxi-
mation, then the vibrational matrix elements in (10) are re-
placed by uI (r;R,q ).

For convenience, we solve Eqs. (8) subject to the real
boundary condltlons

Q & tp u npr(r) $ i6 n &$p I JI (k ~ r)—„IJ J tl «llk, J J

'
j. /2

zr J
sp «

~ rptPII (k ur rg ) rRS r~ ~J

where Ku I i,u-j-p is the K matrix element connecting channels (u',j', l';J) and (u",j",l";J).
trix, the corresponding T matrix can be calculated from

T=2K(3. iK)— (12a)

=[2K (I+K' ) ']+i[—2K(3.+Kz) ']

where I is the unit matrix. The equivalent form (12b), which explicitly displays the real and imaginary parts of the T
matrix, is used in practice (cf. Sec. II C). [The superscript J is left off T and K in Eqs. (12) because these general rela-
tionships also apply to the fixed-nuclei T and K matrices of Sec. II B.]

In discussing approximations to the LFCC formalism, it is useful to relate the T matrix directly to the scattering am-
plitude. The space-fixed amplitude f (r ) is given in terms of LFCC T-matrix elements by~

f (r )= I g g gi Cj(,l,J;mJ. ,mI, M)Cj(O, lo,J;mj, ,mI, ,M)Y~, (k J )FI*, , (k 0)T„~I„&,I(kpk„j)'i 0
Ou 10

%e shall return to this important relationship in Sec. II0,
where it will be used to motivate an approximate alterna-
tive to LFCC theory.

Various cross sect1ons can be calculated d11ectly from
the T matrix. For example, the integrated rotational-
excitation cross section is given by

O'(uo«Jo~u, j)= . 2 g(2J+1)g I Tujl, uojul&& I(2jo+ 1)ku I,E0

8. The adiabatic-nuclei theory

The AN theory is based on an adiabati. c approxima-
tion for the nuclear degrees of freedom of the electron-
molecule system. In the present application, the nuclear
coordinates R are regarded as slowly varying, and the
scattering electron is described by an adiabatic wave
function —the "fixed-nuclei scattering function" of Eq
(17) below. In the AN theory, approximate cross sections
for nuclear excitation are determined from matrix ele-
iiicIlts (III thc space of Illlclcar cooidlI1Rtcs) of R flxcd-
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nuclei transition matrix that is extracted from the adia-
batic scattering function. The essential difference, there-
fore, between the LFCC and the AN theories is in the
latter's approximate treatment of the dynamical interac-
tion of the motion of the scattering electron and the nu-

clear degrees of freedom.
A precursor of the AN theory that is important to an

understanding of the assumptions on which it is based is
the fixed-nuclei (FN) approximation. ' This formulation
combines the rigid-rotor and fixed-nuclear-orientation ap-

A
proximations. The latter entails fixing R for the duration
of the collision; total integrated cross sections (summed
over all final rotational states) can subsequently be deter-
mined by averaging fixed-nuclear-orientation scattering

quantities over R. Fixed™nuclei calculations are most con-
veniently carried out in a body-fixed reference frame, as
described below. In terms of the Hamiltonian (1), the FN
approximation amounts to total neglect of the nuclear
Hamiltonian, which, in the rigid-rotor approximation, is
just P Ipf.

The nuclear Hamiltonian is partly taken into account in
the AN theory. In particular, the perturbation of the
scattering function by A '"' and the energy separation be-

tween target states are ignored in the calculation of the
FN scattering matrix. These aspects of the collision phys-
ics are introduced approximately via appropriate unitary
transformations that yield an S matrix in a basis in which
the target states are properly treated as nondegenerate.

Considerable insight into the question of the validity of
the AN theory can be gained by adopting the viewpoint of
the frame-transformation theory of Chang and Fano.
These authors pointed out that formally the validity of
this theory hinges on the commutator [M'"', V;„,] being
small —a condition that emphasizes the importance of the
representation of the interaction potential used in scatter-
ing calculations (cf. Sec. V 83). Conceptually, neglect of
P '"' in the determination of the adiabatic scattering
function would seem to be a reasonable approximation if
most of the distortion of that function occurs near the tar-
get, where the Coulomb interactions predominate. This
criterion leads us to expect the AN theory to be reliable if
the scattering energy is large —say, compared to the expec-
tation value of A '"' for the target states of interest. Such
is not the case near threshold.

The scattered electron that emerges from a near-
threshold nuclear excitation has very little kinetic energy,
and the corresponding scattering function will be very
sensitive to the region far from the target, where the nu-
clear Hamiltonian may be a significant perturbative influ-
ence. If so, the AN theory will be unable to predict
correct inelastic cross sections. Moreover, near-threshold
scattering energies will be comparable to the energy spac-
ing between the initial and final nuclear target states,
which, in the AN theory, are treated as degenerate.

The inaccuracy of the assumption of target-state degen-
eracy is strikingly manifested in the AN differential cross
sections, which, in violation of the %'igner threshold
laws, ' do not vanish at threshold. Chang and Temkin"
introduced an ad hoc remedy for this undesirable behavior
by simply multiplying the AN cross section for nuclear
excitation vpjp —+vj by the wave-number ratio k,J/kp.

(This modification is used in all the AN calculations re-
ported in this paper. ) The resulting AN inelastic cross
sections do not, however, exhibit the proper dependence
on k„i near threshold (see Sec. II C).

In the remainder of this section, we briefly survey the
AN formulation. Although the results in Sec. V pertain
to the rotational degrees of freedom only, we shall, for
completeness, include in the theoretical discussion the vi-
brational degrees of freedom as well.

In the AN formulation, the scattering equations are
written in a body-fixed (BF) reference frame. The BF
axes are obtained from the space-fixed (SF) axes by a rota-
tion through the Euler angles chosen to align the BF polar
axis with the internuclear axis, which will be fixed
throughout the collision. The spatial coordinates of the
scattering electron in the BF reference frame will be
unprimed (r ).

In contrast to the laboratory-frame representation (S),
the AN theory is formulated in terms of the body-frame
representation

IA „;g,l, I R,J,J R,J, ], (15)

A
where (l R) is the projection of l on the internuclear
axis. The corresponding quantum numbers v, l, A, J, A,
and M label the asymptotic free body-frame states and the
body-frame basis functions,

&&Ix(& R) =P (R) ~jp(&)RgMz(R )

The rotational functions RqM~(R ) in (16) are those of the
symmetric top.

For the reduced wave function in the AN formulation
we choose a function with initial-channel labels that are
consonant with the body-frame representation (15). Let-
ting Eh denote the body-frame energy (the scattering ener-

gy at which the BF-FN scattering matrix is evaluated), we

represent this wave function by I s „ I ~( r, R).
Invoking the adiabatic approximation, we replace the

system wave function by the product of the adiabatic (FN)
scattering function Q@ I (r;R) and the initial-channel nu-

clear target function, viz. ,

I p, „,(0~(r, R)=QE~(0(r;R)[p„,(R)RJMg(R )],
where the semicolon indicates the parametric dependence
of QE I on R. From the asymptotic behavior of
QE ~ (r;R) we can obtain BF-FN scattering matrices.

The BF-FN radial scattering functions that yield the E
matrix, wII, (r;R), are introduced via a partial-wave expan-

sion of Q@ ~ (r;R) in a basis of BF spherical harmonics

I YI&(r)I. The resulting BF-FN coupled equations have
the form

d l(l+1)
+ko wiI (r;R)

dr r 0

=2+ Vii' (r'R)wrawl, (r;R) . (18)
I'

The coupling matrix elements in (18) are conveniently
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evaluated (at internuclear separation R) in terms of the
Legendre expansion coefficients ui (r,R) as

where A is the transformation matrix

Vt', . '(r;R) = ggi (l, l';A)uq(r;R), (19) (24)

where the angular-coupling coefficients are

p [(2l+1)(2l'+I)]'~

X C(l, l'1,;0,0,0)C(l, l'A, ; —A, A, O) . (20)

The BF-FN E matrix E (R) is obtained by imposing
on the solutions of (18) the boundary conditions

These matrix elements can be used in the appropriate
LFCC formulas to calculate AN approximations to dif-
ferential and integrated cross sections for nuclear excita-
tions at body-frame energy Ei,

The rotational frame transformation (24) can also be
used to relate the coordinate-space projections of the
body- and laboratory-frame scattering functions, viz. ,

wi(, (r;R)-5gji (ki, r) IC(i (R—)ni(kyar), as r~ao (21) %E „~ I (r ',R)= QAJ. pl'P, ,i,p(r, R) .
A

(25)

and the corresponding T matrix TA(R) is then determined

by using IC~(R) for IC in Eqs. (12).
To obtain, from the BF-FN T matrix, the AN approxi-

mation to inelastic cross sections, we must introduce the
unitary transformations "' that affect the necessary coor-
dinate rotation and change of representation ' to produce
an approximate LF T matrix, i.e., one that connects states
defined in the representation (5)

~
Es up Jp ip JM) and

~
E&ujlJM ) The vib. rational degrees of freedom are intro-

duced asymptotically via the vibrational frame transfor-
rnation,

T,(„ i
——($„(R)

~
T(i (R)

~ P, (R)) . (22)

(In the ANR theory, which is examined in Sec. V, this
step is by-passed since the rigid-rotor approximation fixes
R at its equilibrium value. )

The rotational degrees of freedom are introduced via
the rotational frame transformation, which relates
simultaneous eigenfunctions of the laboratory-frame rep-
resentation (5) in SF coordinates to those of the body-
frame representation (15) in BF coordinates. The AN ap-
proximation to the LF T matrix T has elements

M)i„~,i, ——QAJp(p„(R) ~ Tii, (R)
~ p„,(R))AJ,p, (23)

A

The essential ambiguity of the AN theory and the major
source of concern at the prospect of using it for near-
threshold collisions rests in the definition of the body-
frame energy. In his seminal paper on the use of the adia-
batic approximation for scattering processes, Chase picks
Eb to be the scattering energy relative to the initial target
state, —,

'
kp [cf. Eq. (4)J; this choice has been used in nearly

all implementations of AN theory and is the one chosen
for the ANR study reported in Sec. V. Chang and Tem-
kin propose the alternative choice Eb ———,k,j as desirable

for scattering calculations near the threshold for the exci-
tation (vpjp}~(vj). But, as discussed by Shugard and
Hazi' and by Norcross and Padial, rigorous identifica-
tion of E& within the AN formalism is impossible. This
ambiguity is a consequence of the assumed degeneracy of
ihe nuclear target states in this theory. For scattering en-

ergies well above threshold, this ambiguity need not con-
cern us, and the choice E~ = —,kp is reasonable. However,
near threshold this choice introduces significant error in
the AN cross sections (cf. Sec. V}.

The origin of this error can be clearly seen by examin-
ing the AN approximation to the laboratory-frame (LF)
scattering amplitude, '

j (r )=f(kyar, v~kb, vp)

gi C(j, /, J;m~, mi, M)C(j p, lp, J;mj, ,mi, ,M)I'i~, (r )&),~, (k j, )~&i,„~,io .
b l, ml lo, ml J

0

(26)

In this expression k~ is the body wave number

ki, +2E&, this value ——therefore corresponds to the energy
at which TA(R) and hence W~ is evaluated. Equation (26)
is the AN counterpart of (13) for the exact LFCC scatter-
ing amplitude. Com.parison of these two expressions re-
veals that structurally the only difference is the replace-
ment of ki, in the prefactor in (26) by (k,jkp)' in the ex-
act result. The conventional choice k~ ——ko clearly does
not lead to an approximate scattering amplitude with the
correct dependence on k„z near threshoM.

C. Threshold laws

The threshold laws for the LFCC and AN T matrices
a«of great importance to an understanding of the break-
down of the AN theory for near-threshold nuclear excita-
tions. The threshold behavior of the scattering matrix is a
familiar topic in collision theory 'In th. is section
the analysis of Bardsley and Nesbet for multichannel
electron-atom scattering is extended to rovibrational
electron-molecule scattering (The thr.eshold behavior of
the BF-FN K matrix has been studied from the viewpoint
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Interestingly, this threshold law turns out to be identical
to that obtained if the interaction is assumed to be short
range, i.e., Uj„(r,R)=0 for r & r,„ for all 1,. Thus we find
that in the LFCC formulation, the presence of long-range
interactions does not affect the threshold law. This result,
which is the same as that discovered by Bardsley and Nes-
bet for inelastic electron-atom scattering, does not obtain
in the AN formulation.

The threshold law for the frame-transformed matrix
element W,zz„& ~ follows directly from the FBA expres-

sion for the BF-FN matrix element T~I (R), since the uni-

tary transformations that relate these matrix elements [cf.
Eq. (23)] are independent of energy. For a long-range po-
tential energy of the form r P~(cosO), we find [from
(A14) and the radial integral (A17)] that in the FBA, T~~

is proportional to kb and, hence, that the threshold law
in the AN theory is

J A,

Mphil I)~ l kb p as kb ~0 o (28)

For example, for the s~ =3 quadrupole interaction, the T
matrix elements are proportional to kb, while for the
s~=4 induced-polarization interaction, Eq. (28) predicts a
kb dependence. The appearance of the body-frame wave
number kb in the threshold law brings us back to the
essential ambiguity of the AN theory, namely, the defini-
tion of this quantity.

Regardless of how one chooses kb, the threshold
behavior of the LFCC and AN T matrices differs in
several respects. For example, unlike the LFCC law (27),
the AN law (28) applies only to long-range potentials. [If
one assumes a short-range interaction, then the radial in-

lo+l
'

Jtegral (A16) is proportional to kb, and W„jr „&,I, exhib-
10+1 + 1

its a kb dependence on the body-frame wave number,
in contrast to (28), which is independent of 1.]

This observation illustrates the fact that invoking the

of effective-range theory by Fabrikant. )

Near-threshold excitations are caused primarily by the
long-range part of the interaction potential. ' ' For
electron-molecule scattering, this part consists of terms
due to permanent (static) and induced moments. The ele-
ments of the T matrix vanish at threshold and are small in
the energy region of interest. Their dependence on wave
number can therefore be determined from the first term in
the Born Series for T i.e., in the FBA.

The FBA is used in the Appendix to obtain analytic ex-
pressions for the LFCC and AN T matrices TJ and u ~ at
energies near threshold. All results in the present discus-
sion follow from the indicated equations in the Appendix.
[Since, in the FBA, the T and IC matrices are proportional
(T= 2iE—), the following results also describe the thresh-
old behavior of the E matrix. ]

The dependence of the LFCC T-matrix elements on the
outgoing-electron wave number follows from the FBA re-
sult (A5) and the behavior of the radial integral (A8) as

kuj Iko~O, viz. ,

(27)

FBA in the LFCC and AN theories leads to distinctly dif-
ferent results for the T matrix. (This conclusion may be
germane to theoretical treatments in which the LFCC and
AN theories are mixed and the FBA is used. ) Insight
into these differences can be gained by examining the ratio
of corresponding FBA T matrix elements for a quadru-
pole potential; for l =lo&0, we obtain

TJ ' lo+1/2 3
vjl, uojplp kg ko 2 I (Ip + 2 )

ko k,J v I (l +2)

as k,J~0 . (29)

where I (x) is the gamma function. ' In the conventional
application of AN theory, with kb ——ko, the ratio (29) is

—(Eo+1/2)
proportional to k„. ', which certainly does not ap-
proach unity as k»~0. Even in the EMA, which is dis-
cussed in Sec. IID, the ratio of exact to approximate T
matrix elements does not go to 1. (Further discussion of
the use of the FBA for very-low-energy inelastic electron-
molecule scattering will be found in Sec. V C.)

The main results of this section, Eqs. (27) and (28), ex-
plicitly show the inadequacy of conventional AN
theory —in which W„j~„& I is independent of k,j—to

properly describe near-threshold electron-molecule col-
lisions. The alternative proposed by Chang and Temkin, '

kb ——k„j, is an improvement on the conventional choice
kb=ko only in that it forces W„j~„& ~ to go to zero at

threshold.

D. An energy-modified approximation

In light of the breakdown of conventional AN theory
for certain scattering processes, some theorists have pro-
posed alternative approaches that seek to incorporate
nonadiabatic effects without introducing the computation-
al difficulties of a full LFCC calculation. ' One
such proposal was made by Nesbet in a recent paper in
which the formal relationship between the LFCC and AN
theories was elucidated. The emphasis in this paper was
on resonant vibrational excitation (in e-N2 collisions) and
hence on the adiabatic approximation for vibration. The
central result of Nesbet's analysis was the demonstration
that replacement of the body-frame energy Eb in the BF-
FN scattering equations with the operator E —A '"' leads
to an equation that is formally equivalent to the scattering
equation of LFCC theory. Therefore, the FN scattering
matrix properly should depend on the kinetic energy of
the nuclear motion.

Nesbet's EMA is an improvement on the AN theory of
Sec. II in that it approximately incorporates this depen-
dence, which is especially important near threshold. The
EMA is designed to ensure proper behavior of each ele-
ment of the S matrix as the energy approaches threshold
and to guarantee unitarity of the S matrix. To enforce the
latter condition, the EMA is formulated in terms of the
K matrix, which is explicitly constructed so as to be sym-
metric.

The essential idea of Nesbet's EMA, generalized to the
present context, in which the rotational and vibrational
degrees of freedom are treated adiabatically, is the deter-



nu nation of the approximate E-matrix element

M„ji „-~-p by frame-transforming the BF-FN E matrix
E (R) via an equation analogous to (23), the latter having
been calculated at a body energy equal to the geometric
mean of the initial- and final-state scattering energies for
this element, i.e., at

1 y
~„PJlg~tl J.tl ~ (30)

The EMA T matrix W~ is then obtained by substituting
the EMA Xi J into Eqs. (12).

This strategy has several advantages over the AN
theory of Sec. II 8. Most important, it leads to approxi-
mate scattering matrices that do depend on the nuclear
dynamics. Thus, each element of the EMA T matrix goes
to zero at the appropriate threshold (k,j—+0). Second, it
prescribes that the diagonal elements of Xi"~ are to be
evaluated at the appropriate channel energy,
k„J' =2(E —e'„J') [cf. Eq. (4)]. Finally, it guarantees that
certain crucial T-matrix elements will obey the I,FCC
threshold law (27).

Near threshold, where W»~ „& ~ is proportional to
A"»I „@I, the EMA prescription leads to approximate T-

matrix elements that obey (28) with kb ——(kuk, j )'~; taking
si =3 for the (dominant) quadrupole interaction, we find
the EMA threshold law

(31)

Therefore each element of W~ for which I =0 (outgoing s
wave) has the correct threshold behavior (27). This
feature is especially important for rotational excitations
with hj =2; at near-threshold energies, LFCC cross sec-
tions for this process are predominantly determined by
the I =0, lo ——2 elements of T~. These crucial elements of
the EMA T matrix exhibit the threshold law (31) rather
than the AN law (28).

The comparison of the LFCC and EMA threshold laws
reveals one of the disadvantages of this procedure: All
elements of the EMA T matrix with l & 0 do not have the
proper near-threshold dependence on k„J. For example,
one need not go far above the threshold for a bj=2 rota-
tional excitation before the I =lo ——1 elements of T~ make
the dominant contribution to the inelastic cross section.
[For e-H2 scattering with the interaction potential
described in Sec. III, 85% of the LFCC cross section
o.(0~2) at a scattering energy of 0.047 eV comes from
the d~s T-matrix element, while at 0.08 eV this cross
section is a mixture of contributions: 27% from d~s ele-
ments and 59% from p —&iu elements. ] The EMA T-
matrix elements for l =1 exhibit the threshold behavior of
Eq. (31), rather than the k„J dependence required by (27).
The importance of this defect in the EMA T matrix is mi-
tigated somewhat for hj =2 cross sections because of the
aforementioned dominance of I =0 elements in their
deterroination.

A more practical disadvantage of this EMA prescrip-
tion derives from the nature of Eqs. (12), which are used
to obtain M. To calculate the cross section for the par-
ticular excitation Uo,jo—+v,j, we require T-matrix elements

fol a 1'ange of values of I, Io, and L Except uep'Jp

near threshold, where the FBA provides a one-to-one
correspondence between A .J/, .~olo and ~ Jl'polo deterJ

mination of the necessary T-matrix elements requires
knowledge of E-matrix elements Xi"„Ji, J-i- for a large
number of values of u', j' and u",j" (including, of course,
u', j'=u,j and u",j"=uu, ju). This fact means that we
must solve the BF-FN scattering equations for K~(R) at
several body energies (30) and assemble M by frame-
transforming all these submatrices. The need for several
BF-FN calculations to study a given nuclear excitation via
the EMA markedly increases the requisite computer time.

Several routes around this difficulty come to mind. For
example, one could initially generate ICA(R) over a mesh
of energies and use an interpolation scheme to obtain the
E-matrix elements needed for a particular inelastic cross
section. This tactic may be perilous because of the oc-
casionally strong dependence of K~(R) on kb. Alterna-
tively, one could deal directly with the T matrix, evaluat-
ing T~(R) at kb ——(kuk, j )' and proceeding directly —via
the frame-transformation (23)—to the elements of W~
needed to compute Uo,jo~v,j cross sections. However,
this tactic sacrifices unitarity of the S matrix and the
computational convenience of imposing real {E-matrix)
rather than complex (S-matrix) boundary conditions in
solving the BF-FN coupled equations.

We have implemented a simpler modification to the
original EMA procedure, taking a hint from comparison
of the LFCC and AN expressions for the LF scattering
amplitude for the excitation of interest, Eqs. (13) and (26),
respectively. Noting that replacing kb, the wave number
at which a ~ in (26) is evaluated, by the geometric mean of
the wave numbers for the excitation uoju~uj, (kok,j.)'~,
makes (26) identical in form to (13), we evaluate the full
matrix u J from the BF-FN T matrix T~(R) at body wave
number kb ——(kuk„j)'~ . This matrix is obtained via Eq.
(12) from E~(R), which is extracted from the asymptotic
behavior of the solution matrix of Eq. (18) at the corre-
sponding body-frame energy. Thus, in our implementa-
tion, only one BF-FN scattering calculation is required to
study a particular scattering process.

This modified EMA sacrifices unitarity of the S matrix
for the sake of computer-time considerations. Its im-
plementation is quite straightforward, and it shares with
the original EMA procedure the desirable threshold law
(31) for the crucial T-matrix elements for the uo, jo~u,j
cross section. (It also shares the less desirable behavior for
l ~0 elements. In another' paper, we have reported a
Ilew "scaled AN tlMoi'y" tliat avoids this defect )Fiilally. ,
it yields cross sections a(jo,use, u) that go to zero as
k,j~0 and hence obviates the need for multiplication of
the approximate cross sections by the ad hoc wave-
number ratio k„j/ko of Chang and Temkin. "

The construction of an accurate interaction potential is
as important to the calcula, tion of cross sections for low-
energy electron-molecule collisions as the formulation of
the scattering theory. The complexity of the system
prohibits an exact treatment of the particle-target interac-
tion, but research in this field has demonstrated that reli-
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able cross sections can be determined using model poten-
tials. ' Any credible electron-molecule interaction po-
tential (for low-energy scattering) must take account of
electrostatic, exchange, and induced-polarization effects,
viz. ,

V;„,(r,R)= V„(r,R)+ V,„(r,R)+ V~,~(r,R) . (32)

The accuracy of the model potential is of particular
concern in the present context because formally the validi-

ty of the AN theory depends explicitly on V;„, (cf. Sec.
II B). A second consideration is that this potential be free
of parameters that must be determined by appeal to exper-
imentally measured cross sections. Finally, we want a
procedure that can easily and consistently be extended to
nonequilibrium internuclear separations.

In this section we describe briefly the treatments we

have adopted for each of the components of V;„, in (32),
beginning with the wave function used to represent the
ground electron state of the target. This function is used
in determining all parts of V;„,.

A. Basis set for H&

B. The static potential

In order to implement the LFCC and AN theories for
rovibrational excitation, we require near-Hartree-Fock
electronic wave functions for the X 'Xz+ state of Hq for a
range of internuclear separations. We determined these
functions using a PoLYAroM computer package, which
carries out self-consistent-field (linear-variational) calcula-
tions using a basis comprised of nucleus-centered
Gaussian-type orbitals. We used an extended basis set
containing contracted functions for the los molecular or-
bital of Hz and two p-type polarization functions (with ex-

ponents of 2.228 and 0.5183). To assess the quality of the
resulting electronic function, it is useful to examine the
electronic energy and the quadrupole moment.

At R= 1.402ao, our basis yields an electronic energy of
—1.132 895'. The Hartree-Fock limit for this

geometry is —1.13363EI, . The highly accurate
configuration-interaction calculations of Kolos and Wol-
niewicz yield the value —1.17447EI, .

Because of the role played by the electron-quadrupole
interaction in rotational excitation, the quadrupole mo-
ment of the molecule q(R} is of particular importance.
At 1.4ao, our electronic function produces
q(R)=0.4518eao. This result compares favorably with
the experimental value ' of (0.474+0.034)eao, which,
of course, includes averaging over the vibrational motion
of the nuclei, and with the R =1.4ao value 0.4568eao
obtained from configuration-interaction calculations by
Poll and Wolniewicz.

results from averaging the Coulomb potential energy over
the X 'Xs+ wave function described in Sec. III A.

The interaction potential appears in the single-center
theory of Sec. II buried in the coupling matrix elements
[(10) for the LFCC theory, (19) for the AN formulation]
as the Legendre coefficients v~(r, R}. Each static coeffi-
cient UI„'(r,R) is the sum of electron-nucleus and electron-
electron terms; the latter must be evaluated from the
neutral probability density.

The calculation of Uq (r,R ) from the electronic function
of Sec. IIIA was carried out using the programs ALAM

(Ref. 46) and VI.AM (Ref. 47). Four such terms
(A, =0,2,4,6} were sufficient to obtain fully converged cross
sections for e-H2 scattering at energies up to 13 eV.

C. Exchange

In the scattering theory of Sec. II we did not explicitly
impose the antisymmetrization requirement of the Pauli
principle on the system wave function, since doing so
would lead to coupled integro-differential radial scatter-
ing equations, the solution of which is computationally
quite arduous —if, indeed, it is possible at all. This diffi-
culty is especially acute for vibrational-excitation studies
and for calculations on complex molecules, both of which
are long-term objectives of this program. Therefore we
have used an approximate treatment of exchange effects
that markedly simplifies the computations.

Research on such treatments in recent years has demon-
strated their utility in reliably mocking exchange effects
via a local potential-energy term that can be simply add-

ed to V„(r,R). Although our model-exchange potential
was determined in a BF-FN study (described below), it is
used in the LFCC and AN calculations reported in Sec. V.

The particular model-exchange potential we used is a
variant of the free-electron-gas (FEG) potential originally
proposed by Hara as an extension to scattering problems
of Slater's average exchange potential for bound states.
Extensive discussions of the theory underlying this model,
of its relation to an exact treatment of exchange, and of its
accuracy for electron-molecule scattering can be found
elsewhere. Briefly, we note that the form of the poten-
tial derives from making two approximations in the in-

tegral exchange terms of the exact-exchange scattering
equations. First, the molecular electrons are treated as a
FEG, with a charge density p(r, R) determined from the
ground-state electronic function of the target (cf. Sec.
IIIA). Second, the distortion of the continuum function
is neglected. The resulting FEG exchange potential has
the form

V,„(r,R)= — kF(r;R) —+ — ln
2 1 1 —q' 1+q

2 4g 1 —q

(33)

The most important component of the interaction po-
tential is the static term, V„(r,R) in (32). This contribu-
tion originates in the Coulomb interactions between the
scattering electron and the constituent electrons and nuclei
of the target. In the formulation of Sec. II, this potential z( r ) = [2(E;„,+I)+kF( r,R)] (34)

where kF(r;R)=[3m p(r;R)]' is the Fermi momentum
and rt =a/kF. The local momentum a is defined as
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In LFCC calculations, the incident energy E;„, in (34) is
the initial-channel energy —,

'
ko. In BF-FN calculations for

AN or EMA studies, E;„, is the body energy Eb. In
Hara's FEG potential, I in (34) is the ionization poten-
tial of the neutral target. Legendre expansion coefficients
of V,„(r,R) can be calculated using the program ExLAM
(Ref. 77) and simply added to the static coefficients dis-
cussed in Sec. III B.

This potential has been shown to be a rather accurate
approximation for electron scattering from a wide variety
of many-electron molecules. For systems in which the
target has few electrons (e.g., H2), Hara's potential is less
successful, ' probably due to inadequacy of the FEG
approximation for such a molecule. However, an ex-
change potential of the form of (33) can be used for such
systems provided I in (34) is treated as a parameter. 6

Gibson and Morrison showed that the resulting "tuned
free-electron-gas exchange" (TFEGE) potential gives ac-
curate total integrated and differential cross sections for
e-H2 scattering over three decades of energy. In the
present study, we used a newly determined TFEGE poten-
tial.

The tuning procedure is carried out in the BF-FN for-
mulation within the static-exchange approximation, in
which induced-polarization effects are neglected (cf. Sec.
IIID). This procedure requires knowledge of the eigen-
phase sum in one symmetry at one energy from an
exact-static-exchange (ESE) calculation, in which the
integro-differential BF-FN radial scattering equations are
solved. The parameter I in (34) can then be adjusted so
that corresponding static-model-exchange calculations, in
which the exchange potential (33) is simply added to
V„(r,R), yield the same value of the eigenphase sum.
This tuning fully determines V,„(r,R) at each R; no fur-
ther adjustments are made.

In our original report on the ANR theory, we showed
results obtained with a TFEGE potential that was ob-
tained by tuning in the Xg symmetry. Study of the matrix
elements (19) reveals that doing so amounts to adjusting
primarily the spherical component of the exchange poten-
tial vo (r,R). This component plays an important role in
determining total and elastic cross sections because it
"connects" channels with l =la. For example, these "s-
wave" T-matrix elements (with J=0) make the most im-
portant contribution to o.(jodo) in Eq. (14). In the BF-

FN formalism, s waves are present only in the Xg symme-
try, so tuning in this symmetry is the optimum choice for
calculations the primary focus of which is the total (or
elastic) cross section.

This choice is less shrewd for the study of rotational ex-
citation because of the importance of the nonspherical
components of V;„, in the determination of cross sections
for this collision process (e.g. , A, =2 for bj=2 excitations).
A preferable alternative is the X„symmetry; tuning in this
symmetry entails adjusting vo" (r,R) and v2" (r,R). More-
over, p waves (l =1) are present in the X„scattering equa-
tions, which, unlike those of the Xg symmetry, contain
odd-order partial waves. Rotational- and vibrational-
excitation cross sections are strongly influenced by these

partial waves. [For example, for scattering energies above
65 meV, the J=I =lo ——1 T-matrix elements make impor-
tant contributions to cr(0~2) in Eq. (14).]

Hence we redetermined the TFEGE for the present
study by tuning Eq. (33) in the X„symmetry. The tuning
energy was Eb ——0.04 Ry=0.544 eV, which is just above
the threshold for the vo ——O~v = 1 excitation.

To ensure internal consistency, we first performed new
ESE calculations using the H2 ground-state electronic
function described in Sec. III A. Using the iterative
static-exchange method of Collins et a/. , we solved the
BF-FN integro-differential equations in the X„(and Xg)
symmetries, obtaining the eigenphase sums shown in
Table I. The choice I=3.797 eV in Eq. (34) was found to
give a static-model exchange X„eigenphase sum at 0.04
Ry of 0.0487 rad, which agrees with the corresponding
ESE value. This value of I is larger than the one obtained
when the tuning is performed in the Xs symmetry at the
same energy (I=1.787 eV) and yields a less attractive
FEG exchange potential.

The effect on the static-exchange eigenphase sums and
on rotational-excitation cross sections of alternate choices
of the TFEGE potential is relevant to the overall credibili-
ty of the cross sections in Sec. V. In Table I, we present
static-model-exchange eigenphase sums in the Xg and X„
symmetries calculated with both model potentials. Exam-
ination of these results shows that the deviation of these
approximate results from their ESE counterparts, while
quite small near the tuning energy, increases with increas-
ing Eb.

Table I provides an indication of the accuracy of our

TABLE I. BF-FN (R = 1.4ao) static-exchange eigenphase sums (in radians) for e-H2 scattering from
ESE and model-exchange {"tuned") calculations. In the latter the TFEGE of Eq. (33) was used with I
in Eq. (34) chosen to ensure agreement with the ESE eigenphase sum at 0.04 Ry in either the Xg or X„
symmetry. All calculations use the basis described in Sec. III A.

Eb (Ry) ESE
X~ eigenphase sum

Xg-tuned' X„-tuned ESE
X„eigenphase sum

Xg-tuned' X„-tuned"

0.01
0.04
0.09
0.16
0.25

'I= 1.787 eV.
I=3.797 eV.

2.9307
2.7248
2.5265
2.3399
2.1678

2.9327
2.7247
2.5201
2.3247
2.1438

2.9181
2.6995
2.4890
2.2917
2.1115

0.0135
0.0487
0.1227
0.2460
0.4091

0.0153
0.0605
0.1497
0.2802
0.4319

0.0136
0.0487
0.1187
0.2278
0.3659
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model-exchange potential. But in the present context it is
also important to note the sensitivity of rotational-
excitation cross sections to this potential. In Fig. 1 we
compare ANR cross sections cr(0—+0) and o(0~2) calcu-
lated using the Xs and X„-tuned TFEGE potential (to-
gether with the static potential of Sec. III 8 and the polar-
ization potential of Sec. IIID). The greatest percentage
difference in a(0—+2) that is introduced by using the Xs-

tuned rather than the X„-tuned potential occurs at scatter-
ing energies around 1 eV. The X„-tuned 0~2 cross sec-
tions proved to be consistently closer to their exact-
exchange (with polarization) ANR counterparts, which
are indicated by the crosses in Fig. 1(a), than the Xg-tuned
cross sections. [As expected, the reverse holds for the
elastic cross section, which, for completeness, is shown in
Fig. 1(b).]
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FIG. 1. Integrated e-H2 cross sections (at A =1.4ao) for (b) elastic scattering (0—+0) and (a) rotational excitation (0—+2) using
various treatments of exchange. All cross sections were calculated using the ANR theory of Sec. IIB. The solid (X„-tuned) and
dashed (Xg-tuned) curves correspond to TFEGE potentials (see Sec. III C). The crosses come from calculations in which exchange is
included exactly (see also Table I).
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The R variation of the X„-tuned TFEGE potential will
be discussed in a future paper in this series. We consider
the determination of I(R) in (34) to be a part of the con-
struction of a representation of the interaction potential
for use in the LFCC and AN calculations, noting again
that it does not entail adjustment of this potential to ex-
perimental data. The use of such a model-exchange po-
tential represents a compromise between demands of accu-
racy, computational practicality, and extensibility of the
present theory to more complex systems. Within these
constraints, we believe thc present potential to be optimal
for inelastic scattering and accept the consequent error in
the elastic cross sections.

Their V~i(r, R) is determined from self-consistent-field
calculations using the H2 basis described in Sec. III' aug-
mented with additional basis functions chosen to allow for
the polarization distortion. Nonadiabatic effects are in-
corporated in this potential approximately via a procedure
originally introduced by Temkin. The spherical and
nonspherical polarizabilities at R =1.4au that are deter-
mined from the asymptotic form of this polarization po-
tential are o.o——5.20ao and u2 ——1.32ao. The procedure
and codes developed by Gibson and Morrison are easily
extensible to nonequilibrium geometries and to other sys-
tems and are used throughout this study.

D. Induced polarization

The final component of the interaction potential models
induced-polarization effects. Rigorously, these effects can
be incorporated in quantum-mechanical scattering formal-
isms by allowing for virtual electronic excitations. As
with exchange, an exact treatment of polarization leads to
prohibitive computational difficulties, so we turn to a
model potential, V~, (r,R) in (32). This term is the de-
crease in the energy of the electron-molecule system due
to ihe aforementioned distortion. The polarization poten-
tial is of especial concern in the present study because its
A, =2 Legendre coefficient uP'(r, R) has a long-range r
dependence that is instrumental in near-threshold rota-
t10Qal cxc1tat1on.

The model polarization potential that is most widely
used in electron-molecule scattering calculations is a
semiempirical form based on the known asymptotic
behavior of V~,&(r,R). This form is predicated on yet
another adiabatic approximation: the assumption that the
position of the scattering electron r can be treated as
slowly varying when compared to the response of the tar-
get charge density. This approximation fails spectacularly
at small r, where short-range correlation effects result in a
significant weakening of the polarization potential. In the
semiempirical form, these nonadiabatic effects are very
cruddy mocked by a spherically symmetric cutoff func-
tion that contains a parameter (the cutoff radius) that is
usually determined by adjusting theoretical cross sections
to experimental data. In the present study, this procedure
would introduce an undesirable bias in favor of a particu-
lar experiment and, owing to the sensitivity of the near-
threshold nuclear-cxcltat1on c1oss scct1ons to nonsphcrical
components of the interaction potential, is too crude for
oui nccds.

In our original study of the ANR theory we used an
alternative parameter-free analytic polarization potential
based on the variation-perturbation calculations of Lane
and Henry. z This potential, which is available only for
the equilibrium H2 geometry, is based on a different
ground-state wave function than is used in this study and
had to bc scaled by Lane and Henry to ensure the proper
asymptotic behavior, a gambit that introduces uncertainty
concerning the validity of the potential for small and in-
termediate values of P'.

Rcccntly, Gibson and Morrison dcvclopcd aQ Q6 EPlltlo

e-H2 polarization potential that docs not require scaling.

IV. COMPUTATIONAL PROCEDURES

A. Evaluation of X-matrix eleInents

To allow reasonable choices of r,„and still ensure ac-
curate K-matrix elements, we use the FBA to complete the
integral over r that formally determines these elements.
The need for this tactic and how it is implemented can be
seen by examining the integral equation for the K ma-
trix, which we write here in a general form appropriate
to either the LFCC or BF-FN formulations,

K p(0, ) = —2(k kp)

&( g J j~ (k r)V r(r)urp(r)dr, (35)

a=( ju', l'), p= (u",j",I"), y =(uTl ),

J
Q p Q t tp si zp (r)

and in the BF-FN theory (Sec. II B)

(36a)

The coupled differential scattering equations —(8) in the
LFCC formulation and (18) in the BF-FN theory —are
solved numerically using an integral-equations algorithm
that has been fully described elsewhere. Briefly, these
sets of equations are converted to integral equations, using
standard Green's functions procedures, and solved by nu-
merical quadrature to obtain the E matrix at the final
mesh point of the radial integration, r,„Idea.lly, the
value of r,„should be chosen so that all cross sections
calculated from the E matrix are converged with respect
to this parameter.

For near-threshold inelastic cross sections, this require-
ment calls for an extremely large value of r,„; such a
value is undesirable because it increases the requisite corn-
puter time, and, more seriously, because it increases the
cumulative error in the resulting E-matrix elements. A
strategy for dealing with this problem is described in Sec.
IV A.

Additional difficulties attend the evaluation of differen-
tial cross sections for the excitations of interest in the
present research. Surmounting these via judicious use of
the Born approximation is discussed in Secs. IVB and
IV C. Finally, in IVD, we present the parameters used in
the scattering calculations reported in Sec. V.
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P=$", y=l, K~p K——i"i (R),

The arguments on Kop in (35) explicitly denote the limits

of integration.
The numerical solution of the coupled scattering equa-

tions yields K p(O, r,„). For a reasonable choice of r,„
the residual contribution to (35), K p(r,„,oo), is usually

negligible. It arises from distortions of the scattering

function by the long-range interaction potential, which,

for r & r „,is simply

V;„,(r,R)=V~((r,R)

a,(&) ~&(&) q(g)+ ~ + P2(cos8),
Zr" 2r' r'

as r~oo . (37)

However, the long-range region contributes significantly
to the distortion of the scattering function for near-
threshold excitations, and K p(r,„,oo) cannot be ca-
vaI1crlg Qcglcctcd. FortUQatcIQ~ this add1tlonal tcfID CRQ

be accurately calculated in the FBA, using (37) as the po-
tential energy, and we can approximate (35) by

K~p(0, oo )=Klp(O, r~,„)+K'~(r~,„,oo ) . (38)

The first term in (38) is evaluated by solution of the cou-

pled equations with the full interaction potential (32). The
second term is most

convenient'
calculated by exploiting

the simple analytic forms for K p (0, oo ) given in the Ap-
pendix. To do so, we Usc thc intcgI'R1 cqUat1ons code %'ith

the potential energy (37) and appropriate modifications to
compute the FBA to K p(O, r,„) The des. ired correction
term in (38) is then just

K"p (r,„, )=K"p (0, ) K"p (O,r,„—) . (39)

This procedure for completing the radial integral in (35)
to infinity is implemented in the present LFCC and BF-
FN calculations. To illustrate the importance of the
correction term, we show in Table II its effect on the
LFCC matrix elements KJi 1 i„ for the j0=0 +j =2-
scattering process in the e-Hz system (with R =1.4ao} at
an incident energy of 47 meV. The integrated cross sec-
tion at this energy is 0.0578az [including contributions

through J=5 in Eq. (17)]; 86% of this value comes from
thc terID containing T20 o2.

Also shown in Table II is the first Born approximate
K" (0, oo ); the difference between this matrix element
aild tlie coupled-channel collilterpart as determined from
(38) is indicative of the surprising inadequacy of the FBA
for rotational excitation (47 meV is a mere 3 meV above
the threshold for the 0~2 excitation). We shall return to
this matter in Sec. VC.

8. EvalQRt10n of dlffcrcntlal cross sections

The formula for the evaluation of the differential cross
section do. /d Q(uojo~uj) from the elements of T~ in the
coUpIcd-RngUlax'"IDomcntUID I PCC theory cnta1Is a t%'o-

fold infinite summation over the total-angular-momentum
quantum number J (in addition to numerous sums over
partial-wave orders). At low scattering energies, where in-
dividURI tc11Tls 1Q this sUID can bc qU1tc sIDR11, R large
number of terms are often required to fully converge the
CI'oss scctIGQ. A s1IT111ar pro MclD arises 1Q AN thcorf,
where the offending summation is over A. To deal with
these pl'oblcIBs, t%'o previoUslp pI'oposcd strategies have
bccQ coIDbincd and adapted to the p1cscnt ca1CUIRt1GQs;

their use leads to a significant reduction of computer time
and numerical error. Both strategies are based m part on
use of the FBA matrix elements (see Appendix) where ap-
pI'opriatc. Thc1I' bas1c idea and 1IDplcIDcntat1GQ 1Q thc cal-
culations of Sec. V will be described here; derivations and
full equations appear in the original references cited
below.

In order to simplify the evaluation of the differential
cross section, Pano and DiII proposed RQ alternative to
thc conventional coUplcd" RQgUlar-IQomentUI schcQ1c.
TIlclr proccdUI'c, as applied to tjlc clcctroQ-IDolccUlc sgs-
tcID at hand, 1s based GQ thc RQgUlar IOIDcQtUI
transferred from the orbital motion of the scattered dec-
tron to the rotational motion of the target; this "recou-

pled" angular momentum is I,= j —jo——I —I o. The
cross-section formulas are recast in terms of T matrices
defined in a basis in which I, is a good quantum number.
The elements of these matrices can be obtained from those
of T via the transformation

J
0 e 00 22 0.406 '
1 0 0 1 2 1 —0.658
2 e 02 20 0.166
2 e 02 22 —0523 4

2 e 0 2 2 4 —0,443

Parity is even (odd) according to @whether j +I =jo+Io is even (odd).
From convcrgcd close-coopllng calcnlatlons (scc Scc. IV 0).

'From Eq. (38).

0.569-'
—0.662

0.175
—0.540

0.304

0.515
—0.711-'

0.165
—0.542 "

0.304-'

TABLE II. LFCC E-matrix elements for the jo——O~j =2 excitation in e-H2 (R =1.4ao) scattering
Rt, 47 IDcV. POI' this calcUlatlon~ thc coUplcd eqURt1ons werc Integrated to rex = 130Qo

(1.0 = 1.0~ 10 ).

Parity' jo Io j l K(0,r „)b K(0, aa)' ZFBA(0
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1, Jo
TU' t,~. t = g ( —1) (2J+1)

J
-TJ

ujl uoj010 ~

0

(40)

where I
.

I is a 6-j symbol and the sum over J is con-
strained by the triangle rules A(jp, lp, J) and b(j, /, J). The
resulting equations for der/dQ(v pj p +vj—) have been de-
rived and discussed by Chandra. '

A similar transformation can be performed on the AN
matrix elements (P, ~ Ttt, (R)

~ P„,) [or, in the ANR
theory, on Ttt (R,q)], changing the body representation to
one in which 1, rather than A is a good quantum number,
V1Z.,

T,t „ t = Q ( —1) C(1,4,1„'A,—A, O)
A

(41)

where the sum over A runs from
~

1 —lp
~

to 1+lp. Intro-
duction of 1, into the AN theory enables one to define dif-
ferential cross sections (that are partial in 1, ) in which the
rotational dynamics do not appear. The advantages of do-
ing so, as well as full equations for the resulting cross sec-
tions, have been discussed by Norcross and Padial.

In addition to considerably simplifying the structure of
the equation that must be used to evaluate
do'/dQ(vp jp —+v,j), the angular-momentum-recoupling
scheme is operationally very convenient when combined
with the FBA in the closure formulas of Sec. IV 8 3. We
use this representation in our LFCC, ANR, and EMA
studies.

2. Use of the first Born approximation

The evaluation of differential cross sections in any of
the formulations considered in this research inevitably re-
quires T-matrix elements for large partial-wave orders (1
and lp). Because of the presence of strong repulsive
centrifugal-potential terms in the corresponding coupled
scattering equations, these matrix elements can be accu-

rately determined in the FBA using the long-range part of
the potential energy [Eq. (37)j. Analytic expressions for
these matrix elements in the LFCC and BF-FN theories
are given in the Appendix.

Following Norcross and Padial, we introduce a "Born
order" lti such that T-matrix elements for 1 &lz and

lp&lz are given (to the desired accuracy) by their FBA
counterparts. For e-H2 collisions in the energy range
studied, ls ——3 is adequate to obtain better than 1% accu-
Iacy.

The FBA matrix elements of the Appendix are used (1)
to calculate the LFCC l, -reduced T-matrix elements (40)
for all required values of J if lp & lz and 1 & lz, and (2) to
calculate the AN matrix elements (41) for all A if lp & ls
and 1 & lz. All other T-matrix elements that must be used
to calculate converged differential cross sections are deter-
mined via close-coupling calculations using the full in-
teraction potential.

3. Closure formulas

The fact that large-order T-matrix elements can be ac-
curately approximated using the FBA was exploited by
Crawford and Dalgarno to develop an alternative formu-
la for differential cross sections for electron —polar-
molecule scattering in the LFCC coupled-angular-
momentum formulation. Their derivation is also based on
triangle relations derived from algebraic coefficients that
appear in the equation for do/dQ(vpjp~vj); the resulting
expression requires only a finite number of T-matrix ele-
ments, many of which can be evaluated in the FBA.

This strategy forms the basis of the multipole-extracted
adiabatic-nuclei (MEAN) theory of Norcross and Padial.
This approximation, which was originally proposed for
electron —polar-molecule systems, entails the use of
coupled-channel BF-FN T-matrix elements for low
partial-wave orders and LFCC-FBA matrix elements for
large orders.

In the present implementation, we use the closure for-
mulas of Crawford and Dalgarno in the l, -reduced for-
mulation of Sec. IVB 1 to obtain the LFCC differential
cross section via

do+ 1
maxA,

(vo Jp~»J)= (vo Jp~vj)+ 2 g [~~ (vo Jp~»J) ~P, (vo Jp~vi)l
dQ dQ 4ko ~ 0

(42)

where the first term is the analytic expression for this
cross section in the FBA. In the second term, the coeffi-

(1~ )
cients A~ (vpjp —+vj), which are given explicitly by Eq.
(14) of Ref. 31, contain the reduced T-matrix elements of
Eq. (40). All such elements with partial-wave order & lz
are evaluated in the FBA of Sec. IV 8 3; all other such ele-
ments are obtained via Eq. (40) from LFCC calculations.
The sum over A, is rapidly convergent; for e-H2 scattering
requisite values of tt, ,„ranged from 10 to 23. Only a lim-
ited number of T-matrix elements are needed to evaluate
do/dQ(vp, jp —+v,j) via Eq. (42); the maximum Partial-
wave order that contributes to this cross section is

Is +~max
A similar result obtains from application of the closure

formulas to the AN expression for the differential cross
sections. Qur implementation differs from the MEAN
theory in that all contributions to der/dQ(vpj p~vj),
including the analytic FBA term, are calculated within the
AN theory. This theoretical consistency is possible only
for electron scattering from nonpolar molecules, which is
not plagued by the divergent BF-FN cross sections that
beset the AN theory for collisions with polar targets. In
the ANR calculations reported in Sec. V, A, ,„=1Swas
used at all energies.
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C. Parameters for close-coupling calculations

In order to ensure that the differences between LFCC
and approximate (AN or EMA) cross sections are actually
indicative of a breakdown in the approximate scattering
theory (rather than due to numerical vagaries of the two
calculations), we imposed identical (and rather stringent)
convergence criteria on both studies. The standard for the
results of Sec. V was set by the differential cross sections
doldQ(joe), which are globally conuerged to better
than 1% in all parameters of the scattering calculations.

In the LFCC study, this criterion required including all
channels (j,l;J) that result from retaining five rotor states
and all total angular momenta through J=5. The close-
coupling equations were integrated to r „=130.0ap and
the completion formula (38) used to obtain the elements of
EJ. The rotational constant used, 2.7/10 E~, gives
thresholds of 44 and 73 meV for the 0~2 and 1—+3 exci-
tations, respectively.

The AN and EMA results are based on BF-FN
coupled-channel calculations for five electron-molecule
symmetries, corresponding to A=0, 1, and 2. The desig-
nations of these symmetries and the number of partial
waves (channels) per symmetry are Xz(6), X„(6), II„(6),
II&(5), and As(5). In each symmetry, coupled equations
were integrated out to r,„=170.0ao and Eq. (38) used to
complete the calculation of K (R).

V. RESULTS AND DISCUSSION

In this section we present and discuss differential and
integrated cross sections for the jo~j rotational excitation
of Hz calculated in the three formulations described in
Sec. II: the exact LFCC treatment and the ANR and
EMA approximations. All cross sections were calculated
in the rigid-rotator approximation with R =1.4ap using
the interaction potential described in Sec. III. Hence these
results do not allow for the vibrational motion of the nu-
clei and are inappropriate for comparison to experimental
cross sections.

The integrated 0—+2 and 1~3 cross sections are
presented in Tables III and IV and the differential cross
sections in Figs. 3 and 4. The qualitative and quantitative
trends and conclusions discussed below were found to
hold for all excitations studied (0—+2, 1~3, 2~4, and
3—&5). For the sake of brevity, we shall here focus on the
0—+2 excitation.

A. Tests of ANR theory

TABLE III. e-H2 0~2 integrated rotational-excitation cross
sections in ao from fixed 8 (=1.4ao) LFCC (see Sec. IIA),
ANR (Sec. II B), and EMA (Sec. II D) calculations. The percen-
tage differences of approximate (ANR, EMA) results from
LFCC cross sections are shown in Fig. 2. The threshold for this
excitation is 0.044 eV.

E (eV)

0.047
0.050
0.065
0.080
0.10
0.20
0.50
1.0
1.5
2.0
3.0
4.5
6.0

LFCC

0.058
0.082
0.150
0.192
0.234
0.378
0.784
1.619
2.557
3.450
4.742
5.391
5.201

0.074
0.102
0.178
0.221
0.262
0.408
0.821
1.667
2.609
3.498
4.774
5.399
5.199

EMA

0.063
0.089
0.160
0.202
0.242
0.384
0.787
1.622
2.559
3.450
4.740
5.387
5.197

tion directly from the BF T-matrix, T"(R). As pointed
out by Chang and Temkin, " the resulting quantity is
equal to the sum of the ANR rotational-excitation cross
sections o (jo~j) (provided they are not multiplied by the
wave-number ratio kJ Iko and are calculated with kb ——ko)
and should be independent of jo.

Therefore, at scattering energies where the ANR theory
is valid, one would expect to see this jp independence in
total cross sections obtained from LFCC calculations or,
for that matter, from experiment. Moreover, these "accu-
rate" total cross sections should agree with those obtained
from ANR calculations if the two studies are internally
consistent. The results in Table V show that both of these
conditions are well satisfied by the present results, even
very near threshold. [These total integrated cross sections
include only the elastic and

~
hj

~

=2 contributions, all
other o (j z +j) being—negligibly small. ]

The agreement between the various cross sections in
Table V is not, however, indicative of the reliability of the
ANR theory at these energies; rather, it is a consequence
of the fact that the elastic cross section o(jo~jz) is the
dominant contribution to the total cross section over the

TABLE IV. e-H2 1~3 integrated rotational-excitation cross
sections in ao,' see caption to Table III. The threshold for this
excitation is 0.073 eV.

In the prior literature of the AN theory, a variety of
tests of its validity have been proposed. ' In this section,
we examine the results of the present calculations from
several perspectives, seeking to explore the usefulness of
various validity tests as well as the reliability of the ANR
theory itself.

1. Total integrated cross sections

The total integrated cross section, which, in the rigid-
rotator approximation, is defined as the sum over all ener-

getically accessible final-rotational-state quantum num-

bers of (joOj), can be calculated in the FN approxima-

E (ev)

0.080
0.100
0.200
0.500
1.000
1.500
2.000
3.000
4.500
6.000

LFCC

0.040
0.083
0.191
0.439
0.937
1.498
2.034
2.817
3.219
3.113

ANR

0.057
0.108
0.220
0.476
0.985
1.550
2.083
2.850
3.229
3.112

EMA

0.048
0.092
0.198
0.443
0.940
1.500
2.035
2.817
3.217
3.111
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TABLE V. Total integrated cross sections {in ap) and elastic
cross sections (in parentheses} for e-H2 scattering at R =1.4ap.
LFCC results include jp~jp and jp ~jp+ 2. ANR theory
predicts that these cross sections will be independent of the
initial-state quantum number jp. Also shown are results from a
separate ANR calculation (including the factors kj/kp).

E (eV)

0.047

0.080

0.100

0.200

0.500

1.000

4.500

jp ——0

33.63
{33.57)
35.83

(35.64)
36.83

(36.60)
40.29

(39.91)
45.6S

(44.87)
50.36

(48.74)
52.21

(46.82)

LFCC
jp ——1

33.73
(33.73)
35.86

(35.82)
36.89

(36.79)
40.34

(40.15)
45.70

(45.26)
50.36

(49.42)
52.22

(49.01)

jp=2

33.77
(33.69)
35.85

(35.76)
36.83

{36.74)
40.32

(40.08)
45.68

(4s.1s)
50.39

(49.26)
52.21

(48.37)

ANR

33.62
{33.S5)
35.84

(3S.61)
36.84

(36.58)
40.31
(39.90)
45.68

(44.86)
50.40

(48.74)
52.18

(46.78)

'Includes superelastic contribution 2~0.
"For jp=0.

whole energy range studied. As can be seen by examining
the elastic contributions, which are shown in parentheses
in Table V, they are orders of magnitude larger than
o(0~2) (Table Ill), and the ANR theory is quite success-
ful at predicting cr(jo +jo). To d—raw conclusions about
the validity of ANR theory a more sensitive test is needed.

2. Ratio test

The ANR theory predicts that cross sections for two
different rotational excitations jo~j and Jo ~j' will obey
the simple relationship

r

o(j 0 ~j ') kj C(j0,2,j',0,0,0)

o(j O~j ) kj C(j0,2,j;0,0,0)
(43)

where kj and kj are the final-state wave numbers of the
scattering electron for the two excitations [cf. Eq. (4)].
The cross sections in (43) are evaluated at the same body-
frame energy Eb. This relationship has been extensively
described by Chang and Temkin, " by Shimamura,
and by Norcross; " the 1atter authors use it to develop very
useful expressions for stopping cross sections. At energies
where this relationship holds, it can trivially be used to
predict a plethora of rotational-excitation cross sections
o.(j 0~j') from a single set of accurate (LFCC or experi-
mental) results o(jo~j); such a strategy is of enormous
value in, for example, transport analysis of swarm experi-
ments, where numerous excitations must be taken into ac-
count.

The validity of Eq. (43) for the 0~2 and 1—+3 cross
sections is examined in Table VI, where a deterioration in
the ANR predictions can be seen as the scattering energy
is decreased to 0.073 eV, the threshold for the 1~3 exci-
tation. At energies below -0.5 eV, the EMA described in
Sec. II0 consistently yields ratios that are in better agree-

TABLE VI. Ratio o(1~3)/o(0~2) for e-H2 scattering
(R =1.4ap).

E (ev)

0.080
0.100
0.200
0.500
1.000
4.500

ANR theory
[Eq. (43)]

0.265
0.417
0.541
0.581
0.591
0.598

LFCC

0.208
0.355
0.505
0.560
0.579
0.597

Calculations
ANR

0.258
0.412
0.539
0.580
0.591
O.S98

EMA

0.238
0.380
0.516
0.563
0.579
0.597

ment with the accurate LFCC ratios than those predicted
by Eq. (43).

This comparison suggests that the ANR theory could
reliably be used for e-H2 scattering at energies above -0.5
eV (many times the meV thresholds characteristic of this
system). However, caution clearly should be exercised in
using Eq. (43) to predict near-threshold rotational-
excitation cross sections. It is interesting to note that this
equation fails near threshold not because of a breakdown
in the linear dependence of o(l —+3)/o(0~2) on k3/k2,
but rather because the proportionality constant is different
from the simple factor in Eq. (43).

3. Direct comparison

Obviously, the most precise test of the ANR theory is a
direct comparison of ANR rotational-excitation cross sec-
tions with those produced in LFCC calculations. Such
comparisons are presented for the 0~2 and 1—+3 excita-
tions in Tables III and IV. The ANR cross sections are
seen to be larger than their LFCC counterparts. The per-
centage difference between the two for the 0~2 excitation
is given by the solid curve in Fig. 2. At the lowest energy
considered, 0.047 eV (3 meV above threshold), the ANR
cross section is too large by 28%. The corresponding
ANR differential cross section, which is compared to the
LFCC result in Fig. 3(a), does not exhibit even qualitative-
ly correct dependence on scattering angle.

With increasing energy, the ANR cross sections im-
prove as expected, although at 0.5 eV (roughly 11 times
threshold), they are still in error by 5%. The differential
cross sections of Fig. 3 (0~2) and Fig. 4 (1—+3) reveal
more serious deficiencies in the predictions of ANR
theory. Note especially the pronounced dip in the forward
direction exhibited by the LFCC differential cross sections
at energies near 0.1 eV. This structure is not reproduced
by the ANR theory (because of the incorrect behavior of
the ANR I =lo ——1 T-matrix elements in this energy
range). The integrated cross sections do not accurately re-
Aect the severity of the disagreement between the ANR
and LFCC theories at these energies because they deem-
phasize forward-angle scattering.

As the scattering energy is further increased above 1 eV
(roughly 23 times threshold), the ANR differential cross
sections come into excellent agreement with their LFCC
counterparts. This improvement is, of course, reAected in
the integrated cross sections of Tables III and IV. Al-
though the AN theory is expected to break down for
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FIG. 2. Percentage deviatjon of approximate e-H2 integrated cross sections for the 0~2 excitation from their I.FCC counterparts
(see Tables III and IV). Solid and dashed curves correspond to the ANR (Sec. II 8) and EMA (Sec. II D) formalisms, respectively, us-

ing the X„-tuned FEG exchange potential described in Sec. IIIC. Dotted-dashed curve corresponds to the ANR theory using the
Xg-tuned FEG exchange potential.

scattering near 8 resonance energy, no deterioration in the
ANR cross sections is seen near the 3-eV "enhancement»»

of o.(jo—+j); presumably this is a consequence of the
breadth of this "resonance. "

In the discussion of AN theory in Sec. II 8 and of the
interaction potential in Sec. III, we emphasized the
theoretical importance of using an accurate potential in
any investigation of the validity of the AN formulation.
The sensitivity of such a study to V;„, is strikingly demon-
strated by comparing the solid curve in Fig. 2, which gives
the percent error in the ANR o(0~2), with the dotted-
dashed curve in this figure, which shows the same quanti-

ty calculated from ANR and LFCC cross sections deter-
mined in our preliminary study. (The differences be-
tween the potential energies used to generate these curves
are discussed in Sec. III.) It is important in this context to
note that the potential energy used in Ref. 39 (dotted-
dashed cul'vc Ill Flg. 2) ls I'casollably Rcclllatc; 1ndccd, lt
produces total and rotational excitation cross sections that
are in good agreement with experimental results.

This comparison, in turn, calls into question the accura-
cy of the present interaction potential. A meaningful

comparison of theoretical and experimental cross sections
(at the level of numerical accuracy of the present calcula-
tions) should allow for vibrational motion in the former
results. Such a comparison ls forthcoming» the calcUlatcd
LFCC rovibrational jo ——0—+j =2 cross sections (within
the ground vibrational state) are found to agree with the
highly accurate swarm results of Crompton et aI. to
within the experimental error bars. This agreement
strongly suggests that the potential energy used in the

present study is a very good approxlmatlon to the true e-
Hp llltcractloll (fol' I'otatlollal cxcl'tatloll).

B. The EMA

The EMA integrated cross sections are given in Tables
III and IV, and their percentage error is shown by the
dashed CUrvc ln Flg. 2. These IcsUlts show a striking im-
provement over the ANR cross sections near threshold;
for example, at a scattering energy of 0.065 CV, the EMA
yields a 0~2 cross section that differs from the LFCC
o(0~2) by only 7%, as compared to a 19% error in the
ANR result. For energies above 1 eV, the EMA integrat-
ed jo~j CI'oss scctlolls 81'c wlt11111 1% of tllcll' LFCC
counterparts.

The EMA of Sec. II0 is less successful at reproducing
the LFCC differential cross sections for rotational excita-
tion as lllustratcd ln Figs. 3 and 4. Only at cncrglcs above
about 1 eV does the EMA properly predict the angle
dependence of the LFCC results. Evidently, a more so-
phisticated modification of the ANR theory is required to
enable one to determine accurate do'/dQ(jo —+j) without
resorting to a full LFCC calculation.

C. The first Son approximation

The use of the FBA to calculate near-threshold 5j =2
cross scc«ons «r electron-molecule collisions is theoreti-
cally grounded in the weak nature of the long-range po-
tential (37) that determines these cross sections. Since the
FBA is obtained by retaining only the first term in the
Born series, 4' and since all higher-order terms in this
series vanish at threshold, the FBA should, indeed, be
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FIG. 3. Differential cross sections for the 0—+2 rotational excitation of H2 in the LFCC (sohd curve), ANR (g), and EMA (+ )
fofmalisms of Sec. II. All results are for R = 1.4a0. Scattering energies are (a) 47 rneV, (b) 65 meV, (c) 0.1 eV, (d) 1.5 eV, and (e) 6.0
eV.

valid at energies near enough to the excitation threshold.
The question 1s how near 1s near enough

In Table II, laboratory-frame FBA K-matrix elements
at 47 meV that are important for the 0—+2 cross sections
were shown to disagree with the corresponding LFCC ma-
trix elements. In Table VII, such a comparison is shown
(for the two most important elements) at energies from 0.2
meV above threshold to 500 meV. Even at the lowest of
these energies, the laboratory-frame FBA E-matrix ele-
ments are in error by several percent.

An indication of the impact of this disagreement on the
integrated 0—+2 cross sections is provided by the results
shown in Table VIII. As pointed out in Sec. II C, the AN
FBA matrix elements that are obtained by frame-
transforming the BF-FN FBA T matrix are formally dif-
ferent from the corresponding LFCC T-matrix elements.
This facet of the FBA is also illustrated in Table VIII. In
either the ANR or LFCC formulations, a non-negligible
disparity is evident between the close-coupling and FBA
cross sections.



29 ADIABATIC APPROXIMATIONS FOR THE NUCLEAR; . . 2535

o
)( x x x x )(x g X

a

tD
~ I

o

XXXXX
T 'f T

xxxx

lO
~al

o

o
o

Ol
1

0 (d) C4

o (e)

COo
o

Energy: 1.5 eV

jo= 0 ~l-" 2
(0

o

Energy: 6.0 eV

jo = 0~ j=2

o
o

000
o

o0
o
0.00 30.00 6p pp gp pp 120.pp 150.00 180.00

oo
000 3000

t

60.00
I t

90.00 120.00 150.00 180.00

Sca t ter ing An g le (deg )

FIG. 3. (Continued. )

Scattering Angle (deg)

VI. CONCLUSIONS

In the present study we have quantified the expected
breakdown of the ANR theory near threshold for e-Hz
scattering and explored one alternative, an implementation
of Nesbet's EMA. The central results of this study can be
found in the percentage-difference curves of Fig. 2 and the
differential-cross-section comparisons of Figs. 3 and 4.

We have found that conventional ANR theory yields
reasonably accurate integrated cross sections for body en-
ergies above about 0.5 eV and qualitatively correct dif-
ferential cross sections above a few eV. Theoretical results
derived from this theory, in particular, the handy ratio re-
lationship (43) between integrated cross sections for dif-
ferent excitations, are reliable above about 1 eV. These
findings paint a somewhat less encouraging picture of the
usefulness of ANR theory than do the rough qualitative
estimates of its region of validity that have been published
heretofore.

The reason for the failure of this formulation lies in its

incorrent prediction of the threshold behavior of certain
T-matrix elements on which the excitation cross sections
critically depend (cf. Sec. IIC). This defect is repaired by
our implementation of the EMA to the extent that this
theory yields much more accurate integrated cross sections
than does the ANR formalism. To attain comparable ac-
curacy in differential excitation cross sections evidently re-
quires a more sophisticated strategy for coping with the
threshold behavior of the T matrix.

Finally, we note the surprisingly strong dependence of
the validity of adiabatic theories such as the ANR and (to
a lesser extent) the EMA on the representation of the in-
teraction potential, as illustrated in Fig. 2. This observa-
tion emphasizes the need for accurate models of this po-
tential for electron-molecule scattering and reveals a fas-
cinating interdependence between the approximations
chosen to render the scattering theory tractable and those
used to obtain practical potential energies.

Apart from the limitations on the interaction potential
discussed in Sec. III, the principal restriction of the

TABLE VII. LFCC E-matrix elements for j'=2, j"=0 for e-H2 scattering compared to correspond-
ing elements as determined in the FBA using the potential energy of Eq. (37) (1.0 =1.0& 10 ).

E (meV)

I'=1, I"=1 (J =1)
LFCC FBA

l'=0, l"=2 (J =2)
LFCC FBA

44.2
45.0
47.0
50.0
65.0
80.0

100.0
200.0
500.0

—0.722-4
—0.309
—0.711
—0.118
—0.281
—0 399
—0.532
—0.107
—0.262

—0.675-4
—0.288
—0.662
—0.109
—0.253
—0.353
—0.456
—0.803
—0.146

0.798
0.128
0.165 2

0.189
0.222
0.230
0.236
0.268
0.366

0.846
0.136
0.175
0.200
0.235
0.243
0.250
0.291
0.430
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TABLE VIII. Test of the FBA for near-threshold e-H2

scattering. Cross sections o.(0~2) in ao from FBA calculations
(scc Appcndlx) using thc potcntlal cncI'gy of Eq. (37) alc com-

pared to results from coupled-channel (CC) calculations in the
LFCC ANR formulations. The threshold for this excitation is

0.044 eV. For scattering energies above 0.1 eV, the FBA cross
sections deviate substantially from their CC counterparts.

E (ev)
Body frame (ANR)

CC FBA
O

CP
O

C0

Energy = 0.08 e V

0.047
0.050
0.065
0.080
0.100

0.058
0.082
0.150
0.192
0.202

0.063
0.088
0.147
0.177
0.234

0.074
0.103
0.178
0.221
0.262

0.065
0.090
0.151
0.181
0.206

a
0.00 30.00

l

60.00 90.00

Scattering Angte (deg)

120.00 1 50.00 180,00

Such comparisons for the e-H2 systems, investlgatlans of
new nonadiabatic theories for near-threshold excitations,
and extensions of the present research to more complicat-
ed systems will be the immediate topics of future papers
ln this series.

0~4

p
c O0
CP

C0

co
co

X«XXX
XXXXX

XXXXxxx"
XX X +++++++XX ~ +++
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FIG. 4. Same as Fig. 3 for the I —+3 excitation at scattering
energies of (a) 80 meV and (b) 0.2 cV.

present work is the rigid-rotor approximation. Inclusion
of the vibrational Harniltonian in LFCC and AN calcula-
tions lncrcascs thc lntcgratcd closs sections flolTl both
studlcs, bringing thc foITncI 1nto close agrccIHcnt %'1th ex-
periII1ental results, and Inarkedly alters the shape of the
differential cross sections. Moreover, the conclusions of
this paper cannot be generalized to answer the question of
usefulness of an adiabatic treatment of the vibrational
motion; this matter must be addressed by analogous corn-
parisons using the full theories of Secs. IIA and IIB.

In this appendix, we draw together and outline the
derivation of FBA expressions for T-matrix elements in
the LFCC and AN theories; the latter are based on the
implementation of the FBA for the BF-FN T matrix.

The reactance matrix K [in either the LFCC formula-
tion, LJ, or in the FN formulation, EA(R)] is related 'to

the matrix of radial scattering functions that solve the
coupled scattering equations by the integral equation (35).
The FBA to this matrix is obtained by simply replacing
u~p(r) [see Eq. (36) for notation] by the spherical free
wave function (the Ricatti Bessel function) ' ji(k r)5 r
In this Appendix, we shall work with the T matrix, which,
in the FBA, has Inatrix elements

(Al)
4

- I j((k r) V p(rj)) (kyar)dr . (A2)

In the LFCC formulation (Sec. IIA), the integral (A2)
can bc slInplif lcd Using thc angular-coupling cocfflclcrlts,
V1Z.~
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T„p„~ i =4i(k„/ko)'~

& pe.{J,/;Jo, /o,'J)Ri (uj /'uo jo /o k.j ko»

For a long-range multipole potential term that falls to
zoo Rs l' ~ ss P' —+ {x), the vlb1$tloQ81 mRfflx clcmcGt m
(A4) can be written

(A3)

where we have introduced the (laboratory-frame) radial in-

tcgfSl

(P, (R)
~
uz(r, R)

i P„,(R)) =Bi(u, uo)r (A5)

LRi (uj, /;uojo, /o,'k„j,ko)

= f ji(k, .r)(p, (R)
i
ui(r, R)

~ p„,(R))Jt,(kor)r dr .

where Bi (u, uo ) is a constant. Then, provided
/+/o —san +3 ~ 0, the radial integral {A4) can be evaluated
in terms of gamma functions and confluent hyper-
geometric functions, ' the latter approaching unity as

k„jjko~o, viz. ,

R i (u j,/;uo jo, /o, kj,ko) =Bi{u,uo )m 2 k„;ko
/ —/o+si

/o+/ —si +3 / —/o —si +2 3 k„j.
XF I+—

2 2 2 ko

h

The FBA to the laboratory-frame scattering amplitude is obtained from the T matrix of Eq. (A3) via the relation
j/2

jo 4
X m 0 —M m m) —MJo J

where we have chosen ko=z, as is conventional in the laboratory-frame formulation. The summation index is
p=(J,M, /, /o, mi). Inserting {A3) into (A7), carrying out the summations over J and M, and using the triangle rule on
(/, /o, A, ), we obtain

f,(r )= —4[+(2jo+ 1)(2j+ 1)]'~2

X g pi '
( —1) ' [(2/o+1)(2/+1)]' '&i, (r )

l lo, m) A,

t

jo J A, /o / A, Jo J A,

x
Jo J0 00 000 m —m —m~

/o / A,
L,

0 Pl~
Ri, (uiJ~/iuo~Jo~/o »uJiko) ~' (AS)

This expression can be shown to be equivalent to that of Dalgarno and Moffett. s9'"' The resulting FBA-I.FCC differen-
tial cross section for the excitation (uo,jocu,j) can be conveniently written in terms of the radial integral (A4) as

k„j
(uojo u,—j)=4 g C&Ri(u, j,/i,'uojo, /i', k„j,ko)Ri„(u,j, /'z, 'uojo, / k2„kj)Po( L'c8o's),

0

where the summation mdex of q =(/i, /'i, /2, /2, A, ,L) and the coefficient Cz is

C„—= i ' ' ' '( —I)"+~(2L +1)(2/, +1)(2/, +1)(2/', +1)(2/,'+1)
r

l) l) k l2 l2 A, l) 7) A, lg l2 L, l] l2 L
0 0 0 0 0 0 '/' / g 0 0 0 0 0 0



Turning now to the AN theory of Sec. II B, we seek the
FBA to the frame-transformed AN T matrix u»t „& t of
(23). We start with the BF-FN K-matrix elements

Ktt, (R), which satisfy an integral equation identical in

form to (Al). The corresponding T-matrix elements in
the FBA (evaluated at a body energy —,kb ) are

Tt~i(R)=
' f j/(kbr)V/I '(r;Rj)t(k br)dr . (All)

Ri, (I,lo,'kb)= f jt(kb, r)ut, (r;R)Jt (kbr)r2dr .
When the radial and vibrational frame transformations
are applied to (A12), we obtain the FBA to the AN
frame-transformed T-matrix element,

Wjt „& t, =4ikb g ft (j,l jo,lo;J)Rt„(u, l;uo, lo;kb),
(A14)

This matrix element can be»mplified u»ng Eq- (19)»z.

T,", (R)=4tkb g gi„(l,Io;A)R z(l, lo, kb),

Rz(uiI ~no Io&kb)

= f J,(k, r)(y„(R)
~
U„(r,R)

~ y„,(R))jt,(kbr)r'« .
(A15)

where tlM angular-coupling coefficients of the body-frame
FN theory gi (l, lo, A) are given by (20) and the "body" ra-
dial integral is defined as

For a long-range potential we can use (AS) in (A15) to
obtain an explicit form for the body radial integral, viz. ,
for /+4 —si+3)0,

Rt„(u, l;uo, lo, kb)=B'i(u, uo)m2 kb

l+lo —st„+3
I (si —1)I

2

l —ho+st 1 +lo+si +1 1 —lo+sir
2

I
2

(A16)

For example, for the quadrupole term u2(r)- q/r as r—+~, which d—ominates rotational excitation very near thresh-
old, we have

R z(u, l;uo, lo, kb ) =Bi (u, uo)
8

+ o

2

kb=4
2 g CvRi(v, li, uo, li, kb)

ko

XRi (U, lz, vo, l2, kb)P~(cos8') . (A18)

which is independent of the body-frame wave numbe~ kb.
The AN-FBA differential cross section is

This differential cross section does not exhibit the correct
behavior as k,J —+0 in the "conventional" AN theory, in
which the choice kb ——ko is made. Hence in this case, Eq.
(A18) is usually "corrected" by multiplication by the fac-
tor k„j/ko.

In the present implementation of the EMA (Sec. III C),
we choose kb ——(k„jko)'~, which automatically yields the
factor k„j/ko in (A18); no further ad hoc modification of
this expression is necessary.
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