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We propose a new method to solve the multistate coupled equation. It overcomes the fatal defect
of divergence which conventional perturbation theory has when the interaction is not small. We ap-

ply it successfully to laser-induced transition processes and obtain a total-cross-section formula.

I. INTRODUCTION

II. THEORY

Theoretical study of the state-to-state transition in the
X-state system is in general equivalent to solving the equa-
tion under the boundary condition ck(t = —oo ) =5k1.

Cl ~11 ~1N C]

The Landau-Zener-Stuckelberg (LZS) formula' has been
the most popular method for two-channel equations.
However, the formula, in general, cannot treat the mul-
tichannel case nor give time-dependent approximate solu-
tions.

In a previous paper we succeeded in generalizing the
LZS formula and broke through its difficulties by intro-
ducing a complex phase method. One of its successful
points is that it can give a good probability amplitude at
arbitrary time, which encourages us to go to the mul-
tichannel problem. Here "multi" means three or more.

In this paper a new approach to the multistate problem
is proposed. In a previous paper we showed that the
complex-phase method is superior to the perturbation
theory in that it can take into account the effects of
higher-order terms in a simple manner. The new idea is
to (1) separate N states into N 1 and 1 sta—tes, (2) use the
S matrix of N —1 states, and (3) regard the system as
"two states" between N —1 and 1 states and use the
complex-phase method. In other words, with the
knowledge of N —1 states we can solve the case of N
states. Of course, the two-states system is solved by use of
our previous result. %e apply this theory to the laser-
induced transition process

Sr (Ss 5p 'P')+ Ca (4s 'S)+fuu

~Sr (5s 'S)+Ca (4p 'S),
which may be simplified into a three-state model. The re-
sults are compared with those of other workers and show
excellent improvement.

where t is time, ck is the probability amplitude for the
"kth state" and u „ is the matrix element between the
mth and nth states [Eq. (1) is completely general and we
need not specify the model or states yet].

On the assumption that the solution of (N —1)-state
equations is available, i.e., that the following equation has
been solved:
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Hereafter we use the following symbols: asterisk, for
complex conjugate; dagger, for Hermitian conjugate; su-
perscript t (on symbols), for the transpose; and overdot,
for the time derivative. When a unitary matrix S satisfies

S=i U22S (4)

Then Eq. (1) becomes a "two-channel" problem,

Uji Ui2

8 U2) U22 8
where the column vector 13 and the elements of matrix U

l
dt

CN +N1 +NN

C2

~kk

and such a vector F is defined by

Y'=S~B,

Eq. (3) becomes
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C) ——iU)2SY,

F=iS U2]C) .

Since the matrix S satisfies the same equation as (2) we
can use as S the scattering matrix of X—1 states already
obtained and write it in the form

S22 ' S2~

and recalling the relation

[D t(t)D(t) ]*=D '(t)D'(t) = [Dt(t)D(t)]'

and that Dt(t)D(t) is a scalar we have

(13)

r

25t ——exp —2f 51dt' ID (t)D(t)+[Dt(t)D(t)]*]

Sxz '' S
(7)

25texp 2f 5zdt' = ——[D (t)D(t)] .

Eliminating F from (7) we thereby have

C) ———U)2S S U2)Cjdt . (8)

t'

X f S U2&exp i f 5dt"—dt'

= —iexp 2f —5Idt' D t(t)D(t),

where

D—:f S Uz) exp( i f 5dt")dt'—
and 5I is the imaginary part of 5.

The procedure above is only the transformation of argu-
ment from C( to 5 and no new improvement seems to
have been made, ' however, important progress has been
made as will be seen later in actual use. The amplitude
and probability of the first state are then

g . f t'

C) ——exp i f D (—t')D(t') exp —2f 5Idt" dt'

and the other amplitudes are given from (5), (7), and (10)

C2

C3
=iSD(t) . (12)

Though U(2S is a vector as is known from (3), this in-
tegral equation is a scalar and is therefore the same as our
previous result. Thus the X-state problem is reduced to a
single integral equation with no special approximation
other than information on the (X—1)-state system. As
the exact solution of this integral equation is beyond hope,
we use the following complex-phase method, of which va-

lidity has been proved in a previous paper.
Rewriting Cj by a complex phase 6 as

C( ——exp i f— (9)

and putting it into (9) we have the integral equation for 5:

t
6= —iexp i 5 dt' U~2S

By quadrature of (15) under the boundary condition
c, ( —oo)=1 we have

I
c)

I
=exp 2f 5Idt' =1 Dt(t)D—(t) (16)

or, by use of (12) and (16), the unitarity gk =) I
ck

I

'=
The transition probability to every other k state is given

from (12) by
2

Ickl = QSk D (t)

5 = —iU(2S S Up(dt'

or from (10), (11), and (18)

D((t) f S$U D(t')D (t')/2—

(19)

xexp i f 5—', dt" dt'

where 6z is the real part of 5 .

If the main contribution to the integral (20) comes from
the narrow region of t= Oand [D (t)]tD (t) is a—slowly
varying function there we can simplify (D')tD' more as

[D'(oo)]D'(ao)=[D(oo)]D(oo)

(20)

XexpI —[D (0)]tDO(0) I, (21)

where D (t) is the mth element of the vector D(t) So far.

we have derived the exact relations and solutions for the
problem and to go further some approximations must be
made. The lowest-order approximation for D(t) is given
by neglecting all in the right-hand side of it:

D(t) =D'(t) = f StU»dt' (18)

which, via (16) and (18), leads to the results of the pertur-
bation theory.

It is obvious that those
I
ck

I
are not necessarily within

unity and often exceed it. From the definition of D(t) it is
understood that what guarantees unitarity is 6, which sug-
gests that adequate choice of 5 is of primary importance
in this theory. The next-order approximation is based on
the use of the first-order complex phase and the corre-
sponding D'(t):

D'(t)= f S"U2(exp i f 5 dt—" dt
r

Let us examine the unitarity of the probability. Rewrit-
ing (10) as D2(oo)= f StUz(e "dt
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which improves the probability much better. The impor-
tant conclusion of this section is that if the solution of the
(N —1)-state system is available we can solve the N-state
problem approximately. atom A vt

III. APPLICATION TO THE LASER-INDUCED
TRANSITION PROCESS: Sr(5p5s 'I")+ Ca(4s 'S )+fico

Sr(5s 'S)+ Ca(4p 'S)

We apply the theory developed in the preceding section
to the title process. Since Harris and Lidow attempted to
make the first observation of a laser-stimulated energy
transfer of this process, some theoretical works for it have
been published. All of the methods, however, are based on
the perturbation theory. Harris and White started with a
three-state problem and reduced it into a two-state prob-
lem and then solved the coupled equation numerically.
Geltman derived the formula of the cross section by use
of the second perturbation theory. Knight also used the
perturbation theory and solved the coupled equation under
the assumption that the matrix element is slowly varying
compared with the energy difference and derived the for-
mula of the cross section.

What is common to all the formulas derived theoreti-
cally so far is that the probability diverges at a small irn-

pact parameter limit (linear trajectory has been assumed),
because the dipole-dipole interaction has a singularity at
zero nuclear distance. This difficulty is inevitable so long
as the perturbation theory is used.

In this section we will show that our theory can avoid
the difficulty and our formulas of the probability and
cross section work well. As our theoretical model of the
process is taken from Harris and co-worker we do not re-

peat their explanation except when it is necessary.
The system is simplified to have three pertinent states

and the wave function is expanded in a set of product
eigenfunctions of infinitely separated atoms:

n=l

wh«e~. =E.~& Ifi&=1~2& lb'& I»&= Ii& I»&
If3&= l&i& lb3&, and the states a„& lb. &»d en«gy

E„are illustrated in Fig. 1. The interaction Hamiltonian
1s

atOfYl B
FIG. 2. Coordinate of the system. Straight line is assumed

for the trajectory of atom A. Primed coordinate system is space
fixed and unprimed one is body fixed. They are related to each
other by the angle 0.

H = ( Yz —Yjt )eE cos(cot )

+(e lR )(XgXg+ Fg Ytt —2ZqZit), (23)

c) 0 u)2 0
d
dt

c2 =l u2$ 0 u23

0 u32 0C3

C)

C2 )

C3

where

A) B)
2p p —i acctu~2= 3 e, u2j =u &2~3'

'E ei(itt0+st0)t + t (&
I

ez
I

& )
2A

t '=&» led lb3&

and 6m is the detuning frequency.
The S matrix in this case is decided by the two-channel

solution of the states
I f2 ) and

I f3 ) as

S22 —S32

where E cos(tot) is the laser field with frequency to, R is
the relative nuclear distance, and the coordinates are
shown in Fig. 2.

Linear trajectory is assumed for R: R =(p +v t )'~,
where p is an impact parameter and v is relative velocity.
The coupled equations are

where

~32 ~22

iPt/2
[(a—13)e' '~ +(a+P)e ' '~ j,

26K

(25)

S32= e it3tl2 etatl2 e ia—tl2)—
uA

'
w«h a =P~~+ &~)'+ 4

I
&23

I

'1'"»d P= ~~+ 5~
Recalling the definition of U„ in (3), we have the ma-

trix elements of the case:

at)
FIG. 1. Schematic diagram of colliding atom 2 and B.

U2i =
u2(

0 Ui2 = U2I) U22 =
0 u23

u32 0 (26)
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As the dipole-dipole interaction
~
u)2

~

has a maximum at
t =0, the transition is expected mostly in the narrow re-
gion centered by the point and therefore formula (21) is

I

applicable now.
The expression of D (ao) is derived by substituting

(24)—(26) into (21):

r

A1 B1 (a P)eiP(am —a —&»)x/2v+( +P) iP(dcu+a —&»)x/2v

D (oo)=
2 (1+x ) eP P „, -(ipse. )a~0~ a e

3auirip 2E (eip(i)»1+a Sc—»)x/2» e ip—(1)m a—&—»)x/2v)

(27)

It follows from (19) and (24) that

A1 B1 2 () g»' i i) co&d& . A1 B1

5 (0)= ——— d = — —(1,0)D (0) .
3i)22p3 — R ' V Mp3

(28)

The necessary parameters are

~4( 'p ')'
3A' hm

=4.2~ 10' cm-'A', (E 2)2

411 567
=5.5&&10 ' cm '(P/A) W/cm, P/A=5&&10 W/cm (29)

The quantities D ( ae ) and D (0) are therefore
T

2p p
(a —P)ZK((Z)+ (a+P)Z'Kt (Z')

E" [ZZ, (Z) —ZVC, (Z )]

(30)

B)
Do(()) 'P P

~3uairip2

1+0 1+6
Ep '/1)2'& Ep, '/A&
1+0',

'
1+0,' '

+ —,D (oo),

where K) is the modified Bessel function,

0(—— (b co —a —5o) ), Q2 —— (Aco+ a —5o) ),P
2U 2U

Z =0,— 5B(0), Z'=02 — 5B(0),P o

U U

and we have used the approximation

f sin(Ax ) d
A

o (1+ 2)3/2 I+A2

the validity of which is understood in Fig. 3.
In this model it holds that

a —P (Ep ')
a 2a

(31)

(32)

It follows thereby from (21) that

A) B) B2

D'((g) ) = —
2 2 ZE((Z)

3uai)i p

X, t (o)]DO(0)n

with

35cuA' p

(35)

and except a very small impact parameter p,' the frequency
Q2 is so large that LI2E2(02), which decreases exponential-
ly with 02, becomes negligible to lead to

p")p'1Ep'2 0
D (ao )=— ZIC((Z)

3auh' p
(33)

Al Bl
D (0)=—,0 + —,

'
D()( a1 ),

3ap'@ o.
where we have used

«+P)&z 2u

1+0,' p

0.01

t00)00.01 O. t

A

FIG. 3. Value of f(A)= {1+x ) '/2sin(Ax)dx as the
0

function of parameter A. Solid line is the approximation
3 /(1+2 ) and broken line is the exact value.
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From (21) and (35) we have

A) 8) 82

[D'(oo)] D'(oo)= Z E&(z)exp
v 3 Aco ufi p

A) 8) 82" ", ",n,z, (n, )
~3uA' ha)p

2

(36)

The transition probability
~
c2

~

is calculated from (17) and (25) and is given by
00 00

~c2(~) ~'= S»(~)f u»S»exp i —f 5 dt' dt+S»(~) U»S»exp i —5'dt' dt (37)

g/5
4( 1 1)2

3A hcoU

(Ep ')'
4A Aco

x f z'"sc', (z)dz

=0.87
3A' Ace

3/5
(EP, ') -sn
4' Aa)

(40)

which is the same formula given by Harris and co-worker

if the factor of 0.87 is replaced with their 5.9.

IV. DISCUSSION

We have developed the theory to give approximate solu-
tion of the ¹tate coupled equation by the S matrix of
N —1 states and applied it to the three-state problem of
the laser-induced transition process. We wish to view how
the theory works in the discussion of the calculation.

Several authors presented formulas of this laser-induced
process which is reduced to three-state model though
Harris and Lidow considered five levels. Knight's work is
based on the second perturbation theory and shows the
divergence of probability with decreasing impact parame-
ter. Therefore, he introduced a cutoff" procedure to cov-
er it. This cutoff procedure introduced artificially by
physical insight has strong influence over the results,
namely the transition probability and cross section are
strongly dependent on the size of the boundary impact pa-
rameter. However, the divergence difficulty should be re-
moved in the theory so long as the physical model is
reasonable. While conventional perturbation theory does

By the same reason discussed to derive (33) the first
term of (37) is extremely small and should be neglected.
The second term is also negligible because it is the order
of

~

Q $29 23 ~

which is far smaller than [D '( oo )] D '( oo ) in
this model.

When the probability is small enough as it is now the
exponential function of (35) is replaced by unity and there-
fore the final probability is simplified as

2
A) 8) 82

i
cp(oo)

i
=

2 2
Z Ef(Z), (38)

3b,a)fi up

where we have used the second equation of (13) and the
discussion that

~

c2( oo )
~

is negligible.
The total cross section 0. is given by

0.=2~f p~cq ~'dp. (39)

When the detuning frequency is zero we can simplify
more:

not work, the present theory has broken through it by the
complex phase method.

What our theory insists is that the complex phase in the
integrand of D(t) suppress the divergence of interaction
without fail by rapidly changing the real phase

exp
'P f' S,dt'

and decreasing the imaginary phase

exp +f
U

—00

-5
10
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10

10
10 (A) 20 30

FIG. 4. Transition probability vs impact parameter.

Harris and White s theory is based on the intuitive ab-
breviation that intermediate state

~ f2) is sufficiently
small throughout the process and deformed the three-state
coupled equation into that of two states. Although the ef-
fects of the intermediate state are partly included in their
theory an inconsistency occurs, namely the unitarity holds
only between the first and third state, which causes a
larger transition probability.

Figure 4 is the transition probability versus impact pa-
rameter in the case of 5co =0 and is about ~p smaller than
theirs, though both curves behave similarly and have the
maxima at the same impact parameter.

Let us see the behavior of the probability I' as the func-
tion of p. The upper limit of P is known from (36) and
(38) by

T

A] Bj 82
s

~3A bcoup p

which is smaller than theirs by about ~p The total cross
section versus detuning frequency is shown in Fig. 5. The
difference of the total cross section is, of course, due to
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that of the probability, i.e., the present result is a factor of
nearly —,', smaller. The cross section increases linearly
with the strength of laser field when the transition is small
but may saturate and decrease again beyond a certain
strength, because of the exponential function in the defini-
tion of D'( Oo ). Our formula (40) is surprisingly the same
with theirs except it is a factor 1/6. 8 smaller.

This model is unsuitable to the LZS formula because it
requires a narrow transition region near the energy cross-
ing point as well as enough separation between other tran-
sition regions. As all the energy separations have no zero
point and the matrix element

~
u23

~

is assumed constant
in the entire region no transition region can be defined at
least between the second and third states. Therefore, there
is no room for the LZS formula in this process.

1.0

0.5

I I I I I

-40 -20 0 2Q 4Q

db (cm )

FIG. S. Dependence of the total cross section on the detuning
laser frequency (wave number).
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