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Total and ionization cross sections in a simplified model of electron-hydrogen scattering
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The total cross section (inclusive of all scattering) is calculated as a function of energy for a sim-
plified model of electron-hydrogen scattering in which all terms involving nonzero angular momenta
are neglected. Only the S state is considered. The two-body Schrodinger equation is integrated nu-

merically, and the optical theorem is used to determine the total cross section. The results agree
rather well with those obtained from a pseudostate expansion. High and low bounds are given for
the ionization cross section, and these are compared with estimates of ionization obtained from a
pseudostate expansion.

I. INTRODUCTION

We consider in this paper a simplified model of
electron-hydrogen scattering in which the actual Coulomb
interaction between electrons, e /

~

r
&

—r z ~, is replaced
by the leading term in a multipole expansion of this quan-
tity, e /r& (where r& is the greater of r~ and r2). This
model ignores much of the essential physics of the real
hydrogen atom, i.n particular, the degeneracy of the states
of the same n but different I. All angular dependence of
the wave function is suppressed. However, there still are
an infinite number of discrete bound states and an ioniza-
tion continuum. We believe that the model retains
enough complexity to be both interesting in its own right,
and useful as a test case in which calculational methods
intended to be applied to more realistic problems can be
tested. Our calculation here will concern the 'S state of
the two-electron system. This state is interesting in that
the short-range correlation between the two electrons is
extremely important. No angular momentum barrier is
present. Also, essentially exact results are available for
some scattering processes from other authors (see below).
Our technique could be readily adapted to the S state, but
here the Pauli principle prevents the close approach of
two electrons, and the scattering is predominately elastic.

The study of this model was initiated by Temkin
et a/. ' The two-body Schrodinger equation for this
model is simply a partial differential equation in the two
radial variables r1 and r2. Temkin et al. attempted to
solve this equation directly, by expansion in a complete set
of elementary solutions. We use a related procedure here,
although our numerical methods are very different in de-
tail. Burke and Mitchell" studied the application of a
pseudostate basis in a dose-coupling calculation of
bound-state excitation, and uncovered complications due
to pseudoresonances. We have recently shown that it is
possible to obtain rather good results for excitation cross
sections by averaging over pseudoresonances.

This model has also been studied by Poet who has
obtained essentially exact results for the cross sections for
elastic scattering and for the excitation of the 2s state up
to an incident energy of 3 Ry. We are concerned here
with the extension of Poet's methods to calculate the total

cross section for all scattering processes and the ionization
cross section. We shall compare our results for these
quantities with corresponding results obtained from
several pseudostate expansions.

II. COMPUTATIONAL METHODS

The symmetry of the two-electron-configuration space
implies that we can restrict our attention to the open tri-
angle r2 (r1. The two-body Schrodinger equation has the
form given below within this triangle (see Fig. 1)

, q(r„r, )+,q(r„r, )
BT1 Br2

in which E is the total energy. Atomic units with ener-
gies in rydbergs are used, and the quantity we denote by P
is actually r, r2 times the wave function. Equation (1) is
separable, but the problem is saved from triviality by the
fact that the boundary conditions on the line r, =r2 are
not separable. They are

g(r, r) =0 (triplet),

when r~ ——rz (singlet) .
8 df

Iz

We shall solve the differential equation using an effi-
cient algorithm due to Poet. Only the essential features
of this procedure will be discussed here. For further de-
tails consult Refs. 7 and 9.

Suppose that we consider a square grid of points denot-
ed (ij ) (where i refers to r, and j to r2). A (nonsquare)
matrix Dj j ls introduced which relates the wave function
at grid points on two successive vertical lines (see Fig. 1),

i+1
p(i j ) = g DJ' ' p(i + l,j ') . (3)

j'=1

The matrix D" can be calculated by a straightforward
procedure described in Ref. 7. The advantage of working
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bound-state scattering by
' I/2

FIG. 1. Configul'ation space for the two-electron system.

with D ' is that the most time consuming step in its com-

putation is the inversion of a related matrix of order

(i Xi), a process which must be repeated for each value of
i Th.is gives a time of order of (i) to obtain D ', starting
from the origin, whereas many other noniterative ap-

proacllcs woUld lcqUllc tllllcs of t11c order ( I') .
Thc IDost serious problcID cIlcountclcd 18 to cxtI'act

scattering information once D" has been determined for
the largest value of i considered. To do this, we expand
Iig(r l, rz) in terms of a complete set of elementary solutions
of Eq. (1). These solutions have the form

uk q(rl, ri )=e f(q, ri ), (4)

where f is a Coulomb wave function. Although the uk q

satisfy the differential equation (1) exactly, they do not in-

dividually obey the boundary conditions. The complete
solution must be represented as a linear combination of
these functions. As both bound and continuum solutions
IUUst bc considered, lc't lls Iiotc tlM followlllg collvclltiolls:

(5a)

For bound states of the hydrogen atom, set

(5b)

where n is an integer. Then f is a bound (normalized) hy-

drogen wave function.
In the case of continuum states, f is a continuum hy-

drogenic function of wave vector q. However, we must
note that if q & E, we should set k =i ~ We hav. e in such
cases Rll cxpoilclltlally dccRylllg fullc'tloll Rloiig tllc r I

axis. FurthcrIIlorc, %c &ill dlst1ngulsh the channel coIl-
taining the incident wave by an index a; thus k is the
wave vector of the incident electron. q, = —1/n, is the
energy of the hydrogen atom in that state, and f is the
corrcspondlng wave funct1on. Then %vc have

*

P( r l, r2) =e ' 'f, (r2)+ g c,uk, ,(ri, r2) . (6)

The notation g includes both a sum over bound states

and an integral over the continuum; the latter includes the
close continuum channels. The numerical calculation of
the matrix D [Eq. (3)] gives us, in effect, properly sym-
metrized P(r&, r2) on a grid. Our problem is to determine
tllc cocfflclcllts

cjoy y which coIltaill tllc scat'tcrlllg Informa
tion. These are related to the elements of the S matrix for

In principle, the problem of determining the cj, is quite
straightforward. It is necessary to substitute (6) into (3),
from which one obtains a relation between the cj„ the
matrix D, and the functions u evaluated at the grid
po1nts. Actually, thc s1tuatlon 1s cxtlcIIlcly complicated,
and in fact the principal difficulty of this calculation is
the extraction of the S-matrix elements.

The basis of the problem is that Eq. (6) involves an ex-
pansion with an infinite number of terms (including an in-
tegration over a continuum), whereas D is a finite matrix.
We must therefore include only a finite number of func-
tions which should be smaller than the number of points
on the line labeled ilj in Fig. 1. The coefficients c may
then bc dctcIm][ncd by a least-squares procc«IUrc as dis-
cussed in Ref. 7. Unfortunately, one frequently en-

counters severe problems of numerical stability.
In the energy range of interest to us (1—4 Ry), we in-

clude 5—8 bound states explicitly, and a number of open-
channel continuum functions varying from 7 at low in-

cident energy (1.10 Ry) to 23 at 4 Ry. The fit to deter-
mine the coefficients was performed generally at r 1

——40,
using a grid spacing of 0.2. These parameters were
chosen on the basis of the following considerations: As is

dlscusscd below', wc cstlIDRtc 'thc ionization CI'oss scctlon
by subtracting bound-state excitation from the total cross
section. Wc found that r, =40 was needed to obtain con-
vergence for the 3s excitation cross section. The grid
spacing of 0.2 seemed to be needed to obtain stable results
from the least-squares-fitting process. The most time-
consuming process is the calculation of D; with these pa-
rameters, approximately 43 min of CPU (central process-
illg Unit) tlIIic oil Rll' IBM 3033 colllplltcl' wcl'c rcqu1rcd
for each energy.

There remains a difficulty that while the Coulomb
functions f are mutually orthogonal on the infinite inter-

val, tllcy Rlc llot 011 tlM flllltc llltclval 0(rp (ri. Tllis Rp-

pears to be the principal source of the numerical problems
cncountcI'cd. %c have cxpcriIDcnted with scvcI'al methods
of obtaining stable results; including expansion of the
coefficients cj, in terms of I.egendre polynomials which
depend on energy as discussed in Ref. 7. However, the
most satisfactory results, in our opinion, were obtained by
enforcing orthogonality. The function f(q, r) actually
used in the fit are made into an orthogonal set by the
Schmidt process. For r] -30, the 1s, 2s, and 3s bound-
state functions are hardly modified. But higher bound-
state and continuum functions are significantly changed.
The coefficients cj, for these functions then lose physical
SlglllficRllcC.

%C do obtain reliable results foI' the cross section for
elastic scattering and for the excitation of the Zs and 3s
states. The total cross section is obtained using the opti-
cal thcoI'cID froID thc I'cal part of SI1.

Io, = [1—Re(SI I )] .
2k



Our data indicate that S» is stable in phase and in magni-
tude. %c caIl thcIl QbtaiIl thc Jomzation closs scctioIl bp
subtracting from o, the sum of the elastic cross section
plus that for the excitation of the bound states

There is, of course, some uncertainty in regard to the
bound-state cross sections. Let o.121 be the sum of the
elastic cmss section and that for excitation of the 2s and
3s states. We can say with certainty that

At energies sufficiently high for the Born approximation
to be valid, the cross section for the excitation of the nth s
state varies as n (this is simply a consequence of the n

dcpcndcIlcc of tllc IlorlnRllzatloll of tllc bound-state wave
functions). Hence, in this limit

(10)

%'e can interpolate f roughly between these values us-
ing the following argument: The cross section for the ex-
citation of the nth s state from the ls state can be expect-
ed to dcpcIld QIl thc iIlcidcIlt cIlcx'gg E;, as

&n bn n

E2 E3

The first term a„ is correctly given by the Born approxi-
matiQIl. So thc correction to thc Bom value depends QIl E
as 1/E; to leading order. It follows from this that the
function f departs from the Born value by terms of the
saIIlc Order In cIlcfgf

Cf=fs E2

We know that fII 1.08, alld then using f=0.41 at E;=1,
%c dcducc

This result is dependent on the Born approximation for
validity and appears from our results to be an overesti-
mate. %c mill verite

In general, f is a function of energy, whose high-energy
limit is 1.08. We can find f at one specific energy,
k =1.00, where no ionization is possible but all bound
states can bc excited. At this cIlcI'gp, %'c usc our numeri-
cal rcsultsq

We cogjecture tllat f is a nlollotolllc functloIl of cllcrgy
ranging between 0.41 and 1.08. If tllls ls colTcct then O'I

1s bounded 11l thc I'aIlgc bct%ccIl 0'I and o~,

f=1.08—— ' —.0.67
E2

Although this estimate is quite rough because terms of or-
der 1/E; are not sufficient to give f correctly near E; =1,
it is the best we can obtain from our data. We use Eq.
(15b) to define an interpolated ionization cross section:

(16)

%c conclude this section with a remark about symmc-
trlzRtloI1. Equation (6) Is Rll exact cxpl'cssloll lf flic sUnl-

IIlation over j includes aH bound and coIltiIluum states. It
is„however, not explicitly symmetric. Interchange of rl
Rnd rp takes 0Ilc lllto R dlffcl'cIlt rcgloIl of coIlflglllatloll
space (the upper triangle in Fig. 1), and the necessary
symmetry can result only when all the (infinite number of)
terms in the formal Eq. (6) are actually included.

One will, therefore, ask whether the results are im-
proved by explicitly symmetrizing the practical form of
Eq. (6) which contains only a finite number of terms.
This is easily done by replacing uk (rl, rz) by
uk'(rl, rz)+u~(r2, rl ), in (6) and making the correspond-
Ing replacement on the first term. However, the numeri-
cal results are distinctly inferior when this is done. The

O2s

0.042
0,039
0.035
0.028
0.022
0.017
0.014
0.011
0.0077
0.0046

&Is O3s

0.328
0.281
0.244
0.193
0.157
0.131
0.114
0.103
0.087
0.065

1.M
1.10
1.21
1.44
1.70
2.00
2.25
2.50
3.00
4.00

G.&69
0.0081
0.0084
0,0071
0.0056
0.0047
0.0036
0.0029
0.0022
Q.M13

0.379
0.356
0.300
0.249
0.209
0.178
0.158
0.142
0.119
0.087

0.0032
0.0071
0.0155
0.0200
0.0219
0.0228
0.0218
0.0201
0.0143

TAHLE I. Cross sections for elastic scattenng, for excItatIon of the 2s and 3s states, and total cross
sectloIl, 811 in Umts of &Qo. TIle 1ast colQIHn oi is the lnterpo1ated iomzation CI'oss section Using Eq.
(16).
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FIG. 2. Total cross section obtained from the numerical in-

tegration of the two-dimensional Schrodinger equation is shown

as a solid line. The result obtained from a pseudostate expan-
sion is shown as a set of crosses.

reason is that one has added to Eq. (6) functions which
are not elementary solutions of Eq. (1); i.e., uk (r2, r~)
does not satisfy (1).

III. RESULTS: COMPARISON VPITH
PSEUDOSTATE CALCULATIONS

2.5—

N 02.0—
0

N0

0.5—

0.0 I

0.5 I.O I . 5 2.0 2.5 3.0 3.5 4.0
ENERGY (Ry}

FIG. 3. Bounds on the ionization cross section o.L and o.H
[defined by Eqs. (13b}and (13c}]are shown as functions of ener-

gy. The dashed line is a result obtained by the projection
method applied to a pseudostate expansion according to Eq.
(18). The solid line inside the shaded region is o.l, obtained from

Eq. (19), using Eq. (16) to estimate the higher bound-state con-

tribution.

The results of our calculations, based on solutions of
the two-particle Schrodinger equation are given in Table I.
We present there the cross sections for elastic scattering,
for excitation of the 2s and 3s states, and the total cross
section o, These quantities are believed to be stable to
about 0.001 with respect to variation of the calculational
parameters (maximum radius, grid spacing, number of
terms included).

The elastic and excitation cross sections for this model
Hamiltonian have been compared with the results of our
pseudostate calculations in Ref. 5. We report here similar
comparisons for the total cross section (ionization is dis-

cussed subsequently). The comparison is made using the
pseudostate results of Ref. 5 for Im(T» ) as averaged over
pseudothreshold structure. One comparison of this type
with the seven-state basis is shown in Fig. 2. The agree- The sum runs over open pseudostates whose excitation

cross section is o.~. It would be a better procedure to pro-
ject transition amplitudes rather than cross sections. This
approach remains to be explored. Another difficulty with
this procedure is that the pseudostate cross sections have
threshold structure, and therefore the approximate ioniza-
tion cross section according to (17) will not be a smooth
function of energy. It is therefore necessary to average
the cross section for the excitation of each pseudostate
over the threshold structure associated with higher
pseudostates. We believe that the best results are obtained
as follows. Replace Eq. (17) by

b b,p

(18)

Here o.
~ is the cross section for excitation of the bound

state b &. The prime on the first sum in Eq. (18) is in-
tended to denote that the sum includes only those bound
states which are exactly represented in the pseudostate
basis. Equation (18) is exactly equivalent to Eq. (17) if
one uses in (17) the sum of cross sections as directly com-
puted from the pseudostate expansion. We suggest, how-
ever, that it is better to use the optical theorem to relate o,

ment is excellent to graphical accuracy. Comparison of
numerical values shows that in the range of incident ener-
gies from 1 to 3 Ry, the agreement between the values of
Im(T, t) obtained from the present numerical solutions
and from the four pseudostate bases examined in Ref. 5 is
within about 2%%uo for each of the bases.

It is evident from the results presented in Table I that
elastic scattering and excitation of the 2s and 3s states ac-
count for most of the total cross section. The quantities
we believe bound the ionization crl and crH [see Eq. (13)]
are much smaller, and are therefore not given as accurate-
ly as is o, We show o.

L, and o-& in Fig. 3. The bounds
are within about 5% of each other above E; =3 Ry. Our
best estimate of the ionization cross section o.z, obtained
by using Eq. (16), is also shown. Numerical values for cri
are included in Table I.

We would like to use the present results for ionization
as a test of methods for the extraction of ionization cross
sections from those for the excitation of pseudostates. It
has been noted above that the pseudostate bases we have
used give total cross sections within about 2% of the
correct values. Roughly speaking, a 2%%uo uncertainty in
the total cross section implies for this model, about a 20%
uncertainty in the ionization cross section, provided that
the correct cross sections for the excitation of bound
states were known. This is not the usual case, and instead,
a projection technique has been employed. ' '"

In the projection method, one determines the portion of
a pseudostate wave function which pertains to the exact
bound states. The cross section for ionization is approxi-
mated by the sum of the excitation cross sections multi-

plied by the probability that a particle in the pseudostate
would be in the (exact) continuum. I.et the pseudostates
be denoted by

I p& and the bound states by
I

b&. Then
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to the imaginary part of the T» matrix element, and then
average this over resonances. So we have

Equation (19) would also be exactly equivalent to (17) ex-
cept that we use smoothed quantities on the right side.

Equation (19) can yield quite reasonable results, as we
see from Fig. 3. The ionization cross section for the
present model as obtained from Eq. (19) using the seven-
state basis described in Ref. 5 is shown there in compar-
ison with the bounds o.r and O.H. We see that o.I from
(18) is not an unreasonable estimate, but is certainly too
low at low energies, and probably somewhat too low at
high cncI'glcs. In othcI' words, thc pfo)ection tcchnlquc
tends to underestimate the ionization cross section. The
results for oI with the five-state bases discussed in Ref. 5
are generally similar. Best results for oI with the five-
state bases are obtained from the basis containing the
longest range functions.

IV. CONCLUSIONS

The total cross section has been obtained from the real
part of the S-matrix element for elastic scattering for a
model of electron-hydrogen scattering in which only the
II10110polc coIllpoIic11t of tllc clcctl 011-clcctloil iiltcl'actloil
is retained, and only the S state is considered. The calcu-
lation was performed by numerical integration of the
two-body Schrodinger equation. Bounds are obtained for
the ionization cross section under reasonable assumptions
about the behavior of the excitation cross sections for
high bound states.

The results obtained above are compared with those
found from close-coupling calculations with a pseudostate
basis. It is found that such calculations can give the total
cross section with rather good accuracy. However, the
projection method for determining ionization appears, in
an example, to glvc an undercstlIQatc.
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