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Analytic solutions to two-state collision problems for the case of exponential coupling
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Analytic solutions to two-state collision problems are obtained for systems in which the interac-
tion matrix element of the Hamiltonian displays an exponential variation with time. When the
difference in the diagonal matrix elements is either constant or governed by the same exponential
function, exact analytic solutions can be found. When it is in the form of a constant plus an ex-
ponential term, the case of practical importance, an approximate solution is obtained based upon
these exact solutions. The solution is used to calculate cross sections for fine-structure transitions in
atomic collisions (Na-He, F-Xe, F-H+).

I. INTRODUCTION

Ci =H iic i +H i2c2,
dt

(la)

A semiclassical treatment of a two-state collision prob-
lem leads inevitably to the following coupled equations for
the probabiliy amplitudes c1(t) and c2(t) for the two states

levels are coupled by a time-dependent interaction. This
problem has recently been considered by Bambini and Her-
man, Thomas, and Robiscoe. There, however, exist
many collision systems for which the time variation of
H22 —Hii needs to be taken into account.

The simplest nontrivial case for which an exact solution
of Eqs. (1}can be found is the case of resonance scatter-
ing, i.e., when

dc2
Efl =Hpici +H22C2,

dt

with the initial condition

(lb) H22 —H» ——0 (H12 arbitrary) .

If a phase transformation

1, c2(t = —oo)=0. c =g exp —— HJJdt j

For a realistic collision system, the matrix elements

HJ = (i
i
H

i j) of the Hamiltonian H show a complicat-
ed dependence on the internuclear distance of the colliding
partners and thus on time t. It is this time dependence of
the matrix elements Hti that makes it difficult to obtain
an exact solution of Eqs. (1}. Various models with simple
forms of H J have been proposed in an attempt to simulate
the actual collision process as accurately as possible (see

Table I}. If the difference H22 —H» is assumed to be in-

dependent of time, the problem becomes formally
equivalent to that of a stationary two-level system whose

is applied to Eqs. (1},we obtain

dQi
H12a2exp (H22 H1 1 )dtl

fi

dQ2
iA =H a exp — (H22 —H11)dt1

which, for the case K22 —H11 ——0, immediately yields

(5b)

TABLE I. Various models for a two-state collision problem.

Model Hg2 —H]] H]p(Hp]) Refs.

Rosen-Zener
Landau-Zener
Demkov
Nikitin
Exponential
Demkov-exponential

he
a(t —to)

he
ae —xl' I+g~

ae —xl& I

ae-&I' I+me

P sech(yt)

pe r I
&I—

pe r I
tI—

pe r I
&I—

Rosen and Zener {Ref. 2)
Landau, Zener (Ref. 3)
Demkov (Ref. 4), this work
Nikitin (Ref. 5)
This work
This work

29 2509 1984 The American Physical Suety



2510 HAI-WOONG LEE AND THOMAS F. GEORGE

t
a ~ (t) =cos — H, zdt )

fi

1
az(t) = i—sin — H ~zdt,

Here and throughout the paper we assume that H ~2 ——H2~.
There exist several other cases for which an exact or ap-

proximate solution is known. Here we mention those
which bear importance in a collision problem. Rosen and
Zener have shown that Eqs. (1) [or Eqs. (5)] have an exact
solution for the case

Hzz —H~~ ——he, H~z P——sech(yt); Ae, P,y const .

Being an exact solution, the Rosen-Zener solution can be
used as a basis to obtain approximate solutions for col-
lision systems for which the matrix elements HIJ take a
different form. The model of considerable importance in
collision physics is the Landau-Zener model, which pro-
vides an approximate solution to Eqs. (1) under the as-
sumption that

Hzz H]) a—(t —tp), ——H)z ——P; a,P, tp const .

This model has been widely used with success to describe
collision processes involving curve crossings. ' Another
model of importance in collision physics is the Demkov
model, which provides a solution for the case

Hzz —H~~ ——b,e, H~z Pe ——'; P,y, b,e const . (9)

While the Landau-Zener model is useful for curve-
crossing problems, the Demkov model has been found use-
ful for describing collisions with two potential curves ly-
ing parallel to each other. " Finally, Nikitin has obtained
a solution for the case where

Hzz —H)( ——ae r 'I+be, Hz=P;
a, p, y, b,e const . (10)

In this paper we consider collision systems for which
the interaction matrix element H&2 is given by an ex-
ponential function H, z

——pe ' . Such systems are of
practical importance because, for a large number of col-
lision systems, the variation of H~2 with respect to the in-
ternuclear distance can be well fit by an exponentially de-
creasing function. ' If Hzz —H» is independent of time,
then we have the Demkov model. We first look at that
model and derive an exact solution which is more general
than the solution given by Demkov. %e next consider the
case

Hzz —H~~ ——ae r I I H, z pe r I I ——a p, y const (11)

An approximate solution for this case is found in the form
of the combination of the solutions for the Demkov and
exponential models, thus the name Demkov-exponential
model. Applications of the Demkov-exponential model to
fine-structure transitions in ¹ He, F-Xe, and F-H+ col-
lisions are also described.

It should be mentioned that Crothers' has obtained a
solution for the Demkov-exponential model in terms of
the confluent hypergeometric function. His solution,
however, has a limited value due to difficulties associated
with asymptotic expansions of the confluent hyper-
geometric function. Our approximate solution, on the
other hand, is simple enough to allow determination of
collision cross sections without much difficulty.

II. THE DEMKOV AND RELATED MODELS

In this section we find solutions to Eqs. (1) [or
equivalently, Eqs. (5)] for the following three different
models: (a) the Demkov model, characterized by Eq. (9);
(b) the exponential model, characterized by Eq. (11); and
(c) the Demkov-exponential model, characterized by Eq.
(12). For our purpose we first obtain from Eqs. (5)
second-order differential equations for a

&
and az..

d a) ). H)P da) H)2H22

+ —(Hzz —H)) ) — + a )
——0

dt A H&z dt

(13)

and a similar equation for az. With a phase transforma-
tion

t ~ H)p
a ~

——u ~ exp — (Hzz —H» )dt, + —,
2k 12

(14a)

~ Hp)
az ttzexp (Hzz H&& )«f + dt)2' Hp)

(14b)

the first-order derivative term in Eq. (13) can be eliminat-
ed to yield

and show that an exact solution exists for this case. We
call the model characterized by Eq. (11) the exponential
model. We then consider the case of considerable practi-
cal importance, i.e., where

d Qi

d2
Hi2H2i d ~ 1 Hi2+

d
—

~ (Hzz —Hii)+ —
Hdt 2A 2 Hi2

2

e

Hzz —H~~ ae ' +b,e, H~z——Pe-——r I
&

I

—r I
& I.

a,p, y, he const . (12)

1 Hi2
(Hzz —H)) )+—

12
ui ——0,

(15a)
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0

d u2 HI2H2I d i
, +, +—

~ (H22 —Hi i }+
2 Hdt 2iri

A general solution to Eqs. (21) is given by

(22a)

g I Hp)
(H22 —Hi i )+—

Equations (15) are our working equations.

Demkov has found a solution to Eq. (1) for the case
given by Eq. (9) liiidcl' thc Rssiiii1ptioll tlIRt p/+ » 1.
Here we derive an exact solution without. making this as-
sumption. Substituting Eq. (9) into Eqs. (15), we obtain,
for the first half of the collision, i.e., for t & 0,

2

(16a)

u2 ——/(2J„- e r' +B2J „e
L

The constants A», 8», A2, and 82 can be determined by re-
quiring that the solution satisfy Eqs. (1) and the initial
condition, Eqs. {20). We then obtain with the help of the
identity Eq. (19),

3/2
it13

A» ——i82 ——
2f1y

d ti2 . P2 2 1
e '——y+ —Ae

4 fi

2

u2 ——O.

Equations (16) are recognized as a varied form of the
Bessel equation. The solution of Eqs. (16) which satisfies
the initial condition, Eq. (2), is given by

1/2

+ v2 g
~—v2

3/2
mP h3/2 Irhe
2Ay

'- 2'

(23a)

(23b)

1/2J„er', (17b)" Ay

The transition probability I' is given in terms of a gam-
ma function as

I'= ~c2(t =re)
~

= lim e r'[u2(t)
(

2fl7

. b,e i . he
&»

————g 'P2= + l (18)
2fiy

' ' 2'
Iil dcriviilg Eqs. (17), thc lower liIllit of tlic Intcgrals that
appear in Eqs. (14) has been chosen to be zero for conveni-
ence. We note that the unitarity of the system is ensured
at all times by the Bessci function identity,

J I/2+ix(3—')J I/2 ix(3—'}+—Ji/2+1 x(3')Ji/2 'Ixw—'

Substituting Eq. (23R) into Eq. (24},wc obtain

-cosh(mx) .2
(19)

Equations {17)provide the initial condition,
r 1/2 r

ui(0)= sech J „irP ate P

1/2J„, (20b)"' Ry
I

u 2(0)= i sech—mP abc
2f1y 2A'y

for the second half of collision, t &0, where Eqs. (15}read

+J„J
Ay "'

Ay

Equation (25) is an exact expression for the transition
probability for the Demkov model. If f3/fiy »1, then Eq.
(25) is reduced to the formula derived by Demkov,

r

P =- sech sin
mhe . 2 2P

(26)2' fiy

d iii p2——e ~'——y+ —4e
dt A"

Q» =0, (21a)

In order to see the importance of Eq. (25), we first note
that the interaction matrix element HI2 is equal to f3 at
time t=0, i.e., at the time of the closest approach. This
IIicails tliat p rcprcscIlts illc IIltcractioI1 IIIRtrix clcIIlcilt at
thc time when thc lntcfnuclcar distance R ls equal to im-
pact parameter b. Assuming a straight-line trajectory
with a constant velocity U, wc then have
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p p e 2.—b

where po represents the value of H12 at R =0, and

(27) u1 ——C1J1/2(xe y')+D1J, /2(xe y'),

u2 ~2J1/2(xe )+D2J 1/—2(xe

(35a)

(3Sb)

(28)

Thus, at large b, the parameter p is small and no longer
satisfies the inequality p/A'y»1. In this case, Eq. (25)
should be used instead of Eq. (26) for the evaluation of the
transition probability. This is important because the
behavior of the transition probability at large impact pa-
rameters often plays an essential role in determining the
collision cross section o. according to the formula

o.=2m f P(b)bdb . (29)

B. Exponential model

If both H22 —H11 and Hip are given by an exponential
function with the same decay constant y,

H„H„—=ae yI'I,-H„=Pe yI'-I,

an exact solution to Eqs. (1) can be found. The solution
can be easily obtained by rewriting Eqs. (1) in terms of
r= ey I

'
I .—For use in our discussion of the Demkov-

exponential model, however, we find it more convenient to
derive the solution without introducing the new variable ~.
Substituting Eq. (11) into Eqs. (15), we obtain, for t(0,

~12 2 ~2 2

dt fi 4fi 4
e'y' — u, ,=0 . (30)

The solution to Eq. (30), subject to the initial condition

Eq. (2), is

The constants C1, D1, C2, and D2 can be determined by
requiring that the solution satisfies Eqs. (1) and the initial
condition, Eqs. (33). Among these the constant D2 is of
our most interest because the transition probability P is
given by

P= l&2(~) I'= »m e "Iu2«) I'= l&2I'2 2
t~ ao 7TX

Through straightforward algebra we obtain

P= sin (2x)
$2y2X 2

(36)

2 2 2

sin 2 +
p2+ a2/4 Q2y2 4/2@2

1/2,

(37)

C. Demkov-exponential model

Equation (37) is an exact expression for the transition
probability for the exponential model. It coincides with
the expression for the transition probability for a station-
ary two-level system subject to a constant interaction.
This is not surprising because it can be shown, by express-
ing Eqs. (1) in terms of r:eyI'I, —that the exponential
model is formally equivalent to such a two-level system.
In r space, the interaction time is 2, from r=0 (t = —00 )
through r=1 (t=O) back to r=O (t = oo), thus the ap-
pearance of the sine term in Eq. (37). The parameter p/y
plays the role of the interaction strength, whereas a/y
represents detuning.

lA

2Ry 2x

' 1/2

J1/2(xe ) +
1/2

J 1/2 (xe )
For many collision systems the matrix elements H;i can

be approximated as

ipQ2=-
2x

1/2

J,/, (xe y'),
a, -y

I
~

I +pe, H» pe y I' I . ——
(31b)

In this case Eqs. (15) become, for t & 0,

(12)

where

' 1/2
p2 a2+-

Ay 4Ay
(32)

01 +
dt

p + a 2yi+ a~& yi
2 2

e + e
$2 4@2 2/2

1 l
y ——Ae u1 ——0, (38)

At t=o we have

u1(0) = l CX '!T

2Ay 2x

u2(0) =—

1/2
7TX

J1/2(x) +
2

1/2

J1/2(x)

1/2

J 1/2(x), (33a)

(33b)

Thus

Equations (33) constitute the initial condition for t &0
where Eqs. (1S) read as

r

,"+ (34)
dt

and a similar equation for u2. Through a change of vari-
able, Eq. (38) can be put in the form of the Whittaker
equation. The solution to this equation can then be ob-
tained in terms of the derivative of the confluent hyper-
geometric function, ' whose evaluation is rather difficult.
%'e therefore look for an approximate solution.

From Eq. (12) we immediately see that if
I

t
I

is suffi-
ciently large, H22 —H11—-Ae. On the other hand, when

I
t

I
is small, H22 —H11-=ae yI'I, assuming a»4e.

This suggests that a collision system characterized by Eq.
(12) can be regarded approximately as a combination of
the Demkov and exponential models. Thus we can ap-
proximate Eq. (12) as
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H22 —Hii b——,e, H12 ——pe rI'I if it i
) it

Pe r—I
l

I

where t~ is defined through the expression

Iae =he,
which yields

(39a)

(40a)

The solution for ui and u2 in region II is that of the ex-
ponential model,

ui E——1J1/2(xe ')+F1J,/2(xe '),
u2 E—2—J1/2(xe"')+F2J, /2(xe"') .

(45a)

(45b)

The constants E~, F~, E2, and F2 can be determined by re-
quiring that Eqs. (45) satisfy Eqs. (1) and the initial condi-
tion, Eqs. (43). Equations (45) then provide the initial
condition for region III,

it i= —ln
y

(40b)

if iti)it
H22 —H» —ae-&I'I, H» pe rI'—I- (41a)

where t is now determined by

-rllt lae =phd,

One drawback of the approximation represented by Eqs.
(39) is that it constantly underestimates the value of
H22 —Hii. In order to make up for this, we introduce a
parameter p ) 1 and modify Eqs. (39) as

H22 —H 1 1 ph——e, H, 2 =pe

u 1(0)=E1J1/2(x)+F1J 1/2(x),

u2(0) =E2J1/2(x)+F2J 1/2(x) .

(46a)

(46b)

ui(t) =Gi Ji/2(xe )+Hi J—in(xe

u2(t) =G2J1/2(xe )+H2J 1/2(x—

(47a)

(47b)

subject to the initial condition, Eqs. (46). After the con-
stants G, , H„G2, and H2 are determined as before, Eqs.
(47) provide the initial condition

xpAe xpAe
u, (

i

t
l

) =Gi Ji/2 +Hi J in—(48a)

The general solution for ui and u2 in region III is given

by

xphe xpAe
u2(

i
tm

i
) G2J1/2 +H2J 1/2— (48b)

it i= —ln (42b)

ui( —it i)= ~P „apace2A'-"
2Ay

1/2
Pphe

(43a)

u2( —
i
t ) = i sech—~P

h
vrphe

1/2
Ppb, e

P2

(43b)

where

The choice of p is arbitrary to a certain degree. For fine-
structure transitions in atomic collisions, we have found
the choice p=1.5 to yield reasonably accurate cross sec-
tions, as will be shown in Sec. III. In this section we leave
the value of p unspecified.

The approximation given by Eqs. (41) allows us to dis-
cuss the collision process in four different time regions:
(I) t& —it i, (II) —it i

&t&0, (III) 0&t& it i, and
(IV)

i t~
i

&t. In regions I and IV the Demkov model is
applicable, whereas in regions II and III the exponential
model can be used. Referring to our previous discussion
of the Demkov model, the expression for u 1 and u2 in re-
gion I can be immediately written. It is identical with
Eqs. (17) except that b,e should now be replaced by phe.
The initial condition for ui and u2 in region II is then
given by

for region IV, where the general solution for ui and u2
can be written as

ui(t)=K1J„e r' +L1J z e-"2
Xy

(49a)

u2(t)=K2Jq e ' +L2J q e
ry -"1

Xy

The constants K~, L, &, E2, and I-2 can again be deter-
mined by requiring that Eqs. (49) satisfy Eqs. (1) and the
initial condition, Eqs. (48).

Finally, the transition probability is given by

2(oo)
i

= lim e ~'i u2(t)
i

2

f~ oo

i

22fiy

1 .phd
2 2Ay

2 (50)

P =[3 cos(2x 2xphela)+B sin(—2x —2xpbela)]

(51a)

The algebra necessary to determine the constants E~,I'j
through E2,L2 is lengthy but straightforward. Here we
only write the final expression for the transition probabili-
ty P.

.pA6 ~ .p46'
2+

y y

where

2 =2Pip2cos(pi —p2) l(P1+P2), (51b)
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8=
2%x y

2pezsin(ki —0z)

+ ~ (pg —p))P z z

Pixy
(p~+pz), (51c)

and p&, pz, P~, and Pz are defined through the expressions

Ppk» if, Ppk»
Pp g~&

' —P~ =pqe ' . (52)

Equations (51) provide the main result of the this paper,
giving an approximate transition probability for the
Demkov-exponential model. A few remarks on Eqs. (51)
are in order.

(1) The basic assumption behind Eqs. (51) is the division
of the time region into the Demkov and exponential re-
gions as indicated in Eqs. (41). It is clear from Eqs. (42)
that this division is possibly only if

a)@Ac . (53)

If a is smaller than pb», t cannot be defined and the sys-
tem should be described entirely by the Demkov model
within our approximation scheme.

(2) Owing to Eq. (19), the term p~+pq that appears
in Eqs. (51) can be identified as (2Aya/mPpb»)
&&cosh(npb, »/2Ry). This provides a valuable check on
our calculation because, in most of the examples described
in Sec. III, p&, pz, P&, and Pz were evaluated numerically
using either the series expansion or the asymptotic expan-
sion of the Bessel function. Note that we need to evaluate
Bessel functions of complex indices p& and p, z.

(3) In the limit 5»~0, we have pz&&p, and thus
P—+(P /A' y x )sin (2x). This is identical with the proba-
bility for the exponential model, Eq. (37), as it should be.

(4) In the limit a~pb, », we have P~A
=[2p~pqcos($~ —Pz)/(p~+pq)] . It can be easily seen,
with the help of Eqs. (52) and (19), that this probability is
identical with the probability for the Demkov model, Eq.
(25), if 5» in Eq. (25) is replaced by ph». This is expected
because, as a approaches pb, »,

~

t
~

approaches zero and
the collision process is described entirely by the Demkov
model.

The collision cross section for the Demkov-exponential
model can now be determined according to Eq. (29). The
parameters that give the b dependence of P are P, a, and
x. Recalling that P and a refer to values at the time of
the closest approach, we may set dg=—Poe ", a=aoe
and x =-xoe, where Po, ao, and xo denote the values at
R=0. Since P, a, and x show the same b dependence, the
coefficients A and 8 are independent of b T. hus, we may
write

P =P(b) = [3 cos(2xoe —2xpb»/a)

+8 sin(2xoe —2xpb»/a)]z

= (& '+8')sin(2xoe —2xp &»/a+ y), (54)

—A,R~
2xoe *—2xpb, »/a+P =—.

6

The cross section is then estimated as

o=-(2 +8 )mR~/2 .

(56)

(57)

~e note that the determination of R„according to Eq.
(56) assumes that the system can be described by the
Demkov-exponential model even at high impact pararne-
ters, b-R, . Referring to Eq. (53), this means that Eq.—A,R~
(56) cannot be used when aoe ' &pb, ». In this case,
collisions at large impact parameters are better described
by the Dernkov model, and R, should be estimated ac-
cordingly, i.e., a reasonable definition of R, in this case is
the largest value of b that yields a quarter of the max-
imum value, A +8, when the probability is calculated
from the Demkov formula. Since near R, the parameter
P/A'y is typically small, one should use Eq. (25), not Eq.
(26), to find R„. For this purpose, it is convenient to
rewrite Eq. (25), using the series expansion of the Bessel
function, as

where P satisfies

tang=A/8 .

For typical collision systems, I' oscillates between its max-
imum value of A +8 and minimum value of zero at
small impact parameters, finally decaying to zero at large

impact parameters. Following Rapp and Francis, we de-
fine R, as the largest value of b that yields
P=(A +8 )/4, i.e., R, satisfies

(k!)' ( —,+k)'+
2Ay

2

1)k
2A'y

. 2k+1

(2k + 1)!

'2

( —,
' +k —1)'+

2A'y

Ae
(-,' )'+

2fiy

2

(58)

In accordance with the approximation of Eqs. (41), b, » in
Eq. (25) was replaced by pA» before the series expansion
was performed. R, can now be estimated by performing a
perturbative calculation on Eq. (58).

III. APPLICATIONS TO FINE-STRUCTURE
TRANSITIONS

In this section we evaluate cross sections for fine-
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structure transitions in the following systems, using the
Demkov-exponential model described in the preceding
section:

Na( Pi r2 ) +He~ Na( P3r2 )+Hc q

F( Ppri)+Xe —+F( Pili)+Xc,
F( Pir2)+H+~F( P3r2)+H+

(60)

(61)

the Demkov-exponential model is particularly useful for a
description of fine-structure transitions. Atomic units
will be used in this section unless specified otherwise.

A. Na+ Hc collision

Foi' a numerical calculRtioil of cross scctioIis foi' tllc
Na-He system based on an impact-parameter treatment,
Masnou-Seeuws' assumed the following form for
68' = 8'y —8'g.

O 1g 2.2 —0,948 (64)

In order to apply the Demkov-exponential model to this
system, however, we need to express b, R in the form of
Eq. (63). We find that the expression

(65)

approximates Eq. (64) well in the region of importance,
R-8—15. Equation (65) is the form that we choose be-
cause we wish to compare our cross sections with those
of Masnou-Seeuws. From Eqs. (62) we then have
uo ——3.54/3, Po——3.54~2/3. Other parameters we need for
the evaluation of I' are Ae= 17.19 cm '=7.83 X 10 a.u. ,
A, =0.79, i.e., @=0.79U (U is the relative velocity of the col-
liding partners), and the parameter p introduced in Eqs.
(41) is taken to be p = 1.5.

A major part of our calculation consists of evaluating
Bessel functions to obtain pi, p2, QI, and p2 defined by
Eqs. (52). At the velocity range of our interest
(U= 5 X 10 —5 X 10 ), tliis turns Gilt to bc readily
achieved by the series expansion of the Bessel functions.
Once pi, p2, Pi, and P2 are evaluated, the value of A +8
can be easily obtained using Eqs. (51b) and (51c). Next,
R~ can be estimated using Eq. (56) or based on Eq. (58)—A,E~
depending upon whether woe

' is greater or smaller
than @he=(1.5)b,e. Since, within the approximation of
the Demkov-exponential model, 8„ is a decreasing func-

Some accurate and/or approximate calculations on these
systems already exist. For ihe above processes the
matrix element can be written as

H22 —HII ———,b W+hc',

3

where hc is the energy of the fine-structure splitting, and
b, W represents the difference in energy of potential energy
curves for the X and II states without spin-orbit coupling.
Since 68' can be reasonably well approximated by an ex-
ponential function of the form

tion of the velocity U, Eq. (56) can be used at relatively
high collision velocities, whereas Eq. (58) forms the basis
of our evaluation of R, at low collision velocities. For ex-
ample, at four values of velocity chosen for our calcula-
tion (v=0.0005, 0.001, 0.002, and 0.005), we needed to
refer to Eq. (58) at U=0.0005 while Eq. (56) was used at
other velocities. Finally, with 3 +8 and 8, being
evaluated, the cross section o is obtained using Eq. (57).

The results of our calculation are summarized in Table
II. Note that R, is a decreasing function of It whereas
A +8 increases with U. Also shown in the table are the
cross sections crM s of Masnou-Seeuws' obtained by an
impact-parameter treatment with a two-state approxima-
tion neglecting rotational coupling. The agreement be-
tween the two is fair, although the Demkov-exponential
model indicates a peak at a lower value ( &0.0005) of the
velocity.

aW'=48. 2e-'65', (66)

which is the form we have chosen for our calculation.
Thus, we have ao ——48.2/3, po ——48.2v 2/3, A, =1.65, and
y=1.65v. Other parameters for the F-Xe system are
he=0.001 842 and p = 1.5. Since the method of calcula-
tion is the same as that for Na+ He collisions, we simply
present our results, which are summarized in Table III.
A1so shown in the table are semiclassical cross sections
0psM calculated by PIcston et aI. Althougll tllc agfcc-
ment is reasonable, it is difficult to assess the accuracy of
the Demkov-exponential model here because the semiclas-
sical approach of Preston et al. itself is approximate. We
note here that the cross sections shown in Table III
represent the values summed over final states and aver-
aged oveI' initial states, i.e.,

r ~ 3 1 - 1 1

C. F+ 8+ collisions

The accuracy of the Demkov-exponential model de-
pends largely on the validity of the constant-velocity
straight-line trajectory approximation. Therefore, the
model is expected to be more accurate at high collision ve-

locities. For the F-H+ system, an accurate quantum-
mechanical calculation of Mies' exists, which prompted

TABLE II. Closs sections foI' Na, + He collisions.

0.0005
Velocity U (a.U. )

0.001 0.002 0.005

0.807
12.3

192

0.869
11.5

179

0.884
10,6

155

0.888
9.4

124

OMS «O~ 180 220 210 190

B. P + Xe collisions

Preston, Sloan, and Miller' have made cross-section
calculations on the process (60) using a complex-valued
scmIclassical trajectory appI'oach. Fol tlM F-Xc system,
they approximated h8'= 8'~ —8'~ as
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TABLE III. Cross sections for F + Xe collisions. TABLE IV. Cross sections for F + H+ collisions.

Collision energy (eV)=
Velocity U (a.U. )=

A +8
~g (ao)
0 «o)

0.3
0.000 85

0.001 93
7.7
0.09

0.0251
7.0
0.95

0.0773
5.2
1.63

A +8
Z, (ao)
o. (ao)

0.003 26
9.4
0.46

Velocity U (a.u. )
0.0026

0.0783
7.8
7.4

0.474
7.2

15.5

opsM (ao)

us to try the Demkov-exponential model on this system.
However, the colhsion-energy range at which Mies's cross
sections were reported is low, on the order of the energy of
tllc fine-structure spllttIIlg of F, ol. shghtly lllglMI. . Tllls,
together with the strong attractive potential wells of the
potential energy curves of the F-H+ system, invalidates
the constant-velocity approximation. Thus the Demkov-
exponential model cannot be expected to yield as accurate
cross sections for F+ H+ collisions as for Na+ He or
F + Xe collisions. The potential energy difference
b, W = W'x —WII for the F-H+ system calculated from the
potential curves of Wahl, Julienne, and Krauss' can be
adequately fit by an exponential function

(67)

The parameters for the Demkov-exponential model of the
F-H+ system are ao ——0.6612/3, Po =0.6612' 2/3,
A, =0.86, y =0.86u, b,@=0.001 842, and p= 1.5.

The results of our calculations are summarized in Table
IV. Also shown in Table IV are quantum-mechanical
CI'oss sections o~ calculated by Mlcs. Surpr1slngly~ thc
agreement between the two sets of the cross sections is not
bad. We point out, however, that, if we had used a larger
value of u in our calculation in order to account for the
strong attractive wells of the potential energy curves in-
volved, thc agreement would not have been as good. Qne
therefore should exercise caution when applying the
Dcmkov-exponential model to a low-velocity collision,
especially if the potential energy curves involved show a
strong variation with respect to the internuclear distance.

IV. SUMMARY AND DISCUSSION

Exact solutions to the first-order coupled differential
equations [Eq. (1)] which appear frequently in collision
physics have been derived for the Demkov model [Eq. (9)]
and for the exponential model [Eq. (11)]. Based upon
these exact solutions, an approximate expression for the
tlallsltIQII probablllty [Eqs. (51)j has been obtained fol t11c
case where H22 —HII ——ae r I' +b,c and HI2 ——pe

This expression has been found useful in describing fine-
structure transitions in atomic collisions. We believe that
th1s model thc DcIDkov-cxponcnt1Rl model 1S of pI'Rct1cal
value, as it is expected to approximate a larger number of
actual collision systems that undergo fine-structure transi-
tions, charge exchange, or chemical reactions.

An advantage of the Demkov-exponential model over
other models is that the transition probability is given in
an analytic form [Eqs. (51)] and the calculational effort
required 1s minimal. Cross scct1ons can bc determined
without the help of a computer. Because of the constant-
velocity approximation implicit in the Demkov-
exponential model, it is expected to work better at high
collision energies and thus is complementary to the

UantUIQ-Incchanlcal coupled-chRnncl RppI oach.
One drawback of the model is that the parameter p is

arbitrary to a certain degree. Although the examples dis-
cussed in the previous sections show that the choice
@=1.5 leads to reasonably accurate cross-section values, it
still is desirable to have a reliable recipe by which to
predetermine p. This is particularly so because the transi-
tion probability seems to vaIy with p ln a Qontrivlal way.
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