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Analytic solutions to two-state collision problems are obtained for systems in which the interac-
tion matrix element of the Hamiltonian displays an exponential variation with time. When the
difference in the diagonal matrix elements is either constant or governed by the same exponential
function, exact analytic solutions can be found. When it is in the form of a constant plus an ex-
ponential term, the case of practical importance, an approximate solution is obtained based upon
these exact solutions. The solution is used to calculate cross sections for fine-structure transitions in

atomic collisions (Na-He, F-Xe, F-H™).

I. INTRODUCTION

A semiclassical treatment of a two-state collision prob-
lem leads inevitably to the following coupled equations for
the probabiliy amplitudes ¢,(¢) and ¢, (¢) for the two states
|1) and |2):!

. dcy
lﬁ_“=H1101 +H12C2 N (la)
dt
., dc
lﬁ—dt—=H21cl +H22C2 ’ (1b)
with the initial condition
lei(t=—w)| =1, cr(t=—)=0. ()

For a realistic collision system, the matrix elements
H;=(i |H |j) of the Hamiltonian H show a complicat-
ed dependence on the internuclear distance of the colliding
partners and thus on time ¢. It is this time dependence of
the matrix elements Hj; that makes it difficult to obtain
an exact solution of Egs. (1). Various models with simple
forms of H;; have been proposed in an attempt to simulate
the actual collision process as accurately as possible (see
Table I). If the difference H,, —H, is assumed to be in-
dependent of time, the problem becomes formally
equivalent to that of a stationary two-level system whose

levels are coupled by a time-dependent interaction. This
problem has recently been considered by Bambini and Ber-
man,® Thomas,” and Robiscoe There, however, exist
many collision systems for which the time variation of
H,, —H; needs to be taken into account.

The simplest nontrivial case for which an exact solution
of Egs. (1) can be found is the case of resonance scatter-
ing, i.e., when

HZZ—H“:O (H12 arbitrary) . (3)

If a phase transformation

cj=ajexp —% ftH”dtI] (4)

is applied to Egs. (1), we obtain

d |t

iﬁ—ﬂ—=H12a2exp ——l‘f (Hyp—Hydt, |, (5a)
dt #i
daz i t

iﬁ—(F=H21a1exp Zf (Hy—Hydty |, (5b)

which, for the case H,, —H;; =0, immediately yields

TABLE 1. Various models for a two-state collision problem.

Model sz—H“ H12(H21) Refs.
Rosen-Zener Ae Bsech(yt) Rosen and Zener (Ref. 2)
Landau-Zener alt —tg) B Landau, Zener (Ref. 3)
Demkov Ae Pe-TItl Demkov (Ref. 4), this work
Nikitin ae~ "It 4 Ae Nikitin (Ref. 5)
Exponential ae~ Yt Be 7t This work
Demkov-exponential ae~ "Il 4 Ae Be~ 7!t This work

29 2509 ©1984 The American Physical Society



2510
a,(t)=cos 1 ftH dt
)= Z 128t |,
(6)
a,(t)=—isin 1 ftH dt
2 P 126 | .

Here and throughout the paper we assume that H, =H,,.

There exist several other cases for which an exact or ap-
proximate solution is known. Here we mention those
which bear importance in a collision problem. Rosen and
Zener? have shown that Egs. (1) [or Egs. (5)] have an exact
solution for the case

Hy—H; =A¢, Hy; =ESeCh(’}’t);

Being an exact solution, the Rosen-Zener solution can be
used as a basis to obtain approximate solutions for col-
lision systems for which the matrix elements H;; take a
different form.” The model of considerable importance in
collision physics is the Landau-Zener model,’ which pro-
vides an approximate solution to Egs. (1) under the as-
sumption that

Ae,B,v const . 7)

H;,=p; a,B,t, const . (8)

This model has been widely used with success to describe
collision processes involving curve crossings.! Another
model of importance in collision physics is the Demkov
model,* which provides a solution for the case

Hy—H; =A€, Hyy=Be 7!*l; By,Ae const. (9)

While the Landau-Zener model is useful for curve-
crossing problems, the Demkov model has been found use-
ful for describing collisions with two potential curves ly-
ing parallel to each other.!! Finally, Nikitin® has obtained
a solution for the case where

Hy—Hy=ae "'l +Ae, H=p;
a,f3,v,A€ const .

Hj—Hy=alt —tp),

(10)

In this paper we consider collision systems for which
the interaction matrix element H,, is given by an ex-
ponential function Hiy=pfe ~7!*l. Such systems are of
practical importance because, for a large number of col-
lision systems, the variation of H, with respect to the in-
ternuclear distance can be well fit by an exponentially de-
creasing function.'? If Hy —H,; is independent of time,
then we have the Demkov model. We first look at that
model and derive an exact solution which is more general
than the solution given by Demkov. We next consider the
case

Hy—Hy=ae "I"] (11)

Hp=Be~"tl; a,B,y const

and show that an exact solution exists for this case. We
call the model characterized by Eq. (11) the exponential
model. We then consider the case of considerable practi-
cal importance, i.e., where

H22—H11=ae_7|'l+Ae, H12=Be—7’"|;

a,B,v,A€ const . (12)
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An approximate solution for this case is found in the form
of the combination of the solutions for the Demkov and
exponential models, thus the name Demkov-exponential
model. Applications of the Demkov-exponential model to
fine-structure transitions in Na-He, F-Xe, and F-H™ col-
lisions are also described.

It should be mentioned that Crothers!® has obtained a
solution for the Demkov-exponential model in terms of
the confluent hypergeometric function. His solution,
however, has a limited value due to difficulties associated
with asymptotic expansions of the confluent hyper-
geometric function. Our approximate solution, on the
other hand, is simple enough to allow determination of
collision cross sections without much difficulty.

II. THE DEMKOY AND RELATED MODELS

In this section we find solutions to Egs. (1) [or
equivalently, Egs. (5)] for the following three different
models: (a) the Demkov model, characterized by Eq. (9);
(b) the exponential model, characterized by Eq. (11); and
(c) the Demkov-exponential model, characterized by Eq.
(12). For our purpose we first obtain from Egs. (5)
second-order differential equations for a; and a,:

; Hy, |da, H,H
l 12 1 124121
7 He—Hi - =0

dzal
dt?

+

(13)

and a similar equation for @,. With a phase transforma-

tion
a,=uexp |— f (H22—~H11)dt1+2f H =dt, |,
12
(14a)
ay=u,exp f(sz—H11)dt1+zf ; dl ’

(14b)

the first-order derivative term in Eq. (13) can be eliminat-
ed to yield

d’u; H\H, 4 i 1 Hy,
hadiy ___._H __H _
a2 | T Ta | awEe 1,)+2H12
2
i 1 Hp
——(Hyp—H — =0,
2h( 2 ”)+2H12 1
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d*u Hu,H i H
| T 2 ﬁ(sz——Hn)-l—%—IfL
2
i HZI
E(sz H11)+ > H, u;=0. (15b)

Equations (15) are our working equations.

A. Demkov model

Demkov* has found a solution to Eq. (1) for the case
given by Eq. (9) under the assumption that B/#y >>1.
Here we derive an exact solution without making this as-
sumption. Substituting Eq. (9) into Egs. (15), we obtain,
for the first half of the collision, i.e., for ¢ <0,

2

d*u 2 i

dtzl gze ~—i— y——éAe u;=0, (16a)
d2 2 . 2

dt”; gz % y+—;—Ae] ]uZ:O. (16b)

Equations (16) are recognized as a varied form of the
Bessel equation. The solution of Egs. (16) which satisfies
the initial condition, Eq. (2), is given by

172
B 7A€ B
= —— —_— — 1
u; 24y sech 5 J_v1 P (17a)
B mAe B
- ,  (17b
“2 ‘ 2y 28y [ﬁ J (176)
where
v, Ae Ae
=1 ;== 18
Y1 2 12 y V= 2 +l 2ﬁ1/ ( )

In deriving Egs. (17), the lower limit of the integrals that
appear in Eqgs. (14) has been chosen to be zero for conveni-
ence. We note that the unitarity of the system is ensured
at all times by the Bessel function identity,

J_ 12460V _12—ixD)+T 1 24OV 12— ix(¥)
= —-2—cosh(1rx) . (19
my

Equations (17) provide the initial condition,
12

B 7Ae B
= |-P gech -
u1(0) 2%y sec 2y > (20a)
8 A 12 8
m mAe
uy(0)=—i 2y sech 2y Jy, | (20b)

as
2

d*u 2 j

dtzx * {L; e '~ 1 v+ ;Ae “=0, @l
d*u 2 i 2

dt22 + %e—Zrt_% y——é—Ae uy=0. (@1b)
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A general solution to Egs. (21) is given by

uy=A,J,, Z@;e-w +B_,, %e""], (222)
uy=dyd, | L4y, —ﬁ%e—w]. (22b)

The constants 4, B, A,, and B, can be determined by re-
quiring that the solution satisfy Egs. (1) and the initial
condition, Egs. (20). We then obtain with the help of the
identity Eq. (19),

3/2

—ig.— | B 32 | TAE
Al ——-le— Zﬁ’y sech 2ﬁ}/
B B
X | # T #y
B B
£ £ 2
+Jv2 ﬁ'y J—-V2 ﬁ'y } ’ ( 3a)
8 372 A
— — T, 32| T €
B 1= lA2 _2 ﬁ_y-_ ech - 2‘ ﬁ’y
2 B 2 | B
— 23b
X 2 5 o (23b)

The transition probability P is given in terms of a gam-
ma function as

P=|cy(t=w0)|%= lim e ™" | u,(z)|?
t— o0

. 2# 1
= |8, |25F 24)
B r + Ae
2#y
Substituting Eq. (23a) into Eq. (24), we obtain
2
T B 2 | T Ae
—r h —_—
2y ] e 2y
] B
1 | Ty
B B
o, |5 = | (25)

Equation (25) is an exact expression for the transition
probability for the Demkov model. If B/#y >>1, then Eq.
(25) is reduced to the formula derived by Demkov,*

2B
P=sech? | 2=% el
sec 7y

> ﬁ }sm (26)

In order to see the importance of Eq. (25), we first note
that the interaction matrix element H, is equal to B at
time =0, i.e., at the time of the closest approach. This
means that B represents the interaction matrix element at
the time when the internuclear distance R is equal to im-
pact parameter b. Assuming a straight-line trajectory
with a constant velocity v, we then have
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B=Poe (27)
where B, represents the value of H;, at R=0, and
(28)

A=yv.

Thus, at large b, the parameter B is small and no longer
satisfies the inequality B/#y >>1. In this case, Eq. (25)
should be used instead of Eq. (26) for the evaluation of the
transition probability. This is important because the
behavior of the transition probability at large impact pa-
rameters often plays an essential role in determining the
collision cross section o according to the formula

o=27 [ " P(bbdb . (29)

B. Exponential model

If both Hy, —H, and H,, are given by an exponential
function with the same decay constant y,

Hy—Hy=ae 7I'l, Hpy=Be 7!

an exact solution to Egs. (1) can be found. The solution
can be easily obtained by rewriting Egs. (1) in terms of
r=e~"!*l. For use in our discussion of the Demkov-
exponential model, however, we find it more convenient to
derive the solution without introducing the new variable 7.
Substituting Eq. (11) into Eqs. (15), we obtain, for ¢ <0,

d 2u 1,2 Bz n

dt? # 4fi2
The solution to Eq. (30), subject to the initial condition
Eq. (2),is

(11)

2

et Y-

4

u1,2=0 . (30)

) 172 172
a
u1=—2-l—ﬁ7 2_7;“ Jl/z(xey’)+ J_l/z(xe”'),
(31a)
) 172
u2=_—1’£- T T (31b)
where
2 2 1/2
x= | Lr 4o 62
hy Afi‘y
At t=0 we have
] 1/2 1/2
a m
u(0)= 27y E;] Jip(x)+ J_1(x), (33a)
8 172
14 o
u2(0)=—;}y— 2— J1/2(x) . (33b)

Equations (33) constitute the initial condition for ¢#>0
where Egs. (15) read as

d’u, + [ [[32 e-—Zyt___'}_’i

4

u1,2=0 . (34)

dr? # ﬁ
Thus
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(35a)
(35b)

U, =C1.11/2(xe ‘7")+D1J_1/2(xe‘7') s
%) =C211/2(xe _7‘)+D2J_1/2(xe _Yt) .

The constants C;, D, C,, and D, can be determined by
requiring that the solution satisfies Egs. (1) and the initial
condition, Egs. (33). Among these the constant D, is of
our most interest because the transition probability P is
given by

—Jealo0) 2= lim e " uy()|>= | Dy |2 . (36)
t— o X
Through straightforward algebra we obtain
2
P= ﬁzfz 5 sin*(2x)
x
172
BZ . 32 a2
=——+———sin*® |2 . (37
B*+a’/4 w2 4y

Equation (37) is an exact expression for the transition
probability for the exponential model. It coincides with
the expression for the transition probability for a station-
ary two-level system subject to a constant interaction.
This is not surprising because it can be shown, by express-
ing Eqgs. (1) in terms of 7=e~7!*|, that the exponential
model is formally equivalent to such a two-level system.
In 7 space, the interaction time is 2, from 7=0 (f=— o)
through 7=1 (¢=0) back to 7=0 (¢ = ), thus the ap-
pearance of the sine term in Eq. (37). The parameter B/y
plays the role of the interaction strength, whereas a/y
represents detuning.

C. Demkov-exponential model

For many collision systems the matrix elements H;; can
be approximated as

HZZ—H“:(ZG_”,”-FAE, H12=B€_7,” . (12)
In this case Egs. (15) become, for ¢ <0,
d’u, B> 2y, QA€
ey ——e
| G e
2
1 —iAe u;=0 (38)
4 y ‘ﬁ 1—VY>

and a similar equation for u,. Through a change of vari-
able, Eq. (38) can be put in the form of the Whittaker
equation. The solution to this equation can then be ob-
tained in terms of the derivative of the confluent hyper-
geometric function,!® whose evaluation is rather difficult.
We therefore look for an approximate solution.

From Eq. (12) we immediately see that if |z | is suffi-
ciently large, H,y —H{;=A€e. On the other hand, when
|t| is small, Hyy—H =ae 7"l  assuming a>>Ae.
This suggests that a collision system characterized by Eq.
(12) can be regarded approximately as a combination of
the Demkov and exponential models. Thus we can ap-
proximate Eq. (12) as
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H22—H11"—'A€, H12=Be_7|'! if |t|2|tm| (39a)
Hypy—Hy=ae "', Hjy=Be 7"
if |[t]<|tn] (39b)
where t,, is defined through the expression
ae "'l Z e , (40a)
which yields
1 a
t, | =—In— . 40b
[t | =03 (@ob)

One drawback of the approximation represented by Egs.
(39) is that it constantly underestimates the value of
H,,—H;;. In order to make up for this, we introduce a
parameter p > 1 and modify Eqs. (39) as

Hy—Hy =pAe, Hjy=Fe "

if [t]|>|tn| 4la)
Hypy—Hy=ae 71", Hyp=Be= 7!
if |t]<|tm]| (41b)
where ¢, is now determined by
ae " "m! =pAe, (42a)
or
by | =+ 1n—2— . (42b)
v pAe

The choice of p is arbitrary to a certain degree. For fine-
structure transitions in atomic collisions, we have found
the choice p=1.5 to yield reasonably accurate cross sec-
tions, as will be shown in Sec. III. In this section we leave
the value of p unspecified.

The approximation given by Egs. (41) allows us to dis-
cuss the collision process in four different time regions:
Met<— |ty ], D — |t, ]| <t<0, D 0<t< |2, |, and
(IV) |t, | <t. In regions I and IV the Demkov model is
applicable, whereas in regions II and III the exponential
model can be used. Referring to our previous discussion
of the Demkov model, the expression for u; and u, in re-
gion I can be immediately written. It is identical with
Eqgs. (17) except that Ae should now be replaced by pAe.
The initial condition for u; and u, in region II is then
given by

172

ul(— |ty | )= 1;—f;:sech % /J_M1 %Ai— ,
(43a)

. ae |1 | Boae
Uy(— |ty | )=—i ;g/sech %%Ly Ju, —ﬁ%a— ,
(43b)

where

.u1=‘;""€h%’ H2=‘;’+i%%§- (44)
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The solution for #; and u, in region II is that of the ex-
ponential model,

(45a)
(45b)

U, =E1J1/2(xe"')+FIJ_l/z(xew) ’
uy=EyJ (xe? )+ FoJ _y p(xe?) .

The constants E, Fy, E,, and F, can be determined by re-
quiring that Eqs. (45) satisfy Eqgs. (1) and the initial condi-
tion, Eqgs. (43). Equations (45) then provide the initial
condition for region III,

(46a)
(46b)

u(0)=EJ pp(x)+FJ_y pp(x) ,
u3(0)=EyJ  p5(x)+FoJ _1 po(x) .

The general solution for #; and u, in region III is given
by

ul(t)=G1J1/2(xe‘7')+H1J_1/2(xe”7‘) ,
uy()=GyJ1p(xe ")+ HyJ _ypplxe™ "),

(47a)
(47b)

subject to the initial condition, Egs. (46). After the con-
stants G, H, G,, and H, are determined as before, Egs.
(47) provide the initial condition

pA pA
u1(|t,,,|)=G1J1/2 xae +H1J_1/2 xae N (483)
xpAe xpAe
uy(|tm |)=G2J 12 +HyJ _1p . , (48b)

for region IV, where the general solution for u; and u,
can be written as

ul(t)=K1JF2 %G_yt +L1J__”2 %e_yt 5 (493)
uz(t):KzJu1 ‘%B?e—y‘ +LyJ —ﬁ%e_ytl . (49b)

The constants K, L, K,, and L, can again be deter-
mined by requiring that Egs. (49) satisfy Egs. (1) and the
initial condition, Egs. (48).

Finally, the transition probability is given by

P= Icz(oo)|2=tlim e " uy(t)|?

2%y
=|L,|? . 50
|L, | B 3 (50)

The algebra necessary to determine the constants E;,F,;
through K,,L, is lengthy but straightforward. Here we
only write the final expression for the transition probabili-
ty P:

P =[A4 cos(2x —2xpAe/a)+ B sin(2x —2xpAe/a)]?,

(51a)

where

A =2p,pycos($y— )/ (Pt +p3) , (51b)
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2% P 1P2 1 2
+ % (P%—P%) /(P%‘FPZ) (510
27

and p,, p,, 1, and ¢, are defined through the expressions

BpAe | s BpAe | ig,
“ | Fiya =pie '}, Iy, v =pe -. (52)

Equations (51) provide the main result of the this paper,
giving an approximate transition probability for the
Demkov-exponential model. A few remarks on Egs. (51)
are in order.

(1) The basic assumption behind Egs. (51) is the division
of the time region into the Demkov and exponential re-
gions as indicated in Egs. (41). It is clear from Egs. (42)
that this division is possibly only if

a>ple. (53)

If a is smaller than pAeg, t,, cannot be defined and the sys-
tem should be described entirely by the Demkov model
within our approximation scheme.

(2) Owing to Eq. (19), the term p% +p% that appears
in Egs. (51) can be identified as (2%ya/wfpAe)
X cosh(mpAe/2#y). This provides a valuable check on
our calculation because, in most of the examples described
in Sec. III, p;, py, ¢1, and ¢, were evaluated numerically
using either the series expansion or the asymptotic expan-
sion of the Bessel function. Note that we need to evaluate
Bessel functions of complex indices p; and p,.

(3) In the limit Ae—O0, we have p,>>p; and thus
P—>(B%/#y’x?)sin?(2x). This is identical with the proba-
bility for the exponential model, Eq. (37), as it should be.

4 In the limit a—pAe, we have P—A?
=[2pip,cos(¢;— )/ (p2+p3)]%. It can be easily seen,
with the help of Eqgs. (52) and (19), that this probability is
identical with the probability for the Demkov model, Eq.
(25), if A€ in Eq. (25) is replaced by pAe. This is expected
because, as a approaches pAe, |t, | approaches zero and
the collision process is described entirely by the Demkov

model.
]

2k 41
(—1)

2%y
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The collision cross section for the Demkov-exponential
model can now be determined according to Eq. (29). The
parameters that give the b dependence of P are 3, a, and
x. Recalling that B and a refer to values at the time of
the closest approach, we may set B=fBse ~*, a=age
and x =xge ~*%, where By, ag, and x, denote the values at
R=0. Since B, a, and x show the same b dependence, the
coefficients A and B are independent of . Thus, we may
write

P=P(b)=[4 cos(2xqe "**—2xpAe/a)
+Bsin(2xge ~M —2xpAe/a)]?

=(4%+B%)sin(2xge "M —2xpAe/a+¢) , (54)

where ¢ satisfies
tang=A4/B .

For typical collision systems, P oscillates between its max-
imum value of 42+ B? and minimum value of zero at
small impact parameters, finally decaying to zero at large
impact parameters. Following Rapp and Francis,” we de-

(55)

fine R, as the largest value of b that yields
P=(4%+B?)/4,i.e., R, satisfies

2xqe _AR*——prAe/a +¢=% . (56)
The cross section is then estimated as

o=(4*+BY)7R./2 . (57)

We note that the determination of R, according to Eq.
(56) assumes that the system can be described by the
Demkov-exponential model even at high impact parame-
ters, b ~R,. Referring to Eq. (53), this means that Eq.
(56) cannot be used when age Re <pAe. In this case,
collisions at large impact parameters are better described
by the Demkov model, and R, should be estimated ac-
cordingly, i.e., a reasonable definition of R, in this case is
the largest value of b that yields a quarter of the max-
imum value, A2+ B2, when the probability is calculated
from the Demkov formula. Since near R, the parameter
B/#y is typically small, one should use Eq. (25), not Eq.
(26), to find R,. For this purpose, it is convenient to
rewrite Eq. (25), using the series expansion of the Bessel
function, as

P=|3
k=0( pAe

2
112
Sy H(2+k 124

k1)? [(%+k)2+

In accordance with the approximation of Egs. (41), Ae in
Eq. (25) was replaced by pAe before the series expansion
was performed. R, can now be estimated by performing a
perturbative calculation on Eq. (58).

(2k 4-1)
A 3 A 3 (58)
pAae ey |BAE
2%y (( 2V 2y

III. APPLICATIONS TO FINE-STRUCTURE
TRANSITIONS

In this section we evaluate cross sections for fine-
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structure transitions in the following systems, using the
Demkov-exponential model described in the preceding
section:

Na(*P, ,,)+He—Na(*P;,,)+He , (59)
F(*P;,))+Xe—F(*P, )+ Xe , (60)
F(*P,,)+H* —>F(*P;,,)+H™" . (61)

Some accurate and/or approximate calculations on these
systems already exist.!*~17 For the above processes the
matrix element can be written as'*

Hy—Hy=+AW +Ae, (62a)
Hu:%AW : (62b)

where Ae is the energy of the fine-structure splitting, and
AW represents the difference in energy of potential energy
curves for the 3 and IT states without spin-orbit coupling.
Since AW can be reasonably well approximated by an ex-
ponential function of the form

AW =Ce M | (63)

the Demkov-exponential model is particularly useful for a
description of fine-structure transitions. Atomic units
will be used in this section unless specified otherwise.

A. Na + He collision

For a numerical calculation of cross sections for the
Na-He system based on an impact-parameter treatment,
Masnou-Seeuws!” assumed the following form for
A W= Wz - WH:

AW =0.1R%2 —0-94R (64)

In order to apply the Demkov-exponential model to this
system, however, we need to express AW in the form of
Eq. (63). We find that the expression

AW =3.54¢ —07R (65)
approximates Eq. (64) well in the region of importance,
R ~8-—15. Equation (65) is the form that we choose be-
cause we wish to compare our cross sections with those
of Masnou-Seeuws. From Egs. (62) we then have
ao=3.54/3, By=23.54V"2/3. Other parameters we need for
the evaluation of P are Ae=17.19 cm~1=7.83x107° a.u.,
A=0.79, i.e., y =0.79v (v is the relative velocity of the col-
liding partners), and the parameter p introduced in Egs.
(41) is taken to be p=1.5.

A major part of our calculation consists of evaluating
Bessel functions to obtain p;, p;, ¢, and ¢, defined by
Egs. (52). At the velocity range of our interest
(v=5X10"%*-5x10"3), this turns out to be readily
achieved by the series expansion of the Bessel functions.
Once py, p, ¢1, and ¢, are evaluated, the value of 42+ B?
can be easily obtained using Eqgs. (51b) and (51c). Next,
R, can be estimated using Eq. (56) or based on Eq. (58)
depending upon whether age  * is greater or smaller
than pAe=(1.5)Ae. Since, within the approximation of
the DemKkov-exponential model, R, is a decreasing func-
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tion of the velocity v, Eq. (56) can be used at relatively
high collision velocities, whereas Eq. (58) forms the basis
of our evaluation of R, at low collision velocities. For ex-
ample, at four values of velocity chosen for our calcula-
tion (v=0.0005, 0.001, 0.002, and 0.005), we needed to
refer to Eq. (58) at v=0.0005 while Eq. (56) was used at
other velocities. Finally, with 42+B? and R, being
evaluated, the cross section o is obtained using Eq. (57).

The results of our calculation are summarized in Table
II. Note that R, is a decreasing function of v whereas
A%+ B? increases with v. Also shown in the table are the
cross sections oy of Masnou-Seeuws!” obtained by an
impact-parameter treatment with a two-state approxima-
tion neglecting rotational coupling. The agreement be-
tween the two is fair, although the Demkov-exponential
model indicates a peak at a lower value (< 0.0005) of the
velocity.

B. F + Xe collisions

Preston, Sloan, and Miller!> have made cross-section
calculations on the process (60) using a complex-valued
semiclassical trajectory approach. For the F-Xe system,
they approximated AW =Wy — Wy as

AW =48.2¢ ~1:65R | (66)

which is the form we have chosen for our calculation.
Thus, we have aq=48.2/3, By=48.2v"2/3, A=1.65, and
y=1.65v. Other parameters for the F-Xe system are
Ae=0.001842 and p=1.5. Since the method of calcula-
tion is the same as that for Na + He collisions, we simply
present our results, which are summarized in Table III.
Also shown in the table are semiclassical cross sections
opsm calculated by Preston ef al.'®> Although the agree-
ment is reasonable, it is difficult to assess the accuracy of
the Demkov-exponential model here because the semiclas-
sical approach of Preston et al. itself is approximate. We
note here that the cross sections shown in Table III
represent the values summed over final states and aver-
aged over initial states, i.e.,

1 . 3 1 . 1 1
o=xo(j=3,mi=5—j=3,mj=7).

C. F 4+ H* collisions

The accuracy of the Demkov-exponential model de-
pends largely on the validity of the constant-velocity
straight-line trajectory approximation. Therefore, the
model is expected to be more accurate at high collision ve-
locities. For the F-H* system, an accurate quantum-
mechanical calculation of Mies!* exists, which prompted

TABLE II. Cross sections for Na 4+ He collisions.

Velocity v (a.u.)

0.0005 0.001 0.002 0.005
A2+ B2 0.807 0.869 0.884 0.888
Ry (ao) 12.3 11.5 10.6 9.4
o (ad) 192 179 155 124
oms (ad) 180 220 210 190
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TABLE III. Cross sections for F 4+ Xe collisions. TABLE IV. Cross sections for F 4+ H™ collisions.
Collision energy (eV)= 0.3 0.5 0.7 Velocity v (a.u.)
Velocity v (a.u.)= 0.000 85 0.0011 0.0013 0.0018 0.0026 0.0032
A*+B? 0.00193 0.0251 0.0773  A%+B? 0.00326 0.0783 0.474
Ry (ap) 7.7 7.0 5.2 Ry (ap) 9.4 7.8 7.2
o (ad) 0.09 0.95 1.63 o (ad) 0.46 7.4 15.5
opsm (ad) 0.1 0.42 1.0 oy (ad) 1.5 7 17

us to try the Demkov-exponential model on this system.
However, the collision-energy range at which Mies’s cross
sections were reported is low, on the order of the energy of
the fine-structure splitting of F, or slightly higher. This,
together with the strong attractive potential wells of the
potential energy curves of the F-H™' system, invalidates
the constant-velocity approximation. Thus the Demkov-
exponential model cannot be expected to yield as accurate
cross sections for F + H* collisions as for Na + He or
F + Xe collisions. The potential energy difference
AW =Wy — Wy for the F-H™ system calculated from the
potential curves of Wahl, Julienne, and Krauss'® can be
adequately fit by an exponential function

AW =0.6612¢ —0-86R (67)

The parameters for the Demkov-exponential model of the
F-H* system are ay=0.6612/3, B,=0.6612V2/3,
A=0.86, y =0.86v, Ae=0.001 842, and p=1.5.

The results of our calculations are summarized in Table
IV. Also shown in Table IV are quantum-mechanical
cross sections o, calculated by Mies.!* Surprisingly, the
agreement between the two sets of the cross sections is not
bad. We point out, however, that, if we had used a larger
value of v in our calculation in order to account for the
strong attractive wells of the potential energy curves in-
volved, the agreement would not have been as good. One
therefore should exercise caution when applying the
Demkov-exponential model to a low-velocity collision,
especially if the potential energy curves involved show a
strong variation with respect to the internuclear distance.

IV. SUMMARY AND DISCUSSION

Exact solutions to the first-order coupled differential
equations [Eq. (1)] which appear frequently in collision
physics have been derived for the Demkov model [Eq. (9)]
and for the exponential model [Eq. (11)]. Based upon
these exact solutions, an approximate expression for the
transition probability [Egs. (51){ has been obtained for the
case where Hy, —H;=ae "' 4+ Ae and Hy,=Be~¥I*!,

This expression has been found useful in describing fine-
structure transitions in atomic collisions. We believe that
this model, the Demkov-exponential model, is of practical
value, as it is expected to approximate a larger number of
actual collision systems that undergo fine-structure transi-
tions, charge exchange, or chemical reactions.

An advantage of the Demkov-exponential model over
other models is that the transition probability is given in
an analytic form [Egs. (51)] and the calculational effort
required is minimal. Cross sections can be determined
without the help of a computer. Because of the constant-
velocity approximation implicit in the Demkov-
exponential model, it is expected to work better at high
collision energies and thus is complementary to the
quantum-mechanical coupled-channel approach.

One drawback of the model is that the parameter p is
arbitrary to a certain degree. Although the examples dis-
cussed in the previous sections show that the choice
p=1.5 leads to reasonably accurate cross-section values, it
still is desirable to have a reliable recipe by which to
predetermine p. This is particularly so because the transi-
tion probability seems to vary with p in a nontrivial way.
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