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The projection-operator formalism of Feshbach defines a separation of the T matrix into a
smooth background term and a resonant T matrix which may vary rapidly with energy. The reso-
nance is characterized by an unperturbed energy ed, a width function I (E), and a level-shift func-
tion h(E). Such a separation of the fixed-nuclei electron-molecule scattering T matrix is of consid-
erable practical relevance for the treatment of nuclear dynamics in resonant electron-molecule
scattering. We present an explicit realization of the projection-operator formalism for electron-
molecule scattering within the framework of the many-body optical-potential approach. In contrast
to the approach of Hazi [J. Phys. 8 11, L259 (1978}]which is based on the use of Stieltjes moment
techniques to compute I (E), we obtain explicitly the background T matrix as well as the informa-
tion on the angular distribution of the resonant scattering. The performance of the method rs illus-

trated for the well-known 2.3-eV shape resonance in electron scattering from the nitrogen molecule.
The two-particle-hole Tamm-Dancoff approximation (2ph-TDA) is adopted for the optical potential
and the Schwinger variational principle is used to solve the background scattering problem. The re-

sulting resonance parameters ed, I (E), A(E), and the resonant eigenphase sum are in excellent
agreement with results obtained previously by Hazi using different computational methods.

I. INTRODUCTION

In recent years there has been increasing interest in the
accurate ab initio treatment of nuclear dynamics in
resonant electron-molecule scattering. ' Of particular
interest are reactive electron-molecule collision processes
such as dissociative attachment or recombination and the
corresponding reverse processes (associative detachment or
ionization). These processes violate the Born-
Oppenheimer (BO) principle in the sense that electronic
energy in converted into kinetic energy of nuclear motion
or vice versa.

As has been shown by Chen, ' O' Malley, Bardsley, '

and others, " ' the projection-operator formalism of
Feshbach' provides a general and elegant way to formu-
late the problem. Introducing a projector I', which pro-
jects onto the electronic continuum, and a projector Q,
which projects onto suitable discrete electronic states em-
bedded in the continuum, one obtains a formal solution of
the resonant scattering problem including the dynamics of
nuclear motion. The nuclear motion in the electronic res-
onance state is governed by an energy-dependent, complex,
and nonlocal potential. ' The imaginary part of the po-
tential is given by the (nonlocal} decay width of the reso-
nance. The crucial assumptions in this description are
that (i) the discrete electronic state is diabatic, i.e., weakly
dependent on the nuclear coordinate(s), ' and (ii) that the
nonresonant scattering processes can be treated in the so-
called adiabatic-nuclei or impulse approximation. ' ' The
nonlocal width and level-shift operators account for non-
BO effects which are important for resonances near
threshold, ' ' ' in particular for polar or charged target

molecules. ' To evaluate the nonlocal width and level-
shift operators it suffices to know the decay width I (E,R)
of the resonance as a function of the electronic energy E
and the internuclear distance(s) R; the level shift b,(E,R)
is then given by the Hilbert transform of I (E,R) with
respect to E.

While the general formalism outlined above has been
known for many years, actual calculations based on this
formalism have been hindered by two major obstacles,
namely, (i} the calculation of the width function I (E,R),
which requires the solution of the fixed-nuclei electron-
molecule scattering problem, and (ii) the treatment of nu-
clear dynamics in the nonlocal complex potential of the
resonance state. Progress has been made recently, howev-
er, to overcome these computational difficulties.
Hazi recognized that one need not solve the
electron-molecule scattering problem with proper boun-
dary conditions to obtain the width function I (E,R).
Rather, one can use Stieltjes imaging methods to construct
a smooth function I (E) from a discrete representation of
the background scattering continuum. This approach is
very powerful as it allows the immediate implementation
of computational methods for bound states, which have
been developed to a high degree of sophistication.
Pioneering calculations by Hazi and co-workers '"'

have shown that the accurate ab initio calculation of
I (E,R) for molecular shape resonances and doubly excit-
ed autoionizing states is feasible. The availability of the
width and level-shift functions has stimulated new at-
tempts ' ' to solve for the nuclear dynamics in the reso-
nance state without resorting to the usually employed lo-
cal approximation.
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In the present work we develop a new method to
decompose the fixed-nuclei T matrix for electron scatter-
ing (or, equivalently, the eigenphase sum) into a resonant
and a background contribution, such that the backgr'ound
term becomes a smooth function of E and R, while rapid
variations of the eigenphase sum with E and 8 are con-
tained in the resonant term. The first step is to reduce the
electronic many-body problem to an effective one-body
scattering problem using the many-body optical-potential
formalism. The resulting energy-dependent, nonlo-
cal, and, in general, complex optical potential is given by
the irreducible self-energy part of the many-body
Green's-function formalism. We then apply
projection-operator techniques' to this effective one-body
problem to extract rapid variations of the phase shift due
to shape resonances or virtual states. This requires the
construction of a suitable (in general, energy-dependent)
discrete state, using, for example, the stabilization
method. ' In contrast to the approach of Hazi, the
formalism yields not only the width and level-shift func-
tions needed for the treatment of nuclear dynamics in the
resonance state, but also the background T matrix or
eigenphase sum. Moreover, because the background
scattering problem is solved with proper boundary condi-
tions, we obtain the information on the angular distribu-
tion of the resonant and background scattering. To test
the performance of the method, we have applied it to the
2.3-CV IIs shape resonance in N2, which is by far the best
studied molecular shape resonance, both experimentally
and theoretically. In particular, we shall compare our re-
sults with the data obtained by Hazi ' using a rather
different computational approach. The excellent agree-
ment of the present results with the results of Hazi and
experimental data indicate that the systematic ab initio
calculation of resonance positions and widths to an accu-
racy of 0.1 eV or better is indeed feasible.

II. OPTICAL-MODEL VIVE FUNCTION

I.et us consider the electron-molecule scattering prob-
lem in the fixed-nuclei approximation. The many-particle
scattering state describing an electron with asymptotic
momentum k impinging on the molecule in the (correlat-
ed) target state

~
0) reads

=a- ~0)+ . [I' a-l I0&
E0+ek —4 jig

(2.1)

where a is the creation operator for an electron in the
k

plane-wave state
~
k) with energy eq ——k /2, Eo is the

electronic energy of the target molecule, V is the complete
interaction part of the Hamiltonian A, and q is the usual
positive infinitesimal, which is taken to be zero after all
necessary lntcgratlons 11Rvc been performed. Tllc supcl'-
script (+ ) indicates outgoing-wave boundary conditions
for the scattered particles. Energy normalized continuum
states are assumed throughout. The advantage of the

second quantization formalism, on which Eq. (2.1) is
based, is that the Pauli principle is satisfied automatically
through the anticommutation relations of the fermion
cr'cation and annlhllatlon operators.

The complete information on the elastic scattering is
contained in the optical-model wave function

(2.2)

one has""
(+ 0 a- Ij'j(r ) 0

k N —E0+A —1'g

P'-+'(r)= lim iyG(r, k,ek+iy),
k y~+0

which implies that G ( r, k, ol) has a pole at ol =uk with the
residue P'- '(r ). The infinitesimal iy serves to ensure that

k

we include only causal scattering waves. The Green's
function (2.3) obeys the Dyson equation

G{r,k, co)=Go(r, k,a))+ fd r'd r"Go(r, r ', co)

&&X(r ', r ",co)G(r ",k,co),

(2.5)

where Go is the zeroth-order Green's function. Taking
the kinetic energy E as the zeroth-order Hamiltonian, one
obtains wltll Eqs. (2.4) Rnd (2.5) tllc 11ppmann-Schwlngcr
{I.S) equation for the optical-model wave func-
tion28 —30,35,38

p'+'(r )=7-(r )+ Jd r'd r" GII+'(r, r ', qk)

XX(r ', r ",ek+I'y)p'+'(r "), (2.6)

wh«c X-„(r ) ls a pla~e wave, GII+' the free-particle

Green s function with outgoing-wave boundary condition,
and X is the irreducible self-energy part

X{co)=X( oo )+M'(al)+M"(a)) . (2.7)

X(oo ) is called the static part of the self-energy and in-
cludes the electron-nucleus interaction potential. The
dynamic parts M'"(co) have the spectral representation
(in an arbitrary complete orthonormal single-particle
basis)

(n) (n),
MI II( ) y P

~(n)+)~ {2.8)

The summation over n includes integration over the con-
tinuous part of the spectrum.

The many-particle scattering problem has thus been re-

where g(r ) is the field operator which annihilates an elec-
tron at r. As first shown by Bell and Squires, p'-+'(r )

can be obtained from the single-particle Green's function
of many-body theory. s Defining the Green's function in
the mixed coordinate-rnornentum representation

G(r, k,al)= 0 t{(r ) olco+E0—A +it[
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III. PROJECTION OF RESONANCES

As is well known, resonances in electron-atom and
electron-molecule scattering can be divided into shape (or
single-particle) and Feshbach (or core-excited) reso-
nances. The former are associated with the existence of
a barrier of the effective potential X. The latter originate
from poles of the self-energy X(co). ' While it is
straightforward to isolate the core-excited resonances,
when X(co) is given, ' it is not as obvious how to achieve
a separation of the scattering amplitude or phase shift into
a rapidly varying resonant part and a smoothly varying
background part for shape resonances. A detailed discus-
sion of this point for the simple case of potential scatter-
ing has been given recently. ' Here we apply the for-
malism developed in Ref. 42 to the effective single-
particle scattering problem (2.6).

Assume that the optical potential X is such that the
scattering amplitude exhibits an isolated single-particle
resonance. Assume that a normalized square-integrable
single-particle wave function pd( r ) (which may be energy
dependent) is given, which approximately describes the
resonance (in a sense specified below). We may then de-
fine projectors in the single-particle Hilbert space accord-
ing to

(3.1)

The extension of the formalism to several discrete states is
straightforward. The P space is spanned by orthonormal

single-particle continuum states
I

k '+-'), constrained to be
ortllogollal to

I
thd ):

(k '+-'
I

k '+—') =5(ek —ek )5(Qk —Qk ), (3.2a)

(Pd I

k'+-') =0. (3.2b)

Here and in the following the caret indicates orthogonality

to the discrete state
I
pd). The

I

k'-') can be obtained in
closed form by orthogonalizing the free continuum to

I A&~ g»»g

duced exactly to an effective single-particle scattering
problem. It follows from (2.6) that X(co) has to be identi-
fied with the optical potential' describing elastic scatter-
ing from a correlated many-particle system. It is energy
dependent, nonlocal, and becomes complex for energies
above the lowest excitation threshold of the target mole-

cule, thus accounting for the flux which is lost into the in-

elastic channels. Below the excitation threshold the
many-body nature of the target system is reflected by the
energy dependence of the optical potential.

The advantages of the above formulation of the optical
potential compared to the more traditional approach' lies
in the exact treatment of the exchange problem and in

the balanced way, in which correlations in the target and
in the scattering complex are taken into account. The
self-energy X(m) can be calculated via diagrammatic
many-body perturbation theory. The particular approxi-
mation scheme which has been applied in the present
work is described in Sec. IV A.

"-(,
)

- Go'*'
I
4d&(4'd I

k&
k '+-' =

I

k~

I

Go+'
I 6 &

(3.3)

To(k', k )=(k'
I (Kpp K)

I
k—'+'), (3.6)

Td;,'( k ', k )= ( k ' ' '
I XPP I P

'+ '),
(k k )= (p k, I ~PQ I pd )[&k 'Ed P(k)]

&& &4 I HQP I
0'-„+'&

(3.7)

(3.8)

with the abbreviations

H=K+X, (3.9)

P(k)=&&d
I HQPG bg IIPQ I kd) (3.10)

=PKP, etc. The
I

p'-+') are the background

opticai-model states defined as the solutions of the effec-
tive single-particle LS equation

(3.11)

with43 —45, 42

G o+ ' P(Ek KPP +——i ri) 'P—

(3.12)

Finally, the resolvent operator 6 bg
' in Eq. (3.10) is de-

fined as

6 'bg
' P(ek HPP+—i—ri) 'P .— (3.13)

Note that the orthogonality constraint (3.2b) leads to
the additional term To in Eq. (3.5), which may be called
the orthogonality scattering T matrix. Its appearance
is a consequence of the fact that the projectors P and Q
defined in Eq. (3.1) do not commute with the kinetic ener-

gy operator K in 'contrast to the Feshbach formalism in its
original form, where the projection is defined with respect
to channels. ' It is convenient to combine the orthogonal-
ity and the direct scattering T matrices to give the back-
ground scattering T matrix

Tbg(k' k )=To(k' k )+TIf~(k' k ) (3.14)

A central quantity in the Feshbach formalism is the
complex level-shift function F(k) defined in Eq. (3.10). It
defines the width function I (ek) and the real level-shift

(3.4)

is the free-particle Green's operator.
Applying now the well-known Feshbach projection-

operator techniques, ' one obtains

T ( k ', k ) = To( k ', k ) + Tq;,'( k ', k ) +T,'„'(k ', k ), (3.5)

where (the superscript F stands for Feshbach)
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function b, (ek) via

b,(ek ) =ReF(k),

I (ek ) = —21niF(k)

(3.15a)

(3.15b)

Therefore we show that Eq. (3.5) defines also a decompo-
sition of the eigenphase sum into a resonant and a back-
ground term. I.et us introduce the usual partial-wave rep-
resentation (assuming a linear molecule for simplicity)

for real positive k. It is seen from Eq. (3.8) that F(k)
shifts the real eigenvalue Ed of Hgg into the complex (en-

ergy or momentum) plane yielding the complex resonance
pole of the T matrix.

To obtain a more explicit representation of the width
and level-shift functions, we introduce the off-shell gen-
eralization of Eq. (3.11)

14'-„+,'(ek) & =
I
k'+'&+G o+'«k», p(ek)

~ 0 '-„+.'«k) &

(3.16)

T(k', k)=k ' g T(k;1',1,m)Yi m(Qk)Yim(Qk) . (3.20)
I, I', m

Defining a new resonant T matrix via

T-.(k' k)=&0'-„+,'l~~g 4d&[e'k ed —F(—k)] '&

(3.21)

we have the following relation between T,'„' of Eq. (3.8)
and T„,of Eq. (3.21):

T,'„'(k;1',1,m)= gag(k;1', 1",m)T„,(k;1",l, m), (3.22)

When ek is below the first electronic excitation threshold
of the target molecule, Xz~(ek) is Hermitian. Therefore
the solutions of Eq. (3.16) for a fixed ek define a complete
orthonormal set of single-particle states in P space and

a spectral resolution of 6 I,
+'. Defining the off-shell ma-

trix element

or in a matrix notation,

(F)
Tres =Sag Tres ~ (3.23)

( ~k ) & Pd ( ~k )
I ~QP ('Ek )

I 0 -„+.'( &k ) ) (3.17)

and using Eqs. (3.10) and (3.16), we have for energies ek
below the excitation threshold S,~ =I—2m.iT„S, (3.24)

and ~T is defined in Eqs. (3.14) and (3.20). Defining now
the resonant Smatrix via

I (ek)=2m JdQk i V„(ek) i
(3 18) it follows that

V-„,«k) V'-„,«k)
b(ek) =PJ dQk dk'k', (3.19)

where P denotes the principal-value integral. It is seen
that I (ek) involves only the on-shell matrix element
V„(Ek), while off-shell matrix elements V-„,(e )kare re-

quired to evaluate A(ek ) via Eq. (3.19). As a consequence,
b, (ek) cannot be expressed as the Hilbert transform of
I'(ek), as is the case in ordinary potential scattering ' as
well as in the Feshbach formalism based on many-particle
projection operators. ' '

The calculation of Td;,
' and T,'„' requires the solution of

the background scattering LS equation (3.11) and the con-
struction of the resolvent operator (3.13). In the present
work this is achieved via a separable expansion of X~z,
which reduces the problem to the solution of a set of
linear algebraic equations. This expansion is equivalent
to the use of the Schwinger variation principle for the T
matrix. " More details are given in Sec. IV B.

The essence of the method is thus to solve the projected
LS equation (3.11) instead of the original LS equation
(2.6). Once the background optical-model states

~

P'-„+')

and the corresponding propagator 6bg are given, the(+)

background scattering T matrix, the complex level shift,
and the resonant T matrix are easily calculated. The for-
malism yields an exact decomposition of the T matrix into
a resonant and a background term, which depends only on
the choice of the discrete state

~ Pd ).
In actual calculations it is more convenient to deal with

real quantities, i.e., E-matrix elements or eigenphases.

S=I—2~i'T =SOS„, . (3.25)

5'" =(21) 'lndetS,

we have

(3.26)

gsum gsum+ gsum
bg res (3.27)

This is the desired decomposition of the eigenphase sum,
which has been derived previously for an isolated Breit-
Wigner resonance.

For the present case of a single discrete state, T„, and
5'„, take a particularly simple form. From Eq. (3.21) we
have

with

T„,(k;1',I,m)= Vki m [Ek —Ed F(k)] 'Vkbu, —(3.28)

(3.29)

Calculating 5,'„using Eqs. (3.24) and (3.26) leads to '
I (ek)/2

(3.30)

which is the Breit-signer resonance formula with
energy-dependent width and level shift.

A question which deserves some discussion is the ap-
propriate choice of the discrete state

~ Pd ). The formal-
ism, as such, is applicable to any choice of the projector

We have thus a factorization of the full S matrix into a
resonant and a background term. Introducing the eigen-
phase sum
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Q. The problem is to ensure that a chosen discrete state
"removes" a particular resonance, i.e., makes the back-
ground eigenphase sum 5'bg a smooth function of energy
in the vicinity of the resonance and transfers the reso-
nance into the resonant eigenphase sum 5'„"s . In particu-
lar, the projection should not introduce spurious reso-
nances into 5bg at energies where the full eigenphase sum
is nonresonant.

There is a significant amount of literature devoted to
the question of how to approximate shape resonances by
l. wave functions and how to determine these wave func-
tions variationally. The most common method in practi-
cal applications is the so-called stabilization
method. ' ' Here the Rayleigh-Ritz minimization of
the energy is replaced by the concept of stabilization of
the energy. In practice it is required that an eigenvalue,
obtained by diagonalizing H in an I. basis, should be
stable with respect to the extension of the basis set or with

respect to a scaling of the basis functions. Stable eigen-
values are believed to approximate resonances. Another
approach is to minimize the variance of the Hamiltonian,
&FI &

—&& &, employing l. test functions. ~o 51 It
should be stressed that one needs usually only a crude esti-
mate of the discrete state when applying the Fcshbach for-
malism, since the real level shift h(ek) corrects for the er-
ror, yieMing the exact resonance energy.

IV. APPROXIMATIONS AND CGMPUTATIONAI.
METHODS

&(/U) =&sE+&p,/(~) =Lsd+[&( a) )—&sk]

+M'(/U)+M' (/U), (4.1a)

A. Approximation scheme for the optical potential

In many-body perturbation theory, X is defined via a di-
agrammatic perturbation expansion. To construct ap-
proximations for X, one may proceed either order by order
or by performing suitable infinite partial summations of
diagrams. The first step is to define a complete manifold
of single-particle states. These are most conveniently
chosen as the Haitree-Fock (HF) single-particle states. In
this representation, the optical potential may be written as
[recalling Eqs. (2.7) and (2.8)]

+~ Ek e/)+ k/
—~—

vd 'k'l' 'k'/'=(~) (n) ~ (n)

j', k' g I'
(4.2)

where the e; denotes the HF single-particle energies. The
Dyson amplitudes mp"' follow from the eigenvector com-
ponents of Eq. (4.2) according to

(~) ~ (n)
mp ~ Upj [k/gjkl ~

kgl
(4.3)

tribution due to the presence of the incident electron as
well as target correlation are neglected. %hen represent-
ing X in the HF single-particle manifold, terms of first or-
der in the residual interaction cancel each other exactly, so
that the net first-order contribution is zero.

The dynamic distortion of the target (polarization) and
the correlation in the target state are described by M '" of
Eq. (4.1). Contributions from these terms appear first in
second order. The second-order optical potential has been
used for electron-atom and electron-molecule
scattering with considerable success. However, it has re-
cently been shown that one has to go beyond the
second-order optical potential to obtain accurate results
for shape resonances.

The second-order optical potential has the correct ana-
lytic structure as defined in Eqs. (2.7) and (2.8). This
structure is not maintained when one straightforwardly
expands X beyond second order. A well-defined and
rather simple approximation scheme for M ' ', which is
based on the infinite partial summation of certain classes
of important diagrams such that the correct analytic
structure is restored, is the 2ph-TDA (two-particle-hole
Tamm-Dancoff approximation). The energy-
independent term X( co )—XsE, whose perturbation expan-
sion starts in third order, is neglected in the 2ph-TDA.
The 2ph-TDA scheme can be derived in various ways, as
described in detail in Ref. 58. The 2ph-TDA self-energy
has been extensively used in the. calculation of ionization
potentials of molecules. Recently it has also been ap-
plied to electron-molecule scattering with very promising
results.

In the 2ph-TDA one obtains separately the terms
M'(co) and M {co) of Eq. {2.8). These are obtained by
solving directly for the eigenvalues /U'"' and Dyson ampli-
tudes mp"' of Eq. (2.8) via an eigenvalue problem which
formally reads

Xs@——U,„+g(J; E;)— (4.1b)

Is thc well-known static-exchange potcrltlal, U Is thc In"
tcfactloI1 of tllc pro]cctllc wltll tllc Illlclci, and J/ a11d K/
are the usual Coulomb and exchange oper'ators. Xz,&

is
given by all linked proper diagrams representing the
many-body perturbation series in terms of the residual in-
teraction ' (the full interaction Hamiltonian minus the
HF Hamiltonian).

The simplest approximation for X is the static-exchange
approximation X=X&E. In this approximation the
motion of the projectile electron is governed by the aver-

age interaction potential with all particles of the target,
while the dynamic distortion of the molecular charge dis-

j=hole; k, l =particle for M',

k, /=hole; j =particle for M

The matrix C is given by

cjklj', k', /' —( Uk/[k', /']~jj'+Uj'/[j/']5kk'+Uj'k[jk']~//'

U/'/[jk']f]k/' Uj'k[j/']~/k') ~

(4A)

(4.5)

where the {—) sign is for M and the (+ ) sign for M".
Iil Eqs. (4.3)—(4.5) U,/[k/]=U, jk/

—
U~j/k deilotes the ailtisyin-

The index space for M is restricted to particle-particle-
hole, while the index space for M" is confined to hole-
hole-particle, i.e.,
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metrized Coulomb matrix element.
In the 2ph-TDA defined above, the term M' accounts

for the relaxation of the target electrons and the associated
change in the pair correlation energies in the target state.
The term M" accounts for the increase of the pair correla-
tion energies due to the (temporary) attachment of an ad-
ditional electron. Neglecting M is equivalent to neglect-
ing target-state correlation and performing a configura-
tion interaction (CI) calculation on the temporary ion in-
cluding all two-particle —one-hole excitations, i.e., "2p-1h-
TDA". The inclusion of both M and M' guarantees a
balanced treatment of target correlation and polariza-
tion.

B. Approximation scheme used in solving
the one-body Lippmann-Schwinger equation

It is well known that molecular continuum wave func-
tions are difficult to obtain. This is a consequence of the
nonspherical nature of the effective electron-molecule in-
teraction potential. To overcome this difficulty, L
methods were developed. The most successful of these
methods are the R-matrix and T-matrix expansion
methods. The latter has been improved by adopting the
Schwinger variational expression for the T ma-

A related method in which one solves
linear algebraic equations has been proposed recently by
Schneider and Collins.

In the present work we use the Schwinger variational
principle to treat the background scattering problem.
This is equivalent to representing the optical potential X
in the separable form

X~s~= yX~ &X..& ~X,
a,a'

with (g ') .=(n'~ X ~a&. In (4.6) the functions (r ja&,
r being the coordinate of the scattered electron, are
square-integrable energy-independent basis functions.
%'ith the separable potential X' ', the direct scattering po-
tential Xzz in Eq. (3.7) is also separable. The expression
for the corresponding Td;,

' of Eq. (3.7) reads then

Td"'(k' k)= X &k'I&l&&& &&'IX Ik& (47)
a, a'

where

X=X—XG0+'
~ Pd &, , (Pd

~4 IGo+'IA
(4.g)

(B ')~ =(a'
i
(X—XG0+'X)

i a& . (4.9)

Here X denotes the transpose of X.
T~;,' has thus been expressed in terms of the free-

particle Green's function GO+' and plane-wave state
~

k &,

while the orthogonalized G 0+' and
~

k '+'& appearing in
Eq. (3.7) have been eliminated. To achieve the same for
the background optical-model states, Green's function,
and T matrix, we rewrite Eq. (3.11) and (3.13) as

I
y'-„"&=

I
k &+G'+'Tb,

I
k

G ~+& G(+)+6(+&T Gc+i
bg O 0 bg 0

(4.10a)

(4.10b)

~-„(~k)= &4 I l&k+X+(&kGO 1+XGO )Tbg]
~

k &

and the complex level-shift function

(4.11)

where the operator Tbg is defined via

( k '
~ Tbg

~

k & =Tbg ( k ', k ) =To( k ', k ) +Td;,'( k ', k ) .

(4.10c)

U""g (4» IN'-„+'& Gbg', and Tbg(k', k) are all ex-

pressed in terms of GO+' and
~

k &.

Once the background scattering problem is solved, one
may evaluate the quantities V, I, and 5 of Eqs.

k
(3.15)—(3.19). Using the operator identity (ek —E)GO+'
=1, the kinetic-energy operator E may be removed from
all products of the form EG0, 60EC leading to the working
equations for the on-shell matrix element

&Od I II&.G bg '~.
& I &d &

&0d I (Tbg + 2X ek+kkGO +~kG0 TbgG0 &kG0 Tbg kkTbgGQ +~kGQ X+&kXG0

+~kG0 Tbg GO X+~kXG0 Tbg Go TbgGO X XGO Tbg +XGO X +XGO TbgG0 X)
~ 4d &

(4.12)

In Sec. V, I' and b, are evaluated directly from Eq. (3.15)
with the complex level shift of (4.12). The eigenphase
sums 6b and 5'„", are obtained as described in Sec. III
[Eqs. (3.20)—(3.30)].

It should be mentioned that similar projection tech-
niques have been used by t.ucchese et a1. to eliminate
spurious resonances in static-exchange calculations of
photoionization cross sections. In these calculations the
orthogonality scattering problem is approximately solved
using a separable expansion of Epp E+Xpp In the

I

present work, the orthogonality scattering "potential"
Epp E is treated exactly and only the potential Xpp is ap-
proximated by a separable expansion. This is important in
view of the fact that the kinetic-energy operator is an un-
bounded operator.

C. Technical details of the calculation

The Hartree-Fock calculation to define the single-
particle manifold is performed employing the (11s,7p)
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TABLE I. Gaussian basis sets for e-N2 scattering. Types of exponents (on the atoms) are listed.
Contraction coefficients are given in parentheses, basis functions are separated by semicolons (";"),and
primitives by commas (",").

Hartree-Fock set

s 13 515.3(0.001 43), 1998.96(0.01161), 439.998(0.062 74), 120.8999(0.253 27),
38.4711(0.750 77); 13.4578;4.992 99(0.887 31), 1.659 81(0.135 92);
0.736 372(0.484 16), 0.293 648(0.553 18); 0. 123 902

p py p 35 91 1 1(0 017 27) 8 480 42(0 10426) 2 705 63(0 345 58) 1 001 99(0 659 66)
0.400617; 0.168433; 0.076081

d yy d 1 5 0 5

dxjl p diaz 7 diaz

Discrete-state set

p„The uncontracted p„basis of the HF set minus the last
function with exponent 0.076081

d The d basis of the HF set

Schwinger set
[(r ~a) of Eq. (4.5)—(4.8)]

p„The uncontracted p„basis of the HF set
d The d basis of the HF set

Quadrature set
(see last paragraph of Sec. IVC)

p„The p„basis of the Schwinger set plus 300.0; 100.0; 30.0; 0.02; 0.006; 0.002
d The d„, basis of the Schwinger set plus 300.0; 100.0; 30.0; 0.02; 0.006; 0.002

Gaussian basis set of Salez and Veillard contracted to
(Ss,4p) and augmented by two d functions to allow for
more flexibility in describing polarization. Table I gives
the basis set of this calculation.

In constructing the optical potential, the static-
exchange potential is calculated using Eq. (4.1b). The
2ph-TDA contribution is built up in two steps. In the
first step two-electron integrals involving the basis func-
tions are transformed to integrals over molecular orbitals

[U~~(kl) of Eq. (4.S)]. In the second step the Dyson ampli-
tudes are calculated by solving the eigenvalue problem,

Eqs. (4.2—4.5). It is then a simple step to construct

M~ (ui) by Eq. (2.8) for each energy co.

The stabilization technique ' ' is used to construct
the discrete state

~
P~). The energy-dependent single-

particle Hamiltonian H (ek ) =E+X(ek ) is diagonalized in
basis sets of various sizes and a stable eigenvalue (stable
with respect to changes of the basis) is searched. We have
found that it was sufficient to omit the most diffuse func-
tions from the above-mentioned HF basis in order to ob-
tain an estimate for the stabilized

~
P~). The basis set

used to define the discrete state is also given in Table I.
Note that only a crude estimate is needed for

~ P~ ), as the
level shift b, (ek) will shift the resonance energy to the
correct position. Note also that

~ P~) and ez depend on

k
Various basis sets were tried for the functions I ( r

~
a) I

of Eq. (4.6), which define the separable expansion of X, in
order to check the stability of the expression (4.7) for the
direct T matrix with respect to changes of the basis set.

In the results reported here this set is taken to be identical
with the above uncontracted ( 1ls, 7p, 2d) set (see Table I).
We have found that the results are insensitive to exten-
sions of this basis.

The last technical point to be discussed is the calcula-
tion of the integrals such as (a

~

X
~

k ) and
(a

~

XGo+'X
~

a') which are needed in the calculations of
Eqs. (4.7)—(4.12). These are calculated by using a quadra-
ture formula constructed from a set of Gaussian functions
much larger than the set (r

~

a). This set (also shown in

Table I) is inserted between X and
~

k) or X and Go+'.
Convergence of such insertions has been tested for the
terms like (a

~
XGo+'X

~

a') by McKoy and co-
workers. ' This choice of quadrature enables us to use
standard codes for calculating all needed integrals of the
theory, e.g., Coulomb matrix elements, or matrix elements
of the free-particle Green's function Go+'. Finally we

mention that the basis sets of Table I are nonorthogonal.
The overlap integrals of the basis functions are explicitly
taken into account in the actual calculations.

In summary, the sequence of computational steps that
have to be performed to get the final results is as follows:
(i) Perform a standard Hartree-Fock calculation to define
the single-particle manifold. (ii) Using this manifold, con-
struct the static-exchange potential [Eq. (4.lb)] and the
2ph-TDA self-energy part via Eqs. (2.8) and (4.2)—(4.5).
(iii) Perform a stabilization calculation to define the
discrete state, i.e., diagonalize the single-particle Hamil-
tonian, Eq. (3.9), in a restricted subspace of the single-
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particle basis. (iv) Solve the background scattering prob-
lem using Eqs. (4.7) and (4.10) and calculate the back-
ground eigenphase sum. (v) Construct the coupling-
matrix elements Vk~~ of Eqs. (3.29) and (4.11), the com-
plex level shift of Eq. (4.12), and the resonant T matrix
and eigenphase sum via Eqs. (3.28) and (3.30).

V. RESULTS

We have chosen the Ils shape resonance of the Nz
molecule to test the method described in the preceding
sections. We confine ourselves to fixed-nuclei calculations
at the equilibrium geometry Ro ——2.068 a.u. Results are
presented for the static-exchange approximation and for
the 2ph-TDA. For both we show the explicit separation
of the eigenphase sum into a resonant and a background
term and the calculated width and level-shift functions.
To our knowledge these are the first calculations which
provide an explicit separation of the eigenphase sum into
resonance and background contribution for a real mole-
cule.

TT

M

LLJ

N
(j:
CL

LJ

Ll 0 4 ~ ~ ~
~ ~ ~

I I

6 7
ENERGY (eV)

A. Static-exchange results

The separation of the IIg eigenphase sum into back-
ground (dashed-dotted) and resonance (dashed) contribu-
tions in the static-exchange approximation is shown in
Fig. 1(a). The background eigenphase sum 5bg is ob-
tained using the background T matrix of Eq. (4.10c) and
the partial-wave representation defined in Eq. (3.20}. The
resonance eigenphase sum 5'„", is obtained from Eq.
(3.30). We have checked numerically that 5bg and 5,',",
add up to the full eigenphase sum 5'" [full line in Fig.
1(a)] as it should according to Eq. (3.27). P" can be cal-
culated directly by using the potential (4.6) and solving the
Lippmann-Schwinger equation (2.6), see Ref. 57.

Figure 1(a} shows that the background contribution in
the II~ symmetry is relatively small and weakly energy
dependent. The resonant contribution shows the typical
resonance behavior, i.e., a rapid increase in the eigenphase
sum near 3.8 eV. The location of the resonance is —1.5
eV too high compared to the known experimental value. '

The corresponding width and level-shift functions are
shown in Fig. 1(b). These are obtained from Eqs. (3.15)
and (4.12). The level shift 6 of Fig. 1(b) is the Hilbert
transform of the width I . This follows from Eqs.
(3.16)—(3.19) and the fact that the effective single-particle
Harniltonian H is energy independent in the static-
exchange approximation. In the static-exchange approxi-
mation our method is equivalent to that of Hazi. 24 If the
same discrete state is chosen, the width and level-shift
functions obtained by the two methods are identical.

B. Results in the 2ph-TDA

The full line in Fig. 2(a) shows the eigenphase sum ob-
tained in the 2ph-TDA. The dashed-dotted and dashed
lines show its separation into a background and resonant
contribution, respectively. As before, we have checked
that 5~ and 5', add up to the eigenphase sum 5™ob-
tained directly using the potential of Eq. (4.6).

I—
Cl
M

I I l l l l

s s
ENERGY (eV)

FIG. 1. (a) Eigenphase sum of the IIg resonance in e-N2
scattering in the static-exchange approximation. Full line
denotes the full eigenphase sum, the dashed line denotes
resonant eigenphase sum, and the dashed-dotted line denotes the
background contribution. (b) Width and level-shift functions in
the static-exchange approximation as a function of energy.

It is notable that the background contribution is now
considerably smaller than in the static-exchange approxi-
mation. The resonance eigenphase sum shows a rapid rise
near 2.3 eV. This rise is shifted by 1.5 eV (and is much
steeper) compared to the static-exchange result. The reso-
nance position is now close to the experimental value of
2.35 eV. ' This is a consequence of including correlation
and polarization which are neglected in the static-
exchange approximation.

The width and level-shift functions are shown in Fig.
2(b) (full lines). The width function obtained in the 2ph-
TDA is smaller than the static-exchange result by about a
factor of two at all energies. [Note the difference in scale
when comparing Figs. 1(b) and 2(b)]. For comparison, the
width and level-shift functions calculated by Hazi are
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included in Fig. 2(b) (dashed lines). The agreement be-
tween the two width functions (in particular near the reso-
nance energy) is excellent, considering that the two calcu-
lations are performed with completely different methods
and that different basis sets are used.

The eigenvalue ed ——(Pd II
I Pd ) as a function of the

energy ek is shown in Fig. 2(c). The energy dependence of
ed is a consequence of the energy dependence of X. Be-
cause of this energy dependence of X, the level shift 5 of
Fig. 2(b) is also no longer the Hilbert transform of I .
This is in contrast to the width and level-shift function of
Hazi which are Hilbert transforms of each other. In
Fig. 3 we compare 5'„", of the present work (full line) with
the resonant eigenphase sum calculated from I and 5
given by Hazi using Eq. (3.30) (stars). It is seen that the
two results are in excellent agreement. In particular, the
resonance positions agree to an accuracy of -0.1 eV. The
widths at the resonant position are also in excellent agree-
ment [see Fig. 2(b)].

Finally, we have collected in Table II some representa-
tive results on the angular distribution of the background
and resonance scattering at three different energies, name-

ly, very near the resonance energy (2.287 eV) and at the
wings of the resonance (1.965 and 2.879 eV). The upper
panel of the table gives the Hg background K Inatrix K~~
corresponding to the T matrix of Eqs. (3.14) and (4.10). It
is seen that the main contribution to the Hg background
scattering comes from a mixture of d(l =2) and f (1=4)
waves. The resulting background IIg eigenphase sum is
also given in the table.

The on-shell discrete-state-continuum coupling-matrix
elements V~~ of Eq. (3.29) are shown next in Table II. It
is seen that here the main contribution is a d (l =2) wave,
in accord with the well-known assignment of the angular
dependence of this resonance. Finally, the resonance pa-
rameters I", b, and eq [see Eqs. (3.9), (3.10), (3.15), and
(4.12)] for these energies are given, as well as the resonant
eigenphase sum calculated with Eq. (3.30). The results in

1
I I I I I

1 2 3 0 5 6
ENERGY (BV)

FIG. 2. (a) Eigenphase sum of the 'Hg resonance in e-N2

scattering in the 2ph-TDA. The labeling of the curves is as in

Fig. 1(a). (b) Width and level-shift functions in the 2ph-TDA as
a function of energy. Full lines denote results of present work
while the dashed lines stand for the results of Hazi (Ref. 25). (c)
Discrete-state energy ed = (Pd I

K(ek }
I Pd ) as a function of the

energy ek.

T7

K
LLI

K
(I:

CL

LLj

LLI

0 I

1 2 3
ENERGY (eV)

FIG. 3. Resonant Hg eigenphase sum of e-N2 scattering calee

culated in this work (full line) compared to the results of Hazi
(Ref. 25) (stars).
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Table II represent the first ab initio analysis of the angular
dependence of the background and resonance contribution
for an electron-molecule scattering resonance.

VI. DISCUSSION AND CONCLUSIONS

We have presented a new method to separate the T ma-
trix (or the eigenphase sum) for fixed-nuclei electron-
molecule scattering into a smooth background term and a
resonant term, which may vary rapidly with energy ek and
internuclear distance R. The relevance of this separation
lies in the treatment of nuclear motion in electron-
molecule scattering. Owing to its weak dependence on ek
and R, the background scattering T matrix can be treated
in the adiabatic-nuclei approximation. ' ' ' The resonant
T matrix, on the other hand, can be calculated to a higher
level of sophistication by treating properly the nuclear
dynamics in the short-lived negative-ion state, which is
governed by an energy-dependent, complex, and nonlocal
potential.

In the present method the many-body optical-potential
formalism is employed to reduce the fixed-nuclei
electron-molecule scattering problem to an effective
single-particle problem. The method is particularly well
suited to describe shape resonances, which are due to the
existence of a barrier in the effective electron-molecule in-
teraction potential. The use of the many-body optical po-
tential guarantees a balanced treatment of polarization ef-
fects in the negative ion and correlation effects in the tar-
get molecule. This is crucial to obtain accurate positions
and widths of resonances.

The Schwinger variational principle is used to
solve the single-particle scattering problem. The above-
mentioned separation of the T matrix is obtained by solv-
ing a projected LS equation, implying orthogonality to a
suitably chosen discrete state. The solutions are the back-
ground scattering states and are obtained explicitly. Once
the background scattering problem is solved, the calcula-
tion of the width I (ek) and level shift b, (ek) is straight-
forward.

Pioneering calculations of I (ek) and b, (ek~ have been
performed by Hazi and co-workers for shape resonances
and doubly excited autoionizing valence states. ' In
these calculations the solution of the electron-molecule
scattering problem is avoided by using Stieltjes imaging
to construct a smooth function I (ek) from a discretized
representation of the background scattering continuum.
This approach yields only the total width I (ek), from
which b,(ek) may be obtained by Hilbert transforma-
tion. These data are sufficient to construct the
angle-integrated resonant T matrix. No information is
obtained, however, on the background scattering T matrix
and the angular dependence of the resonant scattering.
Despite these limitations, the method has been very suc-
cessful and has provided the basis for the ab initio treat-
ment of vibrational excitation in N2 (Refs. 3 and 5) and
dissociative attachment in F2 (Ref. 4). The knowledge of
the background scattering T matrix may be important,
however, for broader resonances, for electron-polar
molecule scattering, or the description of virtual-state ef-
fects.
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The limitations of Hazi's method are overcome in the
present appmach. We obtain explicitly the background T
matrix or E matrix and the information on the angular
distribution of the resonant scattering. Therefore, it is
possible to verify the apphcability of the adiabatic-nuclei
approximation for the background scattering. As shown
in the application to the 2.3-eV shape resonance in e-N2
scattering, the background eigenphase sum is indeed small
and a smooth function of energy. These results represent
the first ab initio analysis of the background contribution
1Q fcsGIlanf, clcctl on-IDGlccQlc scatter 1ng. AIlotIMf IQGfc
technical advantage of the present method is that the level

shift b,(ek) is obtained directly rather than by taking the
Hilbert transform of I"(ek). It is therefore not necessary
to compute I (ek) for all energies; all calculations can be
confined to the energy interval of interest.

The present method differs from Hazi's approach 3

in that the projection of the resonance is performed in a
single-particle Hilbert space rather than in the Hilbert
space of electronic (iV+ 1)-particle states. The discrete
state in the present work is a single-particle state, while it
is an {Vi+1)-p rati 1cedeterminant or configuration in-

teraction wave function in Hazi's method. Because of this
difference in the definition of the projection, the discrete-
state energies, width functions, and level shifts obtained
with the two methods are not identical, at least beyond the
static-exchange level of approximation. The test calcula-
tion for the 2.3-eV shape resonance in Nz has shown, how-

ever, that, nevertheless, very similar results are obtained in
thc two calcUIRtions. In PafticU1Rf, thc fcsGIlancc cncfg1cs

E„,=ed+6(E„,) and widths I"(e„,) agree to better than
0.1 CV.

While the reduction of the (N +1)-electron problem to
an effective single-particle problem in the optical potential
formahsm represents an enormous simphfication and al-
IG%'s Qs to solve thc scat tcf1ng pfoblcm cxp11cltlp with
proper boundary conditions, certain difficulties arise in
the present approach from the explicit energy dependence
of the optical potential X which results from the virtual
excitation of the target electrons. As a consequence, the
"potential energy curve" Vi(R)= Vo{R)+ed(ek,R) of the
discrete state is explicitly dependent on the energy ek of
thc scattered electron. Mol cover» tI1c cIlcfgf dependence
of I and 5 has two sources: the "usual" energy depen-
dcQcc which cx1sts RIfeadp 1Q thc stRtlc-cxchangc RPPI'Gx1-
mation and an additional energy dependence arising from
the explicit dependence of X on ek. The energy depen-
dence of X may complicate the treatment of the nuclear
dynamics within the Feshbach projection-operator ap-
proach. Calculations of nuclear dynamics using the
Pfcscnt Illcthod Rfc 1Q P1GgI"css.
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