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Time-dependent optical potential for the Schrodinger solution in a truncated subspace
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A time-dependent imaginary optical potential is used to approximate the Schrodinger time evolu-

tion in a necessarily truncated subspace. The flux of probability into the neglected space, for which
the ordinary unitary subspace Schrodinger solution does not account, can generally be well repro-
duced by an optical potential that is diagonal in energy and linear in time. This is demonstrated in a
number of examples including the Lipkin model, Gaussian Hamiltonians, and a schematic heavy-
ion collision model.

I. INTRODUCTION

The widespread use of the time-dependent Hartree-Fock
description of heavy-ion collisions (see, e.g., Refs. 1—3)
has motivated us to study alternative approximate solu-
tions of the ordinary time-dependent Schrodinger equation
for a complex system. Any such attempt is necessarily
faced with the problem of truncating the total Hilbert
space of the system to a subspace of sufficiently small di-
mension to make a numerical solution feasible. However,
the straightforward solution of the truncated Schrodinger
equation in the selected subspace is unphysical because the
solution will be unitary with respect to the subspace, and
does not allow for any flux of probability, mass, charge, or
energy between the limited subspace and the rest of the
Hilbert space.

A similar deficiency occurs in stationary scattering
theory with the customary restriction to a limited number
of final channels. The flux into the neglected channels is
usually accounted for by an appropriate additional ima-
ginary potential (e.g., Ref. 7}. It is therefore tempting to
study if the undesirable effect of truncating a time-
dependent calculation to a limited subspace can be
remedied in a similar fashion by the use of a time-
dependent imaginary potential.

The concept of a time-dependent optical potential has
been discussed earlier in the literature (e.g., Ref. 8). In
this paper we propose a simple parametrization of such a
potential and apply it to a number of test cases. This
functional form of the potential seems to be sufficiently
general to account rather accurately for the flux into the
neglected space in a variety of time-evolution cases, al-
though a universal applicability (similar to the Woods-
Saxon form of the stationary optical model) cannot be
claimed on the basis of the cases studied.

We discuss in Sec. II the properties that are desirable
for an optical potential in a time-dependent calculation,
and derive an appropriate parametrization (Secs. III and
IV). The accuracy of the optical-model solution is studied
in a number of examples (Secs. V and VI) in comparison
with the exact Schrodinger solution. Since the exact solu-

tion is not known in practical cases, an appropriate dissi-
pative approximation to the exact solution must be used
for the initial time behavior of the system (Sec. VII). The
conclusions for the use of a time-dependent optical poten-
tial are summarized in Sec. VIII.

II. TIME-DEPENDENT OPTICAL MODEL

with solutions
~
4t (t) ) that are contained in the subspace

for all times. Therefore (even if the initial state
~

+(0) ) =
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@p(0)) is in the subspace), the solution

~
4t (t)) of Eq. (2) will generally differ from the projec-

tion P
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W t) ) of the exact Schrodinger solution
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qt(t) )
onto the subspace
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simply because the subspace solution
~
4t (t) ) does not al-

low for any flux of probability out of the selected sub-
space into the neglected part of the Hilbert space (and pos-
sibly back). It is the initial flux out of the subspace that
the optical potential is expected to account for.

The problem then consists in finding within the sub-
space an appropriate imaginary matrix i8' the time-
dependent optical potential, such that the solution

~
@,u, (t) ) of the modified subspace equation

The time evolution of a system with given Hamiltonian
H is, in principle, determined by the solution ~%'(t)) of
the Schrodinger equation

tirt
i
%(t)) =H i%(t)),cl

Bt

for the initial state
~

%(0)). In practice, however, the
Schrodinger equation (1}will have to be solved in some re-
stricted basis. If P denotes the projection onto the corre-
sponding subspace, the truncation of the Schrodinger
equation amounts to solving the time-evolution problem
for PHP rather than for the original H,
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In this representation the most general functional form of
the matrix W(t) is given by

fits the projection of the exact solution
~

0'(t) ) as closely
as possible,
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For this purpose the optical potential iW(t) has to be
parametrized by a sufficiently general (though practical)
functional form, the parameters of which will then have
to be determined in each individual case.

III. PARAMETRIZATION OF THE OPTICAL
POTENTIAL

The subspace Schrodinger equation (2) can easily be
solved, in principle, in the energy representation, i.e., the
basis

~
Ep ) that diagonalizes the subspace part PHP of the

Hamiltonian matrix H (but not necessarily the full H)

PHP
~
Ep ) =Ep

~ Ep ),
~
Ep ) EP space .

with energy-dependent fit parameters a„(Ep,Ep ), and a
sufficiently large order N of the power series. Since for
vanishing W(t) the amplitudes of the optical equation (4)
are decoupled in the

~ Ep ) representation, it is desirable to
maintain this property in a suitable parametrization of
W(t), i.e., W(t) should be diagonal in the energy represen-
tation of the subspace,

a„(Ep,Ep ) =a,(Ep)5(Ep, Ep ) .

Otherwise the required fits of the parameters a„could not
be performed separately for each probability amplitude,
and the fit procedure would not be practical for large
spaces.

The optical solution that corresponds to the parametri-
zation (8) of W(t) is then given explicitly by

N+1
(Ep

~
40„,(t) ) = (Ep

~
4,p(t =0) )exp( iEpt/A)ex—p —g ~

a„ i(Ep)
~

t "/v!
v=1

(9)

as can easily be verified by inserting the solution (9) into
Eq. (4) with the optical potential given by (7) and (8).
Equation (9) shows that this functional form of W(t)
leads to an exponential decay of each probability ampli-
tude, whereas the complex phases Ept/A remain un-
changed.

IV. LINEAR APPROXIMATION

The simplest possible functional form of the time-
dependent optical potential (9) is the linear case (N =1),

apti+ —,a)t i ———lnA (ti ),2 (1 la)

apt~+ —,aire ———lnA (ti),2
(1 lb)

for each energy Ep where A (t) denotes the relative ampli-
tude

(Ep ~iW(t)
~ Ep )

i A5(Ep, Ep )[ap(—Ep)+a, (Ep)t] (10)

with two parameters ap, ai & 0 for each energy eigenvalue

Ep in the selected subspace. It turns out (cf. Sec. V) that
this approximation is already sufficiently accurate, and
higher-order terms do not improve the results obtained
with the linear optical potential (10).

Moreover, a trivial fit of the optical solution (9) to only
two points in time, t~ and t2, is generally rather accurate,
as will be shown below. The parameter values a0 and a~
of Eq. (10) are then completely determined by the positive
solutions (else a =0) of the two linear equations

(1 lc)

In the examples discussed below, the solution (11) has
been used as an initial guess for a least-squares fit. In all
cases plotted in Secs. V and VI it turned out that the final
result of the fit was almost identical to the approximation
(11).

V. EXAMPLES

H „=—V0exp
P m+n
2 2

m —n

2&7
(12)

has an exponential diagonal level density and a Gaussian
falloff for the off-diagonal matrix elements. The
parametrization comprises constant matrices
(P=0,cr~ oo ), diagonal matrices (o ~0), C numbers
(P=O, o ~0), and intermediate cases.

Figure 1 shows the rapid convergence of the power
series (7) for the time dependence of the optical potential
(9). Here the exact solution is for a 50X50 matrix H~„
projected onto the subspace associated with the first 5&5

We have studied the optical-potential approximation for
three different types of Hamiltonian matrices, the Lipkin
model, Gaussian matrix parametrizations, and a schernat-
ic heavy-ion Hamiltonian that is discussed in Sec. VI. In
each case we have computed the exact time-dependent
Schrodinger solution %(t) in a finite-model Hilbert space,
and compared the projection of 'P(t) onto a much smaller
subspace with the result of solving the optical-model
equation (4) within the subspace.

The Gaussian Hamiltonian matrix parametrization
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FIG. 1. Subspace probability as a function of time. The solid
line is the exact solution for a 50&50 Gaussian Hamiltonian
matrix projected onto a 5&5 subspace. The dashed lines show
the rapid convergence of the optical-model approximations with
imaginary potentials of order E in time. Here the parameter
values are P=0. 1, o =20, and Vo ——1 MeV. The time scale is in
units of A/Vo.

FIG. 2. Subspace probability for the ten-particle Lipkin
model (e= 1, V= 1) projected onto a six-dimensional subspace in
comparison to the linear optical-model result.

H= 2egoaz a~~+ —,
'

V g az a~ az az (13).
p, o'

components of H~„. The initial state Vt*(t =0) has a bi-
nomial distribution with probability 0.5 (i.e., peaked at the
third of five basis states). The optical potential, Eqs. (7)
and (9), has been fitted to the exact solution in the time in-
terval t &0.02fi/MeV which corresponds to a decrease in
probability from 100% to 99% in the subspace. The fig-
ure shows that a constant optical potential [N =0 in Eq.
(7)] does not fit at all, whereas the linear (N =1) and all
higher powers in time coincide (within 10 ~). The X&2
approximations also coincide with the simplified linear
two-point fit with parameter values determined from Eq.
(11) for t, =0.01k'/MeV and tz ——0.02%/MeV correspond-
ing to a loss of 0.3% and 1% of the initial probability in
the subspace. Although the further decrease in probabili-
ty is quite large, the optical approximation remains close
to the exact solution until the flux of probability back into
the selected subspace starts to dominate. The latter effect
is, of course, outside the scope of an optical model. Thus
in Fig. 1 the linear optical-potential model remains rather
accurate over a period of time that extrapolates the initial
fit interval by a factor of 10, and for a total loss in proba-
bility that is 70 times larger than what the optical approx-
imation has been fitted to. We have studied many other
cases of Gaussian matrices with various dimensions and
widths as well as different initial distributions, and in
every case the optical model works equally well.

As a further example we use the Lipkin model, ' a
popular test case for time-dependent approximations. The
Hamiltonian is that of N fermions on two S-fold degen-
erate levels o.=+1,p = 1, . . . , X,

The exact solution can be obtained by writing the creation
and annihilation operators of the corresponding single-
particle states

~ p, o.) in terms of operators J+,J, and J,
with the ordinary angular momentum commutation prop-
erties (for details see, e.g. , Refs. 5, 11, and 13).

The example of Fig. 2 shows the ten-particle Lipkin
model (i.e., dimension 11) truncated to the six-dimensional
subspace spanned by the states

i
J,—J ),

~

J,—J+1), . . . , i
J,O) of the standard basis, and a bino-

mial initial distribution with probability 0.5 (i.e., peaked at
the third and fourth of the six basis states). The plotted
curve shows the subspace probability for the linear optical
solution (10) with the parameter values (11) for
t= .001k' /Me Vand 0.02k'/MeV (i.e., 0.4% and 2% de-
crease in probability, respectively). The degree of approxi-
mation achieved in this case is almost as good as in the
Gaussian matrix examples in spite of the peculiar sparse
structure of the Lipkin Hamiltonian matrix. Again the
optical model fails once a flux of probability from the
neglected space back into the subspace sets in.

We note that in some cases the overall subspace proba-
bility is almost conserved over a certain interval of time
while the probability distribution shifts towards initially
unoccupied basis states within the subspace before a no-
ticeable flux of probability out of the subspace occurs. It
is then advantageous to choose the fit interval for the opti-
cal potential accordingly.

VI. SCHEMATIC HEAVY-ION MODEL

Heavy-ion collisions have been the main incentive for
the use of time-dependent methods in nuclear physics.
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This has motivated us to study the optical-potential ap-
proximation in the case of a (very schematic) heavy-ion
model Hamiltonian. It consists of a single-particle Hamil-
tonian for each ion, H,'~ and H,'~', and an additional two-
body interaction V(1,2) acting between the ions

H =H,'p'+H, 'p'+ V(1,2) .

Rather than making a choice for the geometry and poten-
tial shape of the ions, and deriving the inatrix elements of
H,'~" and H,'~' from that, we assume, for simplicity, that
the single-particle energies of each ion follow a pattern
similar to level density formulas, i.e.,

H,'~'
i
i ) = Vt exp( i /a—, ) i

i ) (15a)

He~'
i j ) = V2exp( j /az )—

i j), (15b)

O.S-
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O
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CL
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~exact

0.2—

where
~

i ) and
ij ) denote the appropriate basis for each

ion, and Vi, V2, a&, and a2 are parameters.
The two-body interaction matrix is defined in the prod-

uct basis
i
i ) i j) as

(ij i
V

i
kl ) = Voexp[ —(

~
ij —kl

~

/a 0 )] (16)

with the parameters Vo and ao. This functional form is
motivated by the requirement that the interaction should
be large between two-ion states

i
i )

i j ) and
i
k )

i
I ) that

are either particularly simple (e.g., ~i), i j), ~k), and

~

l ) low excited) or both very complicated (i.e., i
i ), i j),

i
k), and

i
l) highly excited), and small for matrix ele-

ments between states of different structure.
Figure 3 shows the time dependence of the subspace

probability for the exact solution, and for the optical ap-
proximation for the case of six levels in each ion, i.e., a
full space of dimension 36, truncated to a subspace of di-

1

a, (E)= g b„E" .
n=0

(18b)

In this way an almost identical fit can be achieved by us-
ing only the four parameters a„and b„ for all sixteen am-
plitudes in the energy basis rather than two independent
parameters ao and at for each individual amplitude.

In a semiclassical treatment of time-dependent col-
lisions the Hamiltonian is assumed to depend on the
center-of-mass distance between the ions rather than on
the individual particle coordinates only. In this case the
Hamiltonian is explicitly time dependent, and the time-
evolution calculation has to be performed in a finite num-
ber of short time steps (as in the time-dependent Hartree-
Fock approximation). This requires, of course, for each
consecutive time step a new set of parameters of the ima-
ginary potential (7). The optical fits can easily be per-
formed by using the trivial two-point formula (11), and
should allow one to considerably increase the step size of
the time-dependent calculation (cf. Sec. VII), and thus
lead to a corresponding reduction in computer time.

mension 16 which contains the first four levels of each
ion. The initial state is taken to be statistically distributed
in the subspace with amplitudes

I exp[ —Ei2(m, n)/kT] I
'~

Cmn . i' ' (17)
exp[ Et—2(p, v)/kT]

'

p, vEI'

where Et2(m, n) denotes the energy of the noninteracting
two-ion system in the product state

~

m )
~

n ) of the P
space. During the time interval plotted the probability in
the subspace decreases from initially 100% to about 30%
before a flux of probability back into the selected subspace
occurs. The optical approximation is fitted for
t =0.05fi/MeV and 0.1A'/MeV when about 3%%uo of the ini-
tial subspace probability is lost. Here again the optical-
model extrapolation follows the exact solution until the
flux of probability back into the selected subspace sets in.
The extrapolation remains accurate over 6 times the
period of time of the original fit, and for more than 20
times the loss of probability within the original fit inter-
val. Similar results have been obtained for other tempera-
tures kT in the initial distribution.

We note that the schematic heavy-ion model result of
Fig. 3 can also be fitted by assuming an explicit energy
dependence of the parameters ao and at of the form

1

ao(E) = g a„E", (18a)
n=0

0.25 0.5
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time (h/Me'I/j

0.75 1.0

VII. INITIAL TIME-EVOLUTION
APPROXIMATION

FIG. 3. Time dependence of the exact subspace probability of
the schematic heavy-ion model, and the optical-potential ap-
proximation. The parameter values are V~ ——V2 ———2 MeV,
Vp ———0.2 MeV, a~ ——a2=2 Op=4, and kT=0. 5 MeV. The
time interval for the optical-potential fit is indicated in the fig-
ure. The full space has dimension 36, the subspace is truncated
to dimension 16. For comparison, the H subspace time-
evolution approximation of Sec. VII is also given (labeled HH).

In practical cases the exact solution will not be known.
Therefore an initial approximation to the Schrodinger
time-evolution in the subspace is required (e.g., a perturba-
tion expansion' ) from which the optical-potential solu-
tion can then be obtained. The fit serves then as an extra-
polation over time intervals that are possibly much larger
than the convergence interval of the original subspace ap-
proximation.
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Such a short-term solution for the subspace time evolu-
tion has been discussed in Refs. 4—6. It has been demon-
strated that for short time intervals a remarkably accurate
approximation to the exact Schrodinger time evolution in
the subspace can be obtained by solving the second-order
time-differential equation in the subspace

(19)

with the initial condition

lA ~% &&(t=0))=PHP ~% (t=O))a
r)t

and a given initial state
~
%,~„,(t =0)). The solution is

equivalent to projecting each term of the power series for
the exact time evolution exp( iHt/—fi) ~%'(t)) onto the
subspace, and truncating the result to second order in
time. Thus the exact time evolution can always be ap-
proximated to arbitrary precision by the solution of Eq.
(19) in the subspace, if the time interval is chosen suffi-
ciently small. This short-term subspace solution is also
shown in Fig. 3. It is evident from the plot that this solu-
tion, when augmented by an optical-potential fit becomes
applicable for a much larger interval of time than the
second-order subspace approximation alone.

VIII. CONCLUSIONS

We conclude from the results of this study that the time
evolution of a system in a necessarily truncated subspace
can be described rather accurately by adding an imaginary
time-dependent potential to the truncated Hamiltonian in
the Schrodinger equation for the subspace. The imaginary
optical potential can be chosen diagonal in the energy rep-
resentation and linear in time with parameter values as
given by Eq. (11). Such an optical potential can account
very well for the flux of probability into the neglected
space. In a perturbation approach for short time intervals,
e.g., that of Eq. (19), the use of such an optical potential
as an extrapolation can substantially improve the range of
convergence. As one would expect, the optical model fails
as soon as the flux of probability from the excluded space
into the selected subspace starts to dominate.
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