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The resonant charge-transfer reaction of protons on highly excited hydrogen atoms is considered

by taking into account both the tunneling (under-barrier) and the over-barrier (classically allowed)
electron transitions. It is demonstrated that in a wide range of variation of the reduced ve-

locity v =vn, the classical transition mechanism is predominant. Cross-section calculations for prin-

cipal quantum numbers n between 10 and 50 are presented. The results for 45(n &50 are corn-

pared with the available experimental data and with other theoretical calculations.

I. INTRODUCTION

Electron transfer collisions between ions and highly ex-
cited (Rydberg) atoms have attracted considerable atten-
tion in recent years. ' In addition to contributing to our
basic understanding of electron transfer reactions, these
processes are important in the study of fusion plasmas, in
laser physics, and in various astrophysical situations. Of
particular importance in this context is the simplest reac-
tion of this class,

H++H(n)~H(n)+H+, n &&1,

where n is the principal quantum number of the excited
hydrogen atom. The resonant electron transfer reaction
(1.1) has already been extensively studied theoretically, us-

ing various approximations. For high values of the re-
duced velocity (atomic units will be used throughout, un-

less otherwise explicitly stated) u =u/u„=nu (u is the rela-
tive collision velocity and u„= 1/n is the classical velocity
of the Rydberg electron), cross-section calculations for the
reaction (1.1) have been performed by using the first Born
and Brinkman-Kramers approximations, ' as well as the
classical-trajectory Monte Carlo (CTMC) method. ' It
is worthwhile noting that using a generalized correspon-
dence principle, ' the cross section of reaction (1.1) in this
velocity region can be obtained by scaling the cross section
of the corresponding ground state (n = 1) reaction. In the
low-velocity region (u &1), the reaction (1.1) has been
studied for various values of n by employing two-state
close-coupling models. " ' In this velocity region, classi-
cal mechanics can also be used to describe the electron
transfer process is —i7 The latter possibility is based on
the fact that for internuclear distances R, smaller than the
distance Ro at which the electron binding energy becomes
equal to the top of the potential barrier, the electronic
motion takes place in a common potential well (over-

ci= 2~Ho=1 (1.3)

The only experimental information on the process (1.1)
(for n »1) is contained in the merged-beam-measured
electron-loss (electron-capture and ionization) cross sec-
tion of Koch and Hayfield, ' performed for the band
44&n &50, and in the range 0.26&U &3.3. In the region
U &1, the main contribution to the electron-loss process
comes from the capture mechanism, and theoretical
electron-capture cross sections can in this region be com-
pared directly with the data. We note, however, that the
experimental electron-loss data are uncertain to a factor of
2.' The two-state quantum calculations of Toshima' are
a factor of 5 too low from the data (for a nominal value of
n=47), while those based on the Rapp-Francis two-state
model" are more than an order of magnitude too small. '

The CTMC method also significantly underestimates the
cross section (a factor of 3.65 at u =1). The classical elec-
tron transfer model, based on the over-barrier electron
transitions, when modified to account for the velocity
dependence of the process, ' predicts results that are con-
sistent with the experimental data. This model, however,
does not account for the under-barrier (tunneling) electron
transitions, which at low velocities may also contribute to
the electron capture.

In the present paper we shall study reaction (1.1) in the
region v «1, by taking into account both over- and
under-barrier electron transitions. Attempts to account
for the under-barrier ones have been made earlier by Bates
and Reid' for n & 5. After formulating the electron

barrier transitions). The critical distance Ro can be shown

to be given by'

Ro —6n'[ I+0 ( I /n) ]

which yields an upper limit for the classical electron-

capture cross section
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II. TRANSITION PROBABILITY AND CROSS SECTION
IN THE ADIABATIC APPROXIMATION

In the low-velocity (v « 1) region the adiabatic electron
states of the system H++ H are determined from the
Schrodinger equation

T

——V' — — P(r, R)=E(R)g(r, R),
2 l') P2

(2.1)

where the internuclear distance R is held fixed, and the
position vectors r i, rq, r, and R are defined in Fig. 1. In
the semiclassical description of the collision problem, the
nuclear motion is described by the function R=R(t), for
which we shall adopt the straight-line trajectory approxi-
mation

R(t) =b+ v t, b.v =0,

transfer problem in reaction (1.1) within the adiabatic ap-
proximation (Sec. II), we shall derive the classical (over-
barrier) electron transition probability (Sec. III), and per-
form cross-section calculations for a number of typical
values of n between n = 10 and 50 (Sec. IV). The results of
the calculations are compared with the low-velocity
electron-loss data of Koch and Hayfield, ' and with other
theoretical calculations. In Sec. V we give some conclud-
ing remarks.

where b is the impact parameter. We assume that in the
initial state (r~—ao ) the electron is bound on the proton
"2." If P= P—(b, t) is the electron transfer probability at a
given internuclear distance R (t), the electron-capture
cross section is

a=2~ I P(b, r=+~)bdb. (2.3)

With respect to the critical internuclear distance Ro 6n,
defined in Sec. I, one can distinguish between two types of
trajectories. For trajectories with b ~RO, the electron-
capture process can occur only via tunneling (under-
barrier) transitions. On the other hand, the trajectories
with 5 &Ro contain two essentially different parts (see
Fig. 1): for R &Ro [or

~

t
~

&to, with to&0 defined by
Rp =R (ro ) ] again only under-barrier transitions determine
the electron-capture process, while for R &Ro (

~

t
~

&to)
the process is dominated by over-barrier (classically al-
lowed) transitions.

Let us first consider the region R &Ra. As is well
known, due to the invariance of the electronic Hamiltoni-
an with respect to interchange of the positions of protons
"1"and "2," the electronic states are classified as gerade
(even parity) or ungerade (odd parity). The energies of a
gerade and an ungerade state, which at infinite internu-
clear separations are degenerate, in the asymptotic region
of large R can be expressed in analytical form' '

, (n iii ii2, m;R)=E(„„„)(R)+

[n, n/, n2, nl](R)

1 4
urn' ii (n —&)ATE& „(n,ni, n2, m;R) =

2

2pg2 R 2R2 2R3
(6b,'—n'+ 1)+ 0 (R

—'),
t' in —S

R" aexp[ —(R/n) —b, ][1+0(R ')+O(1/(n —5))],

(2.4)

(2.5)

(2.6)

where A=n
~
—n2, n =n ~+n2+m +1, and n]„n2, and m

are the parabolic quantum numbers of the electron bound
to one of the protons.

It is important to note that in the region R & Ro, ihe en-
ergies Ez„(R) do not intersect each other. Indeed, the
closest levels E(„„,„,~)(R) are those having the same

values of n and 6, but different values of m. The energy
difference between these levels is given by'

9n (m2-m' )(n——b, )/16R, where m =n —
~

b,
~

—1,
n —

~

5
~

—3, . . . , 0 (or 1). For the nearest m sublevels,
this difference becomes

9pi3(yg Q) 1, n —
~

5
~

=2k+1
4R4 2, n —

~

b
~

=2k+2 (2.7)

where k =0, 1,2, . . . . Hence the electronic energies (2.4)
will not intersect each other provided EEL „/5E & 1. This
ratio depends on the value of b.. For 5=n —1 (the max-
imum value of b, ), b,Ez „/5E is exponentially small for all

& R 0. For b, = (n —1 ) —(the minimum value of 6 ),
b,Ez „/5E & 1 for R & 1.02R0 (n & 40). Thus in nearly the
entire region R &Ro, one can use a two-state approxima-
tion in describing the electron transfer process, provided n
is sufficiently large. The smallness of the ratio b,Es „/5E
in this region also justifies the use of the straight-line tra-
jectory approximation for describing the nuclear motion.

In the two-state approximation, the total electron wave
function may be represented as

+(r, r)=C (b, r)g (r, r)+C+(b, r)g+(r, r),
where

(2.g)

FIG. 1. Geometry of the collision problem.

(2.9)

and gz „are the eigenfunctions of the gerade and ungerade
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states, corresponding to the electronic energies E „. The
functions fz„and g+ have the following asymptotic
forms:

dP(b, t) = W(R)[1 P—(b, t)]—W(R)P(b, t), (2.15)

2 '"[41(ri)+A(r2)] as R

~P, 2(r12) as R~ ao,

(2.10)

where $1(ri} and 1I)2(r2) are the atomic wave functions
%vhen the electron is bound on proton l and 2, respec-
tively. Assuming that as t~ —Oc the electron is bound
on proton "2," the initial conditions for the expansion
coefficients C+(b, t} in Eq. (2.8) are

C (b, t= —~)=l, C+(b, t= —~)=0. (2.12)

The electron transfer probability for a given impact pa-
rameter b and at time t is now given by '

P(b, t) =
I
C+(b, t)

I

2

=sin —, Eg „R t' t' (2.13)

For impact parameters b ~80, we have R ~ Ro along the
entire trajectory and the electron capture probability (at
t~+ ao) is

r

P(b, t =+ ao)=sin —,
' f b,Eg „dt (2.14)

Let us now examine a trajectory for which b &Ro. In
the region R & Ro, t & to, the electron transfer probability
is still expressed in the form (2.13}, but for R &Ro
(

I
t

I
& to), the two-state approximation is no inore valid.

In the latter case, we shall use a classical description for
the electron transfer process. Let W(R) be the electron
transition probability per unit time at a given distance R.
The electron transfer probability for a given impact pa-
rameter satisfies the equation

for which the initial condition P(b, —to) is given by Eq.
(2.13) with t = —to .In Eq. (2.15) only the elastic and
resonant electron transfer channels are taken into account.
This can be justified only for sufficiently small values of
reduced velocity U, when the resonant selectivity of the
electron transfer process is well pronounced and other
nonelastic transition processes are adiabatically improb-
able. The solution of Eq. (2.15) for t & tz is given by

P(b, t) = 1 ——[1—2P(b, —t, )]1

2.
&( exp —2 f W(R)dt'—fo

When the proton "1"enters the region R & Ro (t )to), we
do not know the quantum-mechanical state of the system,
but only the electron transfer probability P(b, to), given by
Eq. (2.16) with t = to. We therefore represent the state of
the system at t =to as a weighted superposition

(2.17)

in which g+ and it/ are taken to have the same phases.
The electron capture probability for t = + ao is then

P(b, t=+ao)= lim
I {g+(r,t) I

U(t, to)%(r, to)}
I

(2.18)

where U(t, to) is the adiabatic evolution operator, with

U(t, to)gs „(to)=exp i f Eg g(R)dt' —Ps „(to) . (2.19)

The calculations in Eq. (2.18) give (b & Ro)

P(b, t =+ ao )= —,
'

1 —[1—2P(b, to)]cos f, EEs „(R)dt

+ IP(b, to)[1—P(b, t11)]I'/2sin f bEs „(R)dt, (b &Ro) . (2.20)

Upon changing the variables from t to R, the electron-
capture probabilities (2.20) and (2.14) for a given impact
parameter b, respectively, become

For b-+Ra, the probabilities P «(b, u) and P ~(b, u) become
equal. By inserting (2.21) and (2.22) into Eq. (2.3), one ob-
tains the dectron-capture cross section in the form

P «(b, v) = —,
' (1—cos a «expP)

+ —,
' [1—cos2a«exp{2P)]'/ sina«, b &Ro

(2.21)

o=(o«+o ~)oo, (2.25)

(2.26)

«P {ub)= i sna~, b )Ro
where

{2.22)
o «=1—

2 f I CD —[(1—C}(1—CD )]' ]bdb,

~ b,Es „(R)RdR

(R 2 b2)1/2

EEs g(R)R dR
b (R 2 b2)1/2

4 t-"o W(R)R dR
(R2 b2)1/2

(2.23)

(2.24)

and the quantities S, C, and D are given by

S=sin a~, C =cos a«, D =exp(P) .

(2.27)

(2.28)

(2.29)
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In order to perform cross-section calculations using the
above formulas, one needs to determine first the transition
probability per unit time, 8'(R). This will be done in the
next section.

III. OVER-BARRIER ELECTRON TRANSITION
PROBAMLITY PER UNIT TIME

ER' 2Rg —A

g —1

1/2
p

{$2 1 )2
(3.5a)

Our method for determining the probability (per unit
time) of the over-barrier electron transitions is similar to
the one used by Grozdanov, but includes also some
quasiclassical arguments. The motion of the electron in
the classically allowed region E. ~80 can be described in
terms of the spatial probability density f (r, t) which satis-
fies the continuity equation

where H is the classical Hamiltonian of the electron whose
momentum is p= V'S. In the adiabatic approximation, H
does not depend explicitly on time (R is treated as a pa-
rameter), and therefore the variables in Eq. (3.2) can be
separated in the confocal elliptic coordinates

g=(r, +r, )/&, q=(r, r, )/&, /=are—tan(y/x),

1&/» ~, —1&q&1, 0&$&2vr.
(3.3)

The solution of Eq. (3.2) can then be obtained in the
form 24

S= Et+pal+ f pg(—g')dP+ f,p„(ri')dg', (3.4)

Bt
+V' (fVS)=-0,

where S(r, t) is the Hamilton principal function. This
function is the solution of the Hamilton-Jacobi equation

S +H=O, H= p
t ' 2

(3.5c)

and E and A are the electron energy and the sepaI'ation
constant, respectively, In the quasiclassical approxima-
tion the quantities E, A, and p in Eqs. (3.4) and (3.5) have
to be expressed by their quantum-mechanical values, so
that p, =+m and

(3.6a)

A=- A+0(1) .
n

(3.6b)

The representation of E and A by the first terms of
their asymptotic series is sufficient since, as will be seen
later, the main contribution to the electron transition
probability comes from the region of large R. We also
note that, like in the quantum case, the flux of the tran-
sient particles with p=m =0 is predominant. Having
this in mind, and the fact that in the over-barrier region
the electronic motion is allowed in the entire range of g,
the quasiclassical wave function g-exp(iS) can be written
in the form

r r

g=f'~ exp( —iEt)sin f pgdg' exp i f pz—dpi' —exp +i f pvdg'

(3.7)

where the arguments of p~ and pz have been omitted. For the case m =0, the particular solution of Eq. (3.1) is

8f=
S g(k' 1 ~u„(1 n')— —

with 8 being the normalization constant. From the condition
~ ~ g ~ ~

= 1 one finds

(3.g)

d (~ — )f dg f 2 z
sin f @~de' sin f pvdri'—' pg(g —1)p„(1—q~)

(3.9)

where g& is the turning point, pg(g'&) =0, for the electron
motion along the g' direction, given by

2 2
'1/2

(3.10)

In this expression~ one can agaIn use the asymptotIc ex-
pansions (3.6) and (3.7) for E and A, respectively, since the

I

region of small R is reached for small values of b, which
do not contribute significantly to the cross section.

The probability per unit time for the over-barrier elec-
tron transitions from the field of proton "2" (ri=+I)
into the field of proton "1"(ri =—1) is given by

8'= j dS j =Re (3.11)
X
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where P& is defined by Eq. (3.7), X is a plane defined by

ri =0, and dS is oriented along the negative rI axis. The
calculations give the following result

W=nBR f sin f p~dg' (3.12)

where 8 is given by Eq. (3.9). For the highly excited
states considered here, the sine functions which appear in
Eqs. (3.9) and (3.12) oscillate very rapidly and can be re-
placed by their mean values. The transition probability
per unit time then becomes

RG U

(4.3)

The critical impact parameter b' can be evaluated from
the condition a ~ (b', u) = 1/e =0.3679, which for the
quantity x =6*—Ro gives

such that for b & b*, a~(b, u) is large, so that S=sin a~
in Eq. (2.28) can be replaced by its mean value, and for
b & b S=(a~ ), the reduced cross section o ~ can be ob-
tained in the form

W(R)= ', f '

R ' pg(g —1)

0 for a~(Ro, u) &1/e
X

n[lna~(Ro, u)+1] for a~(Ro, v) &1/e .
(4 4)

x (g —q )dq
-' pg(k' —l)p, ( I —n')

(3.13)

IV. CROSS-SECTION CALCULATIONS

Before presenting the results of cross-section calcula-
tions for the reaction (1.1), let us first examine the relative
importance of the reduced cross sections o ~(b &Ro) and
o ~(b &Ro) at various collision energies and for various
values of the principal quantum number n. Using the fact
that for small values of the collision velocity, the function
a ~ (b, u) is large in the region of b -Ro (b &Ra), and that
AEe „(R) exponentially decreases with R, one can make
an analytical evaluation of o ~. For a given n, the main
contribution to the reduced cross section cr ~ comes from
the Stark state n~ ——O, n2 n —l, m——=0, for which the elec-
tron exchange interaction EEe „(R) is maximum [see Eq.
(2.6)]. In that case

An analytical evaluation of the reduced cross section
0. is not possible and it has to be calculated numerically.
For collision energies (in the center-of-mass system)
E, ~ =0.01, 0.1, 1, and 10 eV, and for n = 10, 20, 30, 40,
and 50, the values of the reduced cross sections 0 ~ and
o ~ are given in Table I. It can be seen from this table
that in the considered range of E, and n, the contribu-
tion of the under-barrier transitions from the region
b &Ro to the electron transfer cross section is negligibly
small. However, it should be noted that the role of these
transitions increases rapidly with decreasing collision en-

ergy and n.
In the region b & Ro both tunneling (R & Ro) and over-

barrier (R &Ro) transitions contribute to the electron
transfer process. In order to examine the relative role of
these two types of transitions, we shall analyze the proba-
bility P (b, u) given by Eq. (2.21), [using the notation of
(2.29)] by

E „(R)=g(n)R&" ~e

2n —1 (4.1)
P ~(b, v) = —,

' (1 CD)+ —,
' [(1—C)—(1 CD )]'~ —(4.5)

A(n)=
mn

3 (2n —1)n
e (2n —1)n as a function of the reduced variable

(4.6)
and evaluating the integral (2.23) for a~(b, u) asymptoti-
cally, one obtains

'
j./2

(b, v)= — b,Ee „(b) .1 +nb
U

Defining, further, an impact parameter b =Ro+x

The combinations (1—C) and (1 D) are conne—cted
with the tunneling and over-barrier transitions. For the
value of n =47 and for energies E, =0.01, 0.1, 1, and 10
eV, the behavior of C and D as a function of b is shown in
Fig. 2. We see from this figure that for small values of b

(b-RO), D —1 and, with decreasing the energy the elec-

TABLE I. Values of the reduced cross sections 0 and o for various energies and principal quan-
tum numbers. (The numbers in parentheses indicate powers of ten. )

E,. (ev)

0.01

0.1

10

n=10

2.61( —1)
1.00
1.67( —1)
9.98( —1)
9.65( —2)
9.96( —1)
4.28( —2)
9.19(—1)

n =20

7.22( —2)
1.00
4.18( —2)
9.98( —1)
1.70( —2)
9.53( —1)
1.06( —3)
8.16(—1)

n =30

5.13(—2)
1.00
1.45( —2)
9.85( —1)
1.15(—3)
9.18(—1)
1.15(—4)
7.15(—1)

n =40

1.51(—2)
9.97( —1)
3.72( —3}
9.73( —1)
1.99( —4)
8.87( —1)
1.99( —5)
6.74( —1)

n=50

6.92( —3)
9.94( —1)
4.46( —4)
9.63( —1)
4.46( —5)
8.57( —1)
4.46( —6)
6.20( —1)
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However, in the considered range of n and u the under-
barrier transitions are expected to give a negligible contri-
bution to the process, and this approximation can be used
as a qualitative demonstration for that fact. For the low-

lying excited states, the under-barrier transitions play a
much more important role and they may "shield" the
over-barrier transition mechanism. The probability (per
unit time) of the over-barrier transitions has been deter-
mined by using the quasiclassical approximation. As a
consequence of this is the fact that the n scaling of the
electron-capture cross section is observed only for states
with n & 30.
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