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Ab initio nonadiabatic polarization potentials for electron-molecule scattering:
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We have calculated an ab initio nonadiabatic polarization potential for the e-Hq system using a
procedure that is based on the variational method. The importance of various multipole contribu-

tions to this potential has been investigated and the dipole approximation found to be accurate for
this system. When used in scattering calculations with accurate representations of the static and ex-

change components of the interaction potential, the new polarization potential is found to yield total
integrated e-Hq cross sections that are in very good agreement with results of recent measurements

and of optical-potential calculations.

I.. INTRODUCTION

A detailed theoretical investigation of low-energy ((10
CV) electron-molecule collisions requires an accurate rep-
resentation of the full projectile-target interaction poten-
tial, which consists primarily of static, exchange, and po-
larization contributions. The dominant short-range static
potential can be efficiently generated at the near-Hartree-
Fock level of accuracy from the target electronic wave
function. ' lt is now possible to include exchange effects
in an essentially exact fashion for reasonably simple
systems or to accurately approximate these effects by the
use of a model exchange potential. ' This situation has
led to considerable recent interest in finding a reliable
IIlctllod fol 111corp01'atlllg Induced polarlzat1011 cf-

11—24

The origin of these effects can be understood in terms
of a semiclassical picture. The induced polarization in-

teraction arises from the distortion of the target charge
distribution by the time-varying electric field of the pro-
jectile. The energy of the distorted molecule is lower than
that of the unpolarized target, which leads to an addition-
al attractive term in the potential energy. For homonu-
clear diatomic molecules, this additional term has the sim-
ple asymptotic (r, ~ ao ) form

ao a2P2 (cos8, )

2P'~ 2f'~

where r, is the coordinate of the scattering electron and
ao and a2 are the spherical and nonspherical polarizabili-
ties, respectively. However, obtaining an accurate local
representation of V~,I(r, ) for smaller values of r, is a dif-
ficult theoretical problem.

The principal difficulty in trying to accurately calculate
the polarization potential arises from the dynamic (nona-
dlabatlc) aspects of tllls 111'tcl'Rct1011. Ill tllc adlabatlc ap-
proximation' " ' to V~,I(r, ), the molecular charge
density is allowed to relax in the electric field of a scatter-
ing electron fixed at r, . However, once the target orbitals
can no longer immediately readjust to the instantaneous
position of the projectile, nonadiabatic effects become im-
portant and must somehow be taken into account.

In the past, polarization effects have often been
rcprcscntcd by R semieQ1plfical approximation based on
the known asymptotic form of the potential' in Eq. (1),
V1Z.~

ao azP2(cos8, )
Vp,I(r, ) =C(r, )

2p'~ 2r~

where the spherical cutoff function C(r, ) is usually writ-
ten as

C(r, )=1—exp[ (r, /r, ) ] . —
This form approximates nonadiabatic effects by smoothly
cutting off the polarization interaction for r, &r, . The
cutoff radius r, is an adjustable parameter which can be
"tuned" to bring calculated cross sections into agreement
with some experimentally determined feature of the
scattering (e.g., a shape resonance).

Some of the inaccuracies associated with this treatment
have been demonstrated by Morrison and Hay' and by
Truhlar et al. " These studies used molecular structure
codes to calculate accurate ab initio (though fully adiabat-
ic) polarization potentials; for intermediate values of
r, (r, ~r, ), the semiempirical form (2) was found to pro-
vide an inadequate representation of the adiabatic polari-
zation potcntlal.

Rigorously, induced polarization effects are a manifes-
tation of virtual electronic excitation of the target.
Thus, in an eigenfunction expansion formulation, in-
clus1on of Rll cnc1gct1cally closed channels pfov1dcs a
complete description of polarization. Within this
quantum-mechanical context two different approaches to
the problem of dealing with nonadiabatic effects have
been introduced. The first strategy attempts to correct the
adiabatic polarization potential. Usually, nonadiabatic
contributions are included by calculating a corr'ection term
directly or by modifying the scattering-bound electron
interaction ' in such a way that nonadiabatic behavior will
be incorporated in an otherwise adiabatic treatment. Such
a modification was used by I.ane and Henry and by
Hara to generate approximate nonadiabatic polarization
potentials for use in low-energy e-H2 scattering calcula-
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tions. ' However, in order to obtain the correct asymp-
totic behavior, Eq. (1), both of the resulting potentials had
to be scaled. This scaling introduced some uncertainty'
into V~,~(r, ) for small and intermediate values of r, . Re-
cently, this strategy has been used by Jain and Thomp-
son to produce cross sections for e-CH4 and e-H20 col-
11S1ons.

In the second approach, closed channels are included in
a more direct fashion. ' " This is usually accomplished
via a pseudostate expansion ' or by defining a suitable opti
cal potentia/. ' Low-energy e-H2 scattering results have
been reported by Schneider' and by Klonover and Kal-
dor' in which nonadiabatic polarization effects were in-
cluded at various levels of approximation. . In these stud-
ies, Schneider utilized a pseudostate approach and Klon-
over and Kaldor incorporated an optical potential calcu-
lated to second order in a diagrammatic perturbation
series. More recently Takatsuka and McKoy' as well as
Herman and Kaldor' have developed schemes for extend-
ing the Schwinger-variational method beyond the static-
exchange approximation; electron-molecule smttering cal-
culations utilizing these methods are underway. Schneider
and Collins' have reported e-H2 scattering results in
which an approximation to the optiml potential is used to
represent nonadiabatic polarization in the linear-algebraic
method. Subsequently, ' these authors performed more
complete calculations on the e-H2 system and produced e-

N2 results. For intermediate collision energies (10
eV&E& 100 eV), Truhlar and co-workers" have investi-
gated several methods for including polarization effects.

As part of a long-term theoretical study of near-
threshold e-H2 scattering, we have calculated a new
ab initio (parameter-free) polarization potential for this
system. ' The theoretical treatment of polarization in the
present work, which is sketched in Sec. II, is formally
similar to that of Lane and Henry and of Hara, in that
it is based on the variational method and incorporates
nonadiabatic effects approximately via a method that
derives from the polarized-orbital theory of Temkin. '

However, we have based our calculations on a modified
molecular-structure code and have used a sufficiently flex-
ible basis set that it was not necessary to scale the polar-
ization potential in order to obtain quantitatively correct
asymptotic behavior. The resulting potential is therefore
free of the ambiguity that plagued earlier studies. We
have also avoided the additional approximations of pertur-
bation theory, which was used by Hara.

In Sec. III we describe the numerical procedures that we
used to calculate the polarization potentials that are
presented in Sec. IV. In the latter section, the importance
of various multipole contributions to this potential is dis-
cussed and cross sections from new scattering calculations
are examined. Our conclusions are given in Sec. V. Un-
less otherwise stated, atomic units are used throughout.

II. THEORY
A. Variational determination of the adiabatic

polarization potential

The polarization potential is defined as the change in
the total energy of the electron-molecule system due to

distortion of the probability density of the target electrons.
In the present formulation, this quantity is determined as
the difference between two energy-optimized variational
functionals of an adiabatic electron-molecule Hamiltonian
(with the scattering electron fixed in space), the two func-
tionals corresponding to polarized and unpolarized target
electronic wave functions, respectively. Nonadiabatic ef-
fects are incorporated approximately by modifying certain
integrals ' that appear when a basis set is used to evaluate
these functionals (see Sec. III).

In these molecular-structure calculations, a body-fixed
reference frame is used, ' with the origin at the center of
mass of the molecule and the z axis coincident with the in-
ternuclear axis. The spatial coordinates of the molecular
electrons, nuclei, and smttering electron in this reference
frame will be denoted by r, R~, and r„respectively.
(Since the present application is to a closed-shell target, we
need not explicitly deal with spin coordinates. ') The
Born-Oppenheimer separation of electronic and nuclear
motion is implemented for both the unpolarized and po-
larized target states; in the present study we are concerned
solely with the ground states, which will be connoted by a
zero subscript.

Within this theoretical context, the adiabatic Hamil-
tonian, which describes the system with the scattering
electron fixed at r„ is simply

A "(r;r„R)=A ~(r;R)+V, (r;r„R), (4)

V~,~(r„R)=E&~'(r„R) Eo(r„R) . —

where A "is the electronic Hamiltonian of the molecule
and V,~ is the electron-molecule interaction potential en-
ergy. This term arises from electrostatic (Coulomb) in-
teractions and is the sum of electron-electron terms, V,",
and electron-nuclei terms, V,'"', viz. ,

V, (r;r„R)= g
N„z

r, —r;
I

O, =t
f
r, —R

In (5), X, and X„are the numbers of electrons and nuclei
in the target; 8 is the internuclear separation, which is
held fixed throughout the determination of the polariza-
tion potential, and Z is the charge of the nucleus at po-
sltlon R~.

To calculate the polarization potential we require the
average energy of the polarized wave function of the target
PI'(r;r„R), ie.
Eo '(r„R)=(gg'(r;r„R) ~A "~ Pg'(r~;r„R)) .

This quantity is lower than the corresponding quantity in
the "frozen-core approximation, " in which no distortion
of the target electronic wave function is allowed. The en-

ergy of the electron-molecule system in this approxima-
tion is

Eo(r R)=(1i'0(r;R)
~

A "~ po(r;R)),
where $0(r~;R) is the electronic wave function of the
undistorted target. The difference between these quanti-
ties is the adiabatic polarization potential
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A useful alternative form for this potential can be ob-
tained by noting that Ep(r„R) is just the sum of the
Born-Oppenheimer electronic energy of the target

8'o'(R) =
& 1()p( r;R)

I

A "
I
pp( r;R) ), (9)

and the static electron-molecule interaction potential
V„(r„R),viz. ,

V~,~(r„R)= EI'(r„R) I'p'—(R)

I~HF ~0+ +J ~

Ir —r,
I

Ir —r,
I

The resulting system energy (6) becomes

Rt("(r„R)=2(qI
' Rr+'

(16)

(17)

—
& 1to(r;R)

I
V

I fo(r (10)

To see how nonadiabatic corrections are introduced in
this theory, it is necessary to look briefly at the detailed
structure of the variational functionals E(I)

' and Ep.
These quantities are energy optimized using restricted-
Hartree-Fock theory. Thus, the polarized and unpolar-
ized wave functions, QI' and fp, are represented by single
Slater determinants of spin orbitals. For H2, the spatial
parts of these spin orbitals will be denoted by (Io, (r) (for

g

the neutral wave function) and (pI '(r;rg) (for the polar-
ized wave function).

Each of these molecular orbitals is variationally deter-
mined as an approximate eigenfunction of the appropriate
Fock operator. Thus, (p& (r) is an approximate eigen-

g
function of the Hartree-Fock Hamiltonian

In the analytic Hartree-Fock theory, the variational
functionals Ep and Eg' are evaluated by expanding the
molecular orbitals in a basis set, I rl; (r ),i = 1,2, . . . , M j.
In the present theory, both the polarized and unpolarized
orbitals are expanded in the same basis set, which, in the
present application, consists of nucleus-centered Cartesian
Gaussians g;( r ) (see Sec. III); for example,

yI"'(r;r„R)= g q;(r)c ~'(r„R), (18)

where the linear variational parameters c ~'(r„R) are
chosen to minimize

EI'(r„R)= 2+c,'~"c,'~'
&g, I

mo
I q, )

s, t

HF —A 0+J
where A o is the one-electron Hamiltonian

2
1

Mo ————,V —g
Ir —R

(12)

ts gt

+ V,'"'(r„R)+—+JI", (r„R)

and J is the Coulomb operator

2y„(r)=(g, (r') (r'))m„(r) . ()3)

In terms of the molecular orbital y& (r), the quantities

required to evaluate the frozen-core energy Ep(r„R) of
(7) are

(19)

for fixed r, and R. The last term in (19) is just the matrix
element of J with respect to (p'(' evaluated with the expan-
sion (18}. A similar expansion is made for (p~ (r)—with

the important exception that the variational parameters
Ic;(R) j do not depend on r,—and is used to minimize the
"frozen-core" system energy

r

Eo(r„R)=2+c,*c, &g Imply )
s, t

gs It

(14}

where for convenience we have included the potential en-

ergy of nuclear repulsion with the Born-Oppenheimer
electronic energy and

+ V,'~'(r„R)+ —+J,~, (R) . (20)

V„(r„R)=V,'"'(r„R)+2(qi Vi, . ((&)
g

I

~ ~
I

g

The second term in (15) will assume considerable impor-
tance once a basis set is introduced, as will its counterpart
for the polarized energy EI'.

The latter functional is constructed from the polarized
orbital (pI '(r;r, ), which is an approximate eigenfunction
of the adiabatic electron-molecule Hartree-Fock Hamil-
tonian

B. Nonpenetrating approximation

Adiabatic electron-molecule polarization potentials
have been studied by Truhlar and co-workers" and by
Morrison and Hay. ' These potentials represent an im-
provement over the semiempirical adiabatic form (2) since
they accurately represent the effects of polarization in the
important "intermediate" range of r, values [large enough
that the adiabatic approximation is still viable (a few
times the mean radius of the molecular electron cloud) yet
smaller than asymptotic values, where the polarization po-
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tential has settled down to its long-range form (1)]. This
region may be quite large (as in the e-CO2 system' ) and
may exert a significant influence on the collision (e.g. , at
all but near-threshold scattering energies), and the devia-
tion in this region of the adiabatic-potential V~,&

from the
long-range form (1) may be quite substantial.

Nevertheless, these adiabatic potentials, like their coun-
terparts for electron-atom systems, are much too
strong near the target. This overestimation of the true ef-
fects of polarization arises from the breakdown of the adi-
abatic approximation that occurs when the "local veloci-
ty" of the scattering electron becomes comparable to that
of the molecular electrons; even for low-energy collisions
this will occur as the electron nears the nuclei. The
quantum-mechanical theory behind this semiclassical pic-
ture of nonadiabatic polarization has been investigated for
electron-atom collisions and shown to lead to an (ap-
proximate) r, term that weakens the adiabatic potential
for nonasymptotic values of r, An a. dditional difficulty
with the adiabatic theory of Sec. II A arises for values of
r, within the target charge cloud, because formally the
scattering electron is 'indistinguishable from the molecular
electrons. (This fact leads to nonlocal exchange-
polarization terms in the scattering equations; these
terms are not incorporated in the theory of this study. )

„',~,(cose),
~=o 0

+' (21)

where 6 is the angle between r and r, and g& (g& ) is the
maximum (minimum) of r, and r, is cut off whenever r,
the variable of integration in these matrix elements, is
larger than r, . Letting 5(r &r, ) denote a step function
that is 0 for r ~ r, and 1 for r ~ r„we can write the non-
penetrating matrix element as

A variety of strategies have been proposed to deal with
nonadiabatic effects; many of these have been implement-
ed for electron-atom scattering. ' The procedure we
have chosen originated in the polarized-orbital theory of
electron-atom scattering by Temkin; ' it has been success-
fully used to study a variety of electron-atom systems. '
In this "nonpenetrating approximation, " the Coulomb in-
teraction between the scattering and molecular electrons is
"turned off" whenever the former is within the target
charge cloud.

This modification entails altering the matrix elements

(g,
~

(1/
~

r —r, ( )
~ g, ) that occur in Eqs. (19) and (20).

Specifically, the standard multipole expansion of
1/Jr —r, /,

, 5)s &s)Ps(sos,B) s),l
.

~=0
(22)

To complete the evaluation of this matrix element, we merely express P~(cos8) in terms of spherical harmonics of r
and r„expand the basis functions as, for example,

g, (r)= —gaI"(r)&1 (r"),
l, m

and use the integral formula for three spherical harmonics to obtain

(23)

1/2
I 4m(21 + 1)(21'+ 1)

gs
r —r

~
x t~ i m 2l+I

Ism' —m(~ )

l l' A, l l'
1 r,

0 0 0 m ms m ms &+, 0 [ajm(r)] arm (r)r dr .(s) e (t)

er + (24)

over A, in (22) and (24) are omitted except A. = i. This ap-
proximation will be examined in the results of Sec. IV.

C. Scattering theory

In order to assess the accuracy of our approximate po-
larization potential we have calculated cross sections for
low-energy e-H2 scattering. To facilitate comparison with
results from a variety of other theoretical studies, we
chose to evaluate total integrated cross sections (summed
over final rotational-state quantum number) in the rigid
rotator approximation with the internuclear separation of
H2 fixed at its equilibrium value 1.4ao.

Within the rigid-rotator approximation the fixed-nuclei
formulation was used in a body-fixed reference frame. '
Single-center coordinates were used for the particles in the

The expansion coefficients in (23) can be evaluated analyt-
ically using properties of Cartesian Gaussians. The radi-
al integrals in (24) are evaluated numerically.

The monopole term (A, =O) in (22) and (24), if retained,
gives rise to a polarization potential that is far too strong
at small and intermediate radial distances (see Figs. 1 and
2). Outside the target charge cloud this term, +2/r„ is
exactly canceled in the polarized and unpolarized energies
(19) and (17) by the 2/r, monopole te—rm in the expan-
sion of the electron-nucleus potential energy. The fact
that this cancellation does not obtain for r, &( 2R,r„r2)—
leads to an unphysical discontinuity in the polarization
potential. Consequently, we drop the monopole term
from (24) leaving the sum over A, to run from 1 to oo.

A further approximation that has been widely used is
the dipole approximation ' ' in which all terms in the sum
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Type of function Exponent
Contraction
coefficient

TABLE I. Exponents and contraction coefficients for the
nucleus-centered [6s3p/4s3p] Gaussian basis set for H, .

TABLE II. Calculated values of af~ and 0.& (in ao) for various
values of r, and R. The values of 0«are listed in parentheses
below the corresponding values of o.~~. The column labeled CI
contains the configuration-interaction results of Rychlewski
(Ref. 56).

S

p
p
p

33.644 400
5.057 960
1.146 800
0.321 144
0.101 309
0.030000
1.114200
0.259 200
0.060000

0.025 374
0.189683
0.852 93
1.0
1.0
1.0
1.0
1.0
1.0

R(ao)

1.2

1.4

1.8

10.0

5.266
(3.851)
6.635

(4.512)
10.172
(5.955)

15.0
r, (ao)

20.0

5.189
(3.867)
6.525

(4.539)
9.957

(6.014)

5.212
(3.865)
6.558

(4.534)
10.022
(6.002)

30.0

5.171
(3.867)
6.499

(4.541)
9.906

(6.020)

CI

5.152
(3.947)
6.387

(4.579)
9.332

(5.879)

'Each p-type function represents a set consisting ofp„,p~, and p,
Gaussians.

aii = —2 Vp, i(z„R)z, ,

at = —2 V~,i (x„R)x, .

(25)

(26)

Table II contains the polariz abilities for our
[6s3p/4s3p] basis for various values of r, and R; for com-
parison the CI values of Rychlewski are also shown.
Owing to the nonuniformity of the electric field establish-
ed by the scattering electron, the calculated polarizabilities
will, in general, depend on r, . However, this field be-

butions to the polarizability of the target. We have found
that for the e-H2 system a single set of these diffuse func-
tions is sufficient to determine accurate polarizabilities.
The exponents and contraction coefficients for the result-
ing augmented [6s3p/4s3p] basis are given in Table I.

One indicator of the quality of a basis set is the elec-

tronic energy of the (isolated) target 8'0' of Eq. (9). At
the equilibrium internuclear separation, R =1.4ao, the
basis of Table I gives an electronic energy of
—1.13295EI,. The Hartree-Fock limit of this energy as
calculated by Kolos and Roothan is —1.13363E~ and
the accurate configuration-interaction (CI) value of Kolos
and Wolneiwicz is —1.17447E~.

A better indicator of the suitability of a given basis for
the calculation of polarization potentials is the polarizabil-
ity tensor of the target. For a diatomic molecule this
quantity is fully specified by the parallel and perpendicu-
lar polarizabilities, a~~ and o.z. In the present computa-
tional scheme these quantities are easily calculated once
the variational coefficients of the isolated molecule have
been determined. If these coefficients are used to initialize
a self-consistent-field (SCF) calculation for the electron-
molecule system, the first iterate of the SCF energy is just
the unpolarized-system energy Eo of Eq. (20) and the final
iterate is Eg' of Eq. (17), from which the polarization po-
tential and thence the polarizabilities can easily be calcu-
lated [cf. Eq. (10)]. Specifically, by positioning the (fixed)
scattering electron on the x or z axes at a distance far
from the target (e.g., r, =10.0a 0), we can calculate
"asymptotic" polarization potentials for these special
cases. From these potentials the polarizabilities can then
be determined as

comes more nearly uniform the farther from the target the
scattering electron is located. Hence as r, increases, the
polarizabilities approach their true asymptotic values. For
H2 this occurs by r, = 10.0ao.

B. Polarization potential

Nonadiabatic polarization potentials for e-H2 scattering
were calculated using programs based on the POLYATOM

package of computer codes. This package carries out
SCF (linear-variational) molecular-structure calculations
using basis sets consisting of nucleus-centered Cartesian
Gaussians. The modifications required to introduce nona-
diabatic effects via the nonpenetrating approximation dis-
cussed in Sec. IIB entailed altering the subroutines that
calculate the electron-electron interaction matrix elements

(ri, f
(1/

f
r —r,

f
)

f
ri, ) for scattering-electron —bound-

electron pairs. The original POLYATOM integral routines
for these matrix elements were replaced by ones that
evaluate these integrals in the approximation defined by
Eq. (22) and given in detail by Eq. (24). The necessary nu-

merical integration over the radial electron coordinate in
this equation was performed using a fixed-step-size trap-
ezoidal quadrature scheme. Operationally, once the inter-
nuclear separation R is chosen, polarization potentials are
calculated as the difference between the converged SCF
electronic energies for the polarized and unpolarized sys-
tems, both of which are determined with the modified ele-
ments in the Hamiltonian matrix. The resulting nonadia-
batic polarization potential will be denoted V»~ ( r„R).

To evaluate the coupling matrix elements that appear in
the scattering equations that must be solved in order to
determine cross sections (in the single-center formalism of
Sec. II C), we require the projections of V~,&(r„R) on the
set of Legendre polynomials. These quantities

U~~"'(r„R)= V~,~ (r„R)P&(cos8, )d(cos8, )
o

(27)

are easily calculated (by Gaussian quadrature) for a, given
radial coordinate r, from the values of V~,~(r„R) over a
mesh of angles 0, . Since the evaluation of the polariza-
tion potential is rather time consuming, it is desirable to
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use the smallest number of angles and radial values possi-
ble.

If the polarization potential is sufficiently weakly non-
sphcrlcal that R two-term expansion affords R good I'cpI'c-

sentation, 1.C., 1f

V~i(r„R)=uo "(r„R)+uz~"(r„R)P2(cos8, ) (28)

to a good a proximation, then the required expansion
coefficients ux~"'(r„R) can be determined from values of
V~~ ( r„R) at only two angles, 8, =0 and m /2, viz. ,

uo "'(r„R)= —,[2V,I(x„R)+V,~(z„R)], (29a)

u'~"(r„R)= —,'[V „(z„R)—V „(x„R)]. (29b)

To test the validity of the two-term approximation (28)
for the e-Hz system, we used it to evaluate V~,~(r„R) at
8, =rr/4 (for various values of r, ) and compared the re-
sults with those obtained via a direct calculation for this
angle using the procedure described above. For the full
potential this comparison shows that t4e two-term ap-
proximation produces values that are accurate to within
5% for r, & 1.0ao and to within 2% for r, ) 1.5ao. (Lane
and Henry reported similar agreement with the two-term
expansion for their scaled nonpenetration polarization po-
tential. ) However, in the dipole approximation the two-
term approximation pI'oduces potentials that agree with
the exact values to better than 0.2% for all values of r, .
Earlier studies' of adiabatic polarization potentials for
more nonspherical systems (e.g., e-Nz and e-C02) suggest
that a Legendre expansion of a local nonadiabatic polari-
zation potential for such systems will probably require
more than two terms. Hence determination of the coeffi-
cients u~~" (r„R) for these systems will necessitate
evaluating V~~ ( r„R) at more than two angles.

The polarization potentials (and their Legendre projec-
tions) vary smoothly with r„and a good representation of
this variation (from 0 to 10.0ao) can be obtained with only
about 20 values of the radial coordinate. However, in
scattering calculations the necessarily dense integration
mesh requires values of this potential at far more values
of r, . To obtain these additional values, the values of
V~~ (r„R) at 8, =0 and m/2 were fit using a cubic-spline
interpolation scheme. From the interpolated values the
Legendre projections were determined using Eq. (27).

Thc discuss1on above pertains only to P~ (.10.0QO. At
greatcl distances floIIl thc taI'gct thc polarization potential
has settled down to its asymptotic form and can be
evaluated via Eq. (1) with the polarizabilities of Table II.

that was determined by Feldt et al. ' This wave func-
tion was also used in the determination of the exchange
terms 1Q thc Schrodinger cquat1on. As w111 bc discussed 1Q

Sec. IV, exchange effects were incorporated in two ways in
different parts of the present study. In some of the calcu-
lations a tuned free-electron-gas model exchange poten-
tial ' was used to provide an approximate local represen-
tation of exchange. In this potential the value I=2.27 eV
was used for the tuning parameter.

Thc static RIld IIlodcl-cxchaIlgc conlponcnts RI'c cxpaQd-
ed in a Legendre series for use in calculating coupling ma-
trix elements. The maximum order Legendre polynomial
that was Ietained in this expansion was X=8.

Body-frame, fixed-nuclei scattering calculations were
performed fo1 six electron-molecule symmetrIes: Xe, Xg,
II„, IIg, b,g, and 5„. In the first four of these symmetries
five partial waves were sufficient to converge the cross
sections to better than 1.0%. In the latter two symmetries
only three partial waves were required. Numerical in-
tegration of the scattering equations was carried out to ra-
dial values from 65.0ao to 250ao, depending on the
scattering energy. (Lower energies require larger match-
ing radii. )

In this section we shall present and discuss our nonadia-
batic polarization potentials. Four such potentials have
been investigated; they differ in the number of multipoles
retained in the expansion (22). For convenience, these
four potentials are described in Table III. In order to as-
sess their utility we shall examine low-energy (0.02
eV &E & 10.0 eV) electron-H2 scattering results; cross sec-
tions will be compared with those obtained in recent
theoretical studies in which polarization was treated more
rigorously than in the present calculations.

In Figs. 1(a) and 1(b) we show various polarization po-
tentials (see Table III) for 8, =0 and m/2, respectively.
Comparison of the adiabatic curve in each of these figures
with the nonadiabatic curves illustrates the importance of
nonadiabatic effects for r, (5.0ao. Among the latter, the
most striking feature is the pronounced difference between
the curves for potential A, which include all multipole
contributions required to achieve convergence, and those
for potentials 8 and C, which do not include the monopole
(A, =O) term. Clearly, retention of this term gives rise to
an extremely strong potential; indeed, for 1.2ao (r,
(5.0ao, potential A is stronger than the fully adiabatic
potential. This unphysical feature of potential A supports
the contention that retaining the monopole term is incon-
sistent with the theoretical formulation of polarization

The acid test of R polanzation potential is the cross sec-
tions it yields in scattering calculations. In the present
study these calculations were carried out (within the
theoretical context summarized in Sec. IIC) using an
integral-equations algorithm that has been discussed in
detail clscwhcI'c.

The static component of the electron-H2 interaction po-
tential was evaluated using standard computer pro-
grams ' from a near-Hartree-Fock X'Xs+ wave function

Potential Multipolcs Remarks

0—32
1

1—3
1—24

CGIlvcrgcs c1oss scct1ons
Dipole approximation

TABLE III. MUltlpolc contr1bUt1oIls retained 1n polarization
potentials used in the scattering calcu1ations of Sec. IV [see Eq.
(22)].
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described in Sec. II.
To examine the importance of higher multipoles (A, ) 1)

in the nonpenetrating potentials we show potentials 8, C,
and D (cf. Table III) on an expanded scale in Fig. 2. For
the e-H2 system the nonpeneirating polarization potential
converges rapidly in A, and is reasonably well represented
in the dipole approximation. Of course it is the conver-
gence of cross sections (not of the polarization potential it-
self) that is of critical concern. We therefore turn to an
examination of total integrated cross sections, which were
calculated according to the theory of Sec. IIC and the
computational procedures of Sec. III C.

The sensitivity of these cross sections to the nuxnber of
multipoles retained in the expansion of Eq. (22) is exam-
ined at selected scattering energies in Table IV. The in-
teraction potential used to generate these results included
static, model-exchange, and various nonpenetrating polari-
zation contributions. The dipole-only potential (potential
8 in Table III) appears to provide a very good approxima-
tion, yielding cross sections in excellent agreement with
fully converged results. Considering the savings in com-
puter time that obtains from retaining only the dipole con-
tribution, the formal questions that pertain to the treat-
ment of nonadiabatic effects we are using, and the other
approximations inherent in the scattering theory of Sec.
IIC (e.g., neglect of bound-bound correlation, use of the
rigid-rotator approximation), we decided to use the
dipole-only nonpenetrating polarization potential in the
remainder of this study.

Cross sections obtained with the nonadiabatic potential
that includes the monopole term (potential A), which are
not shown in Table IV, are radically different from those
given and do not agree with measured values. This obser-
vation is similar to the findings of Weatherford et al. '

who used a nonpenetrating polarization potential (retain-
ing the monopole contribution) to evaluate cross sections
for vibrational excitation of H2.

As described in the Introduction a few other theoretical
studies of nonadiabatic polarization potentials for the e-H2
system have been reported. In light of the approximate
nature of the nonpenetrating procedure used in the present
work, comparison with results from these studies is espe-
cially important. In all of them the exact nonlocal ex-
change kernel was included; this treatment of exchange is
more accurate than the model potential used in the calcu-
lations discussed thus far. To increase the consistency in
the comparisons with other work, we have carried out ad-
ditional body-frame, fixed-nuclei scattering calculations in
which exchange is treated exactly. The iterative static-
exchange method of Collins et a/. was implemented us-
ing the static potential described above and the dipole-
only nonpenetrating polarization potential. In order to
converge the total cross sections over the energy range of
interest, six electron-molecule symmetries were included
(see Sec. III C).

In Fig. 3 total integrated cross sections for scattering
energies below 0.5 eV are shown along with the optical-
potential results of Schneider and Collins, ' the variational
results of Henry and Lane, and the measured absolute
cross sections of Perch et al. Comparison of cross sec-
tions calculated in the rigid-rotator approximation and ex-

TABLE IV. Study of sensitivity of total integrated cross sec-
tions for e-H2 (at 8 =1.4ao) to multipoles retained in the nona-
diabatic polarization potential [Eq. (22)]. Exchange is incor-
porated in the interaction potential used to determine these cross
sections via a tuned free-electron-gas model exchange potential
with I=2.27 eV (see Ref. 8).

E(Ry) Cross sections (ao)
A, =1—3 A. = 1—24

0.01
0.09
0.20
0.36
0.64
1.00

33.282
52.023
59.409
53.423
38.547
26.488

33.057
52.354
60.186
54.039
38.988
26.903

32.939
52.365
60.330
54.172
39.073
26.960

perimental data is only roughly indicative of the quality of
the potential used, since the rigid-rotator cross sections are
smaller than those obtained when vibration is taken into
account. A more meaningful comparison with experiment
awaits the inclusion of the vibrational motion of the nu-
clei. The study of Henry and Lane, ' although theoreti-
cally quite similar to the present work, used a less-Aexible
basis to represent the polarized molecular orbitals of the
target. This gave rise to a poorer representation of the
static interaction and the need for scaling of the polariza-
tion potential —factors which are probably responsible for
the differences seen in Fig. 3.

Because of the formal rigor of the optical-potential
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FIG. 3. Total integrated e-H2 cross sections for scattering en-
ergies below 0.6 eV. In addition to rigid-rotor theoretical results
from the present study (solid curve) —using exact exchange and
the dipole-only nonpenetrating polarization potential —and from
the work of Henry and Lane (Ref. 38) (crosses) and of Schneider
and Collins (Ref. 17) (diamonds), we show the experimental re-
sults of perch et al. (Ref. 64) (stars).
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theory, comparison of our results and those of Schneider
and Collins' is of particular interest. The agreement be-
tween the two cross sections is seen in Fig. 3 to be excel-
lent for E(0.5 eV. Above this energy the two theories
yield similar results, as shown in Fig. 4(a). We note that
the total cross sections of Schneider and Collins include

only the Xg, X„, and II„electron-molecule symmetries,
while our results include additional contributions from the
Hg, hg, and A„symmetries. However, as the three-
symmetry curve in Fig. 4(a) indicates, the mild disparity
between the two theoretical results is not due to this ef-
fect, which is small over the energy range studied.

(a)

(c)

C)
C)

C)
Ef1

C)
C)

C)

CO
EaeJ' C)

Q
Q v)

Oe
CO

Co D

C)
C)

lA

C)
CD

C)
P)

C3
CD

I/l
lU

b. 00 2. 00 o. 00 6. 00 8. QO 10.00 2. 00 4. 00 6.00 B.00 10.00

Energy (eV) EAefgy (eV)

nb

Q

O

CO

CO
CO

Q
C3

C)
C)

CB
P)

C3
C)

P
CU

e-H2
Eg

Q
~~
VI

CO

CO
fO
Q

CD
CD

LO

C)
C)

LD

C)
CD

CD
CD

C3
C)

P)
tU

C)
C3

Cb

b. 00 2. 00 Q. 00 6. 00 8.00 10.00 b. 00 6. 00 8. 00 10.00

Energy (eV) Energy (eV)
FIG. 4. Detailed comparison of e-H~ (a) total integrated cross sections and (b)—(d) partial cross sections from the present study

(solid curves) and from the optical-potential calculations of Schneider and Collins (Ref. 17) (crosses). All cross sections were deter-
mined within the rigid-rotor approximation with R =1.4ao. The results of Schneider and Collins include only the Xg, X„, and II„
symmetries.
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FIG. 5. Summary of total integrated cross sections for e-H2
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38) (crosses), Hara (Ref. 33) (pluses), Schneider and Collins (Ref.
17) (diamonds), and Klonover and Kaldor (Ref. 13) (triangles).
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(stars).

V. SUMMARY AND CONCLUSIONS

In this paper we have described a procedure for generat-
ing an approximate ab initio polarization potential for use
in low-energy electron-molecule scattering calculations
and application of the method to the e-H2 system. In this
theory the polarization potential is calculated via the

Further insight into the nonpenetrating and optical po-
tentials can be gained by comparing cross sections in indi-
vidual symmetries. To this end Figs. 4(b)—4(d) show the
X~, X» and H„partial cross sections for energies from 0
to 10.0 eV. In Fig. 4(a) it is seen that the cross sections
disagree most seriously at energies near the 3 eV
"enhancement" in the total cross section. Figs. 4(b)—4(d)
reveal that this disagreement is due to the X„symmetry,
which dominates the total cross section in this energy re-
gion. The increasing disparity seen in the X„and H„
cross sections, which are dominated by partial waves with
I ~ 1, suggests that optical and nonpenetrating polariza-
tion potentials differ most in the intermediate-r, range.
Nevertheless, the overall quality of the approximate non-
penetrating potential, as indicated by the comparisons of
Figs. 4, is very encouraging.

To put these results in perspective, we summarize total
integrated cross sections from a variety of theoretical
studies (and the recent experimental measurements of
Jones et al. ) in Fig. 5. All of the theoretica/ results
shown in this figure were calculated within the rigid-
rotator approximation.

linear-variational method, with nonadiabatic effects incor-
porated using a nonpenetrating approximation originally
introduced by Temkin. ' To explore the accuracy of the
resulting polarization potential, scattering calculations (in
the body-frame, fixed-nuclei formulation with the rigid-
rotator approximation) have been carried out for scatter-
ing energies from 0.02 to 10.0 eV. Total integrated cross
sections from these calculations are in very good agree-
ment with the recent optical-potential results of Schneider
and Collins' and in reasonable agreement with recent
measured cross sections. This agreement is particularly
striking at very low collision energies (E(0.5 eV). In
contrast to the optical potential used by Schneider and
Collins, ' the present nonpenetrating polarization poten-
tial is energy independent. The comparison between the
results of the two studies suggests that the energy depen-
dence of the e-H2 polarization potential may not be partic-
ularly important for low-energy collisions.

The importance of various multipole contributions to
the polarization potential has also been investigated in the
present study. Retaining the monopole term is somewhat
inconsistent with the nonpenetrating approximation arid
leads to an unphysically attractive potential. However,
potentials that do not include this term converge rapidly
with I, and are well represented by neglecting all but the
dipole (A, = 1) term.

The nonpenetrating treatment of polarization, if imple-
mented with a sufficiently flexible basis to accommodate
distortions of the target, requires no scaling and entails no
adjustable parameters. Internal consistency within a
scattering calculation can be ensured by using the same
near-Hartree-Pock electronic target wave function to
evaluate all three components of the interaction potential.

The method described in this paper has been used in ex-
tensive calculations of cross sections for nuclear excita-
tions in low-energy e-H2 collisions. In these calculations
the nonpenetrating theory of Sec. II was used to evaluate
polarization potentials for nonequilibrium internuclear
separations. These potentials were used to determine
vibrational-excitation cross sections. %e are currently
generalizing our computer programs to implement this
theory for other electron-molecule systems.
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