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A classical spinning magnetic dipole is considered within classical electrodynamics with classical
electromagnetic zero-point radiation. The stationary probability distribution for the angle of align-
ment between the spinning magnetic dipole and an external magnetic field is calculated when the
system is located in an arbitrary spectrum of random classical radiation. It is found that for the
Rayleigh-Jeans spectrum the probability distribution for alignment is just the Boltzmann distribu-
tion. However, in classical zero-point radiation the alignment probability distribution is indepen-

dent of the magnetic field causing alignment. Moreover, for large classical spin angular momentum

S »A', the average component of the spin in the direction of alignment is given by (S, ) =S—
2

A',

where A is Planck s constant (divided by 2m. ) used to set the scale of the classical zero-point radia-
tion spectrum. The results seem suggestive of the idea of space quantization in quantum theory.
The model discussed here was first considered by S. Sachidanandam (unpublished).

INTRODUCTION

In this article we consider a classical object which has
an angular momentum from a spinning motion and which
also carries a magnetic dipole moment parallel to this
spin. A number of interesting results are found for the
alignment of this spinning magnetic dipole in a magnetic
field when the system is subjected to random classical
electromagnetic radiation with Planck s spectrum includ-
ing zero-point radiation.

These calculations show that if the spinning magnetic
dipole is located in the Rayleigh-Jeans spectrum of classi-
cal radiation, then the alignment of the spin by a magnetic
field follows the Boltzmann distribution of traditional
classical statistical mechanics. If, however, the spinning
dipole is in classical zero-point radiation, then the average
component of the spin along an aligning magnetic field is
independent of the strength of the magnetic field. This
surprising result is reminiscent of the quantum notion of
space quantization. Moreover, for large values S of the
classical spin angular moment S&&Pi, the average com-
ponent along the direction of the external field becomes
(S, )=S——,tent' where the constant fi is Planck's constant
which was introduced to set the scale of the classical
zero-point radiation spectrum. It is curious that this re-
sult associates the value —,

'
R with a spin angular momen-

tum in contrast to the orbital angular momentum
(L, ) =+Pi found' for a free point charge in a magnetic
field.

The present work represents another small step within
classical electron theory including classical electromagnet-
ic zero-point radiation. This theory is often termed ran-
dom or stochastic electrodynamics. It is a classical elec-
tromagnetic theory in which Planck s constant I is intro-
duced as the scale factor in the Lorentz-invariant spec-
trum of random classical electromagnetic radiation which
provides the homogeneous boundary condition on

Maxwell's field equations. This classical theory has pro-
duced a number of results usually thought to be obtainable
only from quantum theory. However, analysis of the
theory has been hampered by the calculational difficulties
of classical electromagnetisin and of stochastic processes.

BASIC MODEL

The classical nature of our model can be emphasized by
describing it as essentially a small spinning gyroscope
with a permanent bar magnet mounted along the axis of
the spinning rotor. We denote the spin angular momen-

tum by S and the magnetic dipole moment by p. The sys-
tem is located in an external magnetic field Bo and also in
random classical electromagnetic radiation.

Due to the magnetic field Bo the magnetic dipole ex-

periences a torque I =p XBO. Provided the rotor mo-
ment of inertia is small and the rate of spin large, any

torque will act to change the direction of the spin S
without ever changing the magnitude S of the spin. The
gyroscope will precess just as does a toy gyroscope on a
stand subject to a torque from the gravitational force.

However, our model requires more electromagnetic
analysis. The precessing magnetic moment in our model
will radiate electromagnetic waves and so lose energy.
The magnetic dipole will tend to align itself with the mag-
netic field in the position of lowest magnetic energy. In
this alignment it no longer precesses and, hence, no longer
radiates away its energy. Now Sachidanandam pointed
out that this tendency for the magnetic dipole to align it-
self with the external field will be counteracted by the ran-
dom fluctuating torques due to the random classical elec-
tromagnetic radiation. The two opposing tendencies of
alignment and antialignment will lead to a stationary
probability distribution for the orientation of the system.
It is this stationary probability distribution which we cal-
culate in this paper.
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EQUATION OF MOTION

The equation of motion for our spinning magnetic di-
pole is that given by Bhabha

S=p XBp——,c p Xp~+p XB~(O,t),
where the random field B~(r,t) is taken in the dipole ap-
proxirnation. The random classical radiation can be writ-
ten as a sum over plane waves with magnetic field:

2

B~(r,t)= g J d k e(k, A)H(k, A),
A, =1

X cos[ k r —cot —g( k, k)],
where the radiation spectrum is set by H (k, A, ) and the
random phases g(k, k) are distributed uniformly over [0,
2m], independently distributed for each k and A, . The
magnetic moment p is assumed parallel to the spin S.

The equation of motion (1) is a nonlinear-stochastic dif-
ferential equation. We will use a perturbative quasi-
Markovian approximation to obtain a Fokker-Planck
equation for the probability density P(8) that the spin S
makes an angle 0 with respect to the z axis determined by
the magnetic field direction. Thus, we assume that the ra-

diation damping term —', c p Xp and the fluctuating ra-

diation torque p &(Bz are small corrections to the unper-
turbed classical motion given by

We first calculate the rate of change (d8ldt) due to radi-
ation damping. Then we calculate the average change
(58) and the average square change ((b,8) ) in the angle
8 due to random classical radiation acting during the time
'T.

RADIATION DAMPING

„(—p Bp) =—,(p)',
3c

where

p= rp si—n8( j)
with

r =i cosy+ j sing .

This gives
r

dg 2 p . ~ 4sin8(jo)
dt 3 g3jgp

(1O)

This same result can also be obtained from the equation
of motion (1) where we ignore the last term involving ran-
dom radiation and where we compute an approximate

value for p froin the precessional motion alone as

The change of 8 due to radiation damping can be found
in lowest approximation by equating the rate of change of
magnetic energy to the negative of the power radiated by
the precessing dipole,

S=p &Bp . (3)
p, = —ypsin8(jr) (12)

We choose a right-handed coordinate system with

Bp——kBp along the z axis. Then, writing

S=nS, p =np

and

Then, in this approximation, Eq. (1) becomes

[8(8) +f& sin8 j&]S=—ypBpsin8 —8—,c p sin8(jp)

(13)

S= S =(88+psin8j)S,
dt

Eq. (3) becomes

(88+qsin8jv)S=pn X(n cos8 —8 sin8)Bp

Recalling Eq. (7), we see that (11) and (13) are in agree-
ment.

CALCULATION OF ( {68)~ )

We find 8=0 and

= —ppBpsin0 .
In the next part of our calculation we calculate the

average effects of the random radiation while ignoring the
effects of radiation damping. Thus, we use

~= —pBp/S . (7) S=p XBp+p XBii(O, t), (14)

Thus, when we ignore the loss of energy through radiation
and the fluctuating torque due to random radiation, we
have the spin oriented at a constant cone angle 8 relative
to the z axis and rotating at a constant rate j around this
axis. This is just the precessional motion anticipated.

FOKKER-PLANCK EQUATION

In order to evaluate the alignment probability distribu-
tion P(8) through a Fokker-Planck equation, we need to
find the first and second moments for the change b,8 in 8
due to the perturbing influences during a small time ~.

where we write

8=Op+6,

with

y=q p+gt+o,

rt = —pBp/S, (17)

corresponding to the value of y for the unperturbed
motion as in (7). Substituting (4), (5), (15), and (16) into
(14), we have
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[85+g sine(11+ &)]S

= —yp80sine+p g f d k H cos(cot+g)IO(e„sing —e„cosy)+y[(e„cosqr+e~siny)cose —e,sine]] .
A, =l

This gives us the two equations

2

5=(p/S) g f d3k H cos(tot +g)(e„sing e„—cosy)
A, =1

(19)

a =(p/S sine) g f d k H cos(cot+g)[(e„cosp+ersiny)cose —e,sine] .
A, =1

When calculating ((b 8) ), we require the unperturbed expression y =go+ alt so that

(20)

be= f dt 5=(p/S) g f d k H f dt cos(cot+g)[(e„sin(q)0+1)t) —ercos(q)0+lit)] .

We now carry out the time integration explicitly, form the
product (b,e), and then average over the random radia-

tion phases g(k, A, ),g(k ', A, ') and over the initial phase yo.
Here we need

( cosg( k, A, )cosg( k ', A, ') )= ( sing( k, A, )sing( k ', A, ') )

=-,' 5».5'(k —k '),

Thc sum ovcl Polarization rcqu1rcs

2

g e;=1—k; /k
A, =l

and the angular integration gives

X(e'+e,'), (24)

where we have written

1 —cosa =2sinl(a/2) .

(sing(k, A, )cosg(k ', A, ') }=0 .

Then, integrating the prime variables over the 5 functions

5»5 (k —k'), we find

1 sin [—,
' (to+ rl )r]

((ae)')= —' ~ g f d'kH'
2 S (~+11)'

sin [—,
'

(co —rl)~]
+ 2(co —'rj)

Then Eq. (24) becomes

8 2 ce sill 2 (to+7))7{(~e)')=' ", f"dkk'H'
S (to+ 1) )

sin [—,'(co —1)H]
+ 2(a) —rt )

(26)

Now ignoring the nonresonant term and evaluating the
resonant term as a sharply peaked function approximated
by the form

x sin x'7 x (27)

we have

((b8) ) = ', m c (p/S) rt H—( i rt i
)v . (28)

CALCULATION OI" ( &8}

In order to evaluate (b,e} we first integrate Eq. (20) with respect to time. Here we use the unperturbed expressions
for 8 and y on the right-hand side and recall o (0)=0 so that

2

cr= f dt&'=(p/S sineo) g f d kH f dt'cos(cot'+g)I[a„cos(po+rtt')+ s„sin(q&0+1)t')]coseo e, i sneIo. (2—9)
0

0

Then we go back and use this expression for o in our equation (19) for 5 when we expand through first order in cr so that
cosa'= 1 alld slnO= a' Thus', —Eqs. . (19) alld (29) colllbllle to give
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2

5=(/c/S) g f d kHcos(cot+g)

X . [e„sin(q&p+7/t) E&cos(happ+ Y/t) ]

+ [e„cos(go+i/t)+@&sin(go+i)t)] —,
'

(/c/S sin8p)

sin[(co'+i/)t+g'+ pp] —sin(g'+quip)
&( g d k'H' e„'cos8p +('9~ 'I/ 'P—o~ 0'o)—

A, '=1 (co'+i/)

+ay COS80
cos(g'+ yp) —cos[(co'+ i/) t +g'+ pro]

(co'+i/)

sin(co't +g') —sing'—(i/~ r/ go~——yo) —ex sin8o
N

t' ~

(30)

Next we carry out the averages (22) and (23) over g(k, A, ) and g(k ', A, ') and over yp, and then we integrate the prime
3 Ivariables over the 5 functions 5zz 5 (k —k '). This gives

r

(5) iM 8 y f d3k Hz( z z
)

sin(co+i/)t sin(co —i/)t (31)
8S CO+ 'g CO —'g

The sum over polarizations and integration over all solid angles lead again to Eq. (25). Integration with respect to time
gives

2 ir /c 8 f ~
d zHz 1 cos(co+g—)t 1 —cos(co —i/)t

(co+i/) (co —i/)

Finally, we use 1 —cosa =2sin (a/2), retain only the resonant term as evaluated in (27), and arrive at

(58)=(2' /t /3c S )cot8oi/ H (
l

i/
l

)~.

(32)

(33)

P(8)—r+(68) +—
&8

[P(8)((58)')]=0.

(34)

SOLUTION OF THE FOKKER-PLANCK EQUATION

The probability distribution P(8) in steady state is
given by the first integral of the time-independent
Fokker-Planck equation where the integration constant is
chosen to vanish corresponding to the absence of solutions
which are singular at 8=0 or m: (S, ) = (Scos8)

f d8S cos8P(8)
0 f d8P(8) (37)

Introducing the stationary distribution for P(8) found in
(36), we arrive at

AVERAGE z COMPONENT OF SPIN

The probability distribution P(8) can be used to calcu-
late the average component of the spin along the direction
of the magnetic field. This is

Substituting the expressions (11), (28), and (33) calculated
above, and noting that j in (11) is exactly i/ of Eq. (17),
we find that the Fokker-Planck equation reduces to

(S,) =S coth
z

slql
H (l li/)

AH (lv/l) (38)

dP(8) S'
+ z z

sin8 —cot8 P(8) =0 . (35)
p&o irzHz(

l q l
)

This has the solution for the angular probability distribu-
tion

P(8)=const&& sin8expI[S
l

i/
l
/n H (

l
i/

l
)]cos8I, (36)

where we have made use of Eq. (17).

ir H (co) = ,' fico coth(fico/2—kT) . (39)

This gives the average value for the z component of the
spin as

which is a Langevin function of argument

S
l rg l

/[m Hz(
f

i/ l )] .

For a spectrum of random classical radiation given by the
Planck spectrum, including zero-point radiation, we have
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2S
fi coth(fipBp/2skT)

fijuB p

2S 2SkT

DISCUSSION OF THE LIMITS
AT HIGH AND LOW TEMPERATURES

The expression (36) agrees with the qualitative ideas
presented at the beginning of this paper. The spinning
magnetic dipole is displaced from the aligned position due
to the fluctuating random classical radiation. The tenden-
cy toward alignment along the direction of the external
magnetic field is balanced by the random radiation im-
pulses and thus produces a stationary probability distribu-
tion.

In the high-temperature limit where

kT » fipBp/2S

the spectrum of random classical radiation in (39) be-
comes the Rayleigh-Jeans limit

should appear here in connection with the spin. In the
case of a free particle in a magnetic field and in zero-point
radiation we saw' that the component of orbital angular
momentum along the direction of an external magnetic
field was

(48)

with the + or —sign depending upon the sign of the
charge.

Finally, we draw attention to an interesting symmetry
appearing in this spinning dipole system in interaction
with random radiation. The symmetry links the energy
and the z component of angular momentum. The energy
is entirely that of magnetostatic interaction —pBpcos8
while the z component of angular momentum is Scos8.
Thus, both involve constants multiplied by cos8. The
symmetry can be found in Eq. (40) in the functional
dependence upon 2S/fi and pBp/kT but is most apparent
in the limits I—+0 or kT~O. In the limit that Pi~0 in
(39) we find that P(8) in (36) becomes the Boltzmann dis-
tribution

exp( E/R T)—=exp(pB pcos8/kT),

ir H (co)=kT .

The z component of the spin in (40) goes over to

(41) which is independent of the spin S. In the limit that
kT~O in (39) we find that P (8) in (36) becomes the dis-
tribution

(S, ) =S coth
PBo
kT

kT
pBo

(42)

which is precisely the result given by traditional classical
statistical mechanics for a magnetic moment in a mag-
netic field. Indeed the probability distribution (36) be-
comes exactly the Boltzmann distribution

In this case the probability distribution P(8) in (36) be-
comes

P(8)=const Xsin8exp[(2S/fi)cos8],

and the z component of spin in (40) is

(S, ) =S[coth(2S/A') —A'/2S] .

(45)

(46)

This expression for (S, ) is independent of the magnetic
field Bp which causes the alignment in the first place.
This seems a striking result which is reminiscent of the
quantum notions of space quantization. From Eq. (38) we
see that the zero-point spectrum (44) is, up to a multipli-
cative constant, the unique spectrum of random radiation
which gives a value of (S,) independent of magnetic field
Bo. Also, when the classical spin S is large compared to
A', the zero-temperature result (46) goes over to

(47)

(provided S» fi). It seems interesting that the value ,fi—

P(8)=const Xsin8exp[ —( p, Bp)lkT—]

associated with the magnetostatic energy.
At zero temperature T =0, the radiation spectrum (39)

becomes the zero-point spectrum

exp( 2S cos8/A'),

which is independent of the magnetic moment and mag-
netic field Bp. This last distribution is presumably of the
form exp( —2Jhei) with the action J given here by
J=—Scos0. Thus, as noted in the past, the Rayleigh-
Jeans and zero-point laws are singled out as those spectra
which give to mechanical systems without harmonics a
phase space distribution depending upon either the system
energy E or the system action J, respectively.

CLOSING SUMMARY

In 1979 Sachidanandam pointed out that a classical
magnetic dipole carrying a spin parallel to the dipole mo-
ment does not align itself with an external magnetic field
when immersed in random classical radiation. Although
the precessing magnetic moment radiates and so loses en-

ergy and tends to align itself along the magnetic field, it is
forced away from alignment by the random torque of the
external field. In the present paper we have carried
through the calculation for the stationary probability dis-
tribution for the alignment of the spinning magnetic mo-
ment.

When the spectrum of random radiation is given by the
Rayleigh-Jeans law, we find that the probability distribu-
tion is just the Boltzmann result given by traditional clas-
sical statistical mechanics. However, when the spectrum
is that given by zero-point radiation, and only for that
spectrum, then we find that the component of the spin
along the magnetic field is independent of the strength of
the magnetic field. This seems suggestive of quantum
space quantization. Also in the limit of large classical
spin, the average z component of the spin differs from full
alignment by just —,'A', independent of the (large) magni-
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tude of the spin.
The results obtained here fit well with those found ear-

lier within the theory of classical electrodynamics with
classical electromagnetic zero-point radiation. However,
they do not seem to provide any insight which might al-
low a major advance within the theory.

Note added in proof. The result (S, ) =S——,
' A' found in

Eq. (47) of this classical analysis for the limit of large S
actually agrees with the quantum result for any large spin.
Thus for a spin eigenstate within quantum theory the total
spin angular momentum is S —[s(s+1)R )' while the z

component at T =0 takes the eigenvalue S,=sA. At large
quantum number s, S—=sA+ —,A'=S, + —,'A. This can be
rewritten as exactly the classical result above. Also one
can show the agreement between the classical and quan-
tum results at finite temperature and large spin.
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