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Space-curvature effects in atomic fine- and hyperfine-structure calculations
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Space-curvature theoretical modifications of the fine- and hyperfine-structure energy levels have

been investigated in the framework of a curved-Dirac-orbital model. Fairly accurate approximate
solutions of the Dirac equation in a geometrically simple, curved space, i.e., the spherical three-

space of radius R have been obtained. An efficient ladder-operator technique has been devised in

order to obtain closed-form expressions of the "curved" fine- and hyperfine-structure parameters in

terms of the quantum numbers. Particularly, it has been found that the degenerate one-electron
fine-structure energy levels are split by an additional space-curvature contribution 6,=(—1)'+1+'

)&(j+ 2 )/(4R ) which vanishes at the traditional flat-space limit (R ~ oo ). Space-curvature

modifications of both fine and hyperfine parameters, increasing with n as n /Z R, have been put
in evidence. Besides the interest of a theoretical nature concerning specific information about the
local curvature at the position of an highly excited astrophysical ion, some other practical interests

of formulating quantum mechanics in a spherical three-space of parametric curvature 1/R are

pointed out.

I. INTRODUCTION

The interest of calculating the energy levels of one-
electron atoms in a curved space-time has been drawn re-
cently in a series of papers. ' ' In fact, the introduction
of space curvature in quantum physics has been con-
sidered since a long time: Indeed, as early as the late
twenties the Dirac equation was formulated in a curved
space-time by Tetrode, " by Fock, ' and by Fock and
Ivanenko, ' and has been reinvestigated or reviewed by
several authors (see, for instance, Refs. 14—17). Among
previous works, the one of Schrodinger' deserves a spe-
cial mention. He, first, solved the nonrelativistic equation
bearing his name in a space of constant curvature and put
in evidence how the continuous hydrogenic spectrum is
resolved into an intensely crowded line spectrum. Since
the mathematical nature of the hydrogenic wave equation
is not more intricate in the spherical three-space than in
the flat space, ' ' it is thus possible to build up a tract-
able "curved-orbital" model (nonrelativistic or relativistic)
capable of exploring some space-curvature modifications
of atomic spectrum. Without wanting to discuss immedi-
ately the critical question of the order of magnitude of the
curvature induced shifts and the possibilities of their
detection, this model provides within the usual framework
of theoretical spectroscopy ready to use formulas of the
curvature modifications of the spectrum in situations
where local curvature could be important. It can also be
used as a path toward flat-space calculations taking the
advantage of hyperspherical parametrization. ' One as-
pect of this last point has been illustrated by recent calcu-
lations '

As already pointed out, our approach of the problem of
finding the energy-level perturbations produced in a freely
falling atom by space-time curvature differs from that of
previous work Our calculation of curvature effects is

done in the basis of already "curved" wave functions,
while Tourrenc and Parker have used "flat" unperturbed
wave functions (nonrelativistic and relativistic). On the
other hand, Parker has obtained general expressions in
terms of the Riemann tensor while we consider a "curved"
space with constant positive curvature, i.e., a three-
dimensional hypersphere of radius R embedded in a four-
dimensional Euclidean space. The dynamical symmetries
of this space have been studied by Higgs' and I.eemon.
Working in that geometrically simple space allows us to
keep a more direct parallelism between the "curved" and
"flat" results and an easier extension to the many-electron
case.

In our previous papers, ' we have focused our atten-
tion on nonrelativistic atomic structure calculations in a
spherical three-space. Particularly, a multipolar expan-
sion of the Coulombic potential has been given, allowing
the computation of curvature-dependent two-electron ma-
trix elements, the nonrelativistic expressions of the fine-
and hyperfine-structure Hamiltonians have been de-
rived ' via a covariant formulation of the Pauli equation.
For many reasons, a physically more consistent "curved-
orbital" model should be relativistic, i.e., built up using
the two-component "curved" Dirac orbitals. In the
present paper, after briefly recalling the expression of the
Dirac equation in a spherical three-space (Sec. II), approx-
imate "curved" Dirac orbitals are derived using the
Infeld-Hull ladder operator technique (Sec. III).
Closed-form expressions of the fine-structure energies in-
cluding all the 1/R curvature contributions are given in
terms of the usual relativistic quantum numbers (n, k)
(Sec. IV). In order to obtain all the 1/R curvature contri-
butions to the hyperfine-structure energies, a more ela-
borate solution of the "curved" Dirac equation is carried
out (Sec. V). The curved form of the hyperfine-structure
Hamiltonian is given and the "pseudoradial" hyperfine
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parameters are calculated (Sec. VI). To complement the
study, in the last section the nonrelativistic expressions of
the fine and hyperfine Hamiltonians are found again as a
by-product of the above results. The closed form expres-
sions of the basic integrals between "curved" generalized
Kepler functions needed for both relativistic and nonrela-
tivistic fine- and hyperfine-structure calculations are con-
tained in Appendix B. They have been obtained by ex-
tending a novel ladder operator procedure. To our
knowledge, such calculations in a spherical three-space
have not yet been reported.

II. DIRAC EQUATION IN SPHERICAL
THREE-SPACE

The generally covariant form of the Dirac equation in a
curved space-time of metric g„„(x)is

[icbm "(x)V& mc ]—g(x) =0, (1)

where P is a four-component spinor, @=0,1,2,3; 7& is a
spin covariant derivative (for definition and details, see

Appendix A). The Einstein summation convention is

used, x =(x,x',x,x ). The y "(x) are coordinate-
dependent matrices which obey the anticommutation rela-
tions

y "(x)y "(x)+y '(x)y "(x)=2g""(x) . (2)

In a space of constant positive curvature, the space-time
line element (Einstein metric) and the volume element are

ds =c dt Rd—X Rs—in X(d8 +sin 8dg ),
dr =R sin Xsin8dXd8dg, (3)

where 8 and P lie within their traditional bounds
0 & P (2ir, 0(8(ir, and 0 (X(vr. Setting R ~ oo,X~0
such that RX=r remains finite, the spatial part of the line
element (3) reduces to that of Euclidean space in which
r, 8,$ are the usual polar coordinates.

A convenient choice of the Dirac representation, i.e., of
the Dirac matrices y", can be made which leads to the
usual polar dependence (8,$) of the Dirac wave function
and one gets the following expression of the Dirac equa-
tion for stationary states with an external electromagnetic
field' (Ap ——V, Ai ——Az, A2 ——Ag, A3 ——A~):

l ()

R'aX
1 —cosg

Sly
ie

Ay
Ac

l CXy

R sinX sin8 c)P

or alternatively

ipK
~x pr+R . +IV+ „-p— (E,—ev) y(X, 8,y)=0R S1~

ie pyric ET —e V
g(X, 8,y) =0 (4)

where

e 1 CXg CXy—+~A~+
Ac R s1IlX s1Hg s1nl9

a&&=p 1 —~x~e +.a8 sin8 ay

ET——mc +E
is the total energy,

I 0
0 —I

0 ok
for k =X,8,$,

ere=(cr'cosp+cr sing)cos8 cr sin8, —

o~ ——o' i ys+n~'cosy,

cr& (o'cosP+cr si—ng)sin8+cr cos8,

=P(1+o" I )

cr =(o',cr, o ), and / is the usual orbital angular rnomen-
tum. At the asymptotic flat limit (R~ ao, X~O, RX=r),
it is easily verified that

l
PX Er =—

r 9r
r

CXg a~a,A, +
r sinO

and one finds again the usual flat-space expression of the
Dirac equation in polar coordinates

A
cc„p+ E +W+ pr

(ET eV) g(r, 8,$)=0, —1

l 8
R sing BX
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III. APPROXIMATE SOLUTION OF THE DIRAC
EQUATION

%'hen neglecting the magnetic interaction terms 8' in
(S), the separation between small and large components of
the "curved" Dirac spinor P(X,0,$) can be achieved in the
same way as in the flat space. Since, at the asymptotic
flat limit, the function P must lead to the familiar Dirac
function g(r, 0,$), we set for P the following trial form

+(X)
&(X'&)=R ~ ~(X) ~

where each O'IJ spinor is a simultaneous eigenfunction of
l 2, a 2, j, and j, with eigenvalues l(l + 1), 3,j (j +1),

and m, respectively; j = I + —,o is the total angular
momentum of the electron; l =1+1 as j= l+ —,';

( 1)I—1/2+m(2j + 1)1/2

d k — Za+—P(r) = — ( I+e)c + Q(r),dr r T

d k — ZaQ(r)= — (1—e)c — P (r) .
dT 7" P'

If analytical solutions of the "flat" coupled equations
(12) are obtainable (see, for instance, Refs. 23, 26, or 27),
this is not the case, to our knowledge, for the coupled
equations (10) in a spherical three-space. An appropriate
perturbational treatment of (10) can be undertaken after
noting that

=—cotX+ 2R tan-k 1 k k X
R sigh R 2R 2

and that, at the flat-space limit,

k g k
2R tan—

2R 2 2R

m =+1/2S

1

2
@(I /2) I (g)m ~ m, lm —m, ~

S S

i.e., this last term is of an order of magnitude 1/R small-
er than the remaining terms (=k/r). Hence suitable un-

perturbed coupled equations to be considered are

where YI ~,(8,$) is a spherical harmonic and 4"/2' a spi-

nor with components 4I/2 ' ——(o) and 4",/z
——(1).

The following properties of the 3'IJ and O'I-. spinor
hold

1 d ZA
R dX

+k cotX P (X)= — (1+e)c+ cotX Q (X),R

(13)

( I+ a l )+IJ =[j (j + I ) l(l + I)+——,' ]+ll — k+IJ

(I+ cr l )3'p. ——k 3/I, with k =( —1)I+'+'/ (j + —,
' ),

1 d
R

—kcotX Q(X)= — (1—e)c — cotX P(X) .
Zcx

ax+IJ =+TI
Following the Infeld-Hull factorization procedure22

which has proved to be particularly elegant when solving
Eqs. (12), let us set

Finally, combining Eqs. (S), (7), and (9), and introducing
the "curved" form V = —(Ze/R)cotX of the Coulomb po-
tential, ' one obtains the following coupled equations for
the Dirac pseudoradial hydrogenic functions in the spheri-
cal three-space (in a.u.):

P (X)=~(y2+y, )F(X)+(y,—y, )G (X)],

Q(X)=~(y2 —y1)F(X)+(y2+y1)G(X)],

(14)

T

1 d k H (X)= — ( I +e)c + - — cotX B(X),ZCK

s1BX R
(10)

e Yl (k +Za) y2=(k Za) ~1s a normali-
zation constant. After substituting the expression (14) for
the couple P, Q into Eqs. (13), one gets

1 d k B(X)= — (1—e)c—
dX simp

Za
cotX H(X), 1 ZR e d ek—y cotX — + F(X)= c+1 G(X)—,dX

where e=ET/mc; a= 1/c is the fine-structure constant
and B(X) can be identified with the traditional small
component.

In order that P(X,8,$) be normalized, the H(X) and
B(X) functions must satisfy the normalization condition

I (H +B )dX=1. (11)

It is easily verified that, at. the asymptotic flat-space
limit, one finds again the usual Dirac radial hydrogenic
coupled equations in flat space:

ZRe
y cotX—

R y

d ek
dX y

G(X)= —c — —1 F(X),

(1S)

where y=y1y2 ——(k —Z a )'; since Z& 137 and
I
k

I
» y1 and y2 are simultaneously real or pure ima-

ginary quantities, it follows that y is always real. After
few manipulations, one obtains the separated second-order
differential equations
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+2ZRecotX+R c (e —1)+y F(X)=0,y(y+1)
s1n g

(16a)

y(y —1)—+2ZRecotX+R c (e —1)+y G(X)=0.
dX slI1 X

(16b)

ek +1
y

G(X)=
' 1/2

Rv+y —1,y —1 &

(17)

Equations (16) are "curved" generalized Kepler wave
equations and, within the Infeld and Hull classification
are type-E (class-I) factorizable equations (see Appendix
8). From the comparison of Eqs. (16) with the Kepler
equation (Bl), it is easily found that the F(X) and G(X)
functions are directly related to the Kepler RsM(X) func-
tions [Eq. (Bl)], when setting q =ZR@, 5 =u +y —1, with
M =y and M =y —1 for the F(X) and G(X) functions,
respectively. From the comparison of the coupled equa-
tions (15) with Eq. (82), one gets

1/2

P'(X) = Rv+r-1, r

IV. FINE-STRUCTURE ENERGIES

The zeroth-order energy in our perturbational treatment
of the Dirac equation, directly follows from the expression
(19) of e . Since e= I+a F. ' ', one gets

' —1/2
(o)

A

Z cx1+
(v+y)'

It should be noted that, at the asymptotic flat limit, the
Rs~(X) functions reduce to the generalized Kepler func-
tion RsM(r) [see Eq. (87)] with q =Ze,

—1/2
Z A'e= 1+

(u+y)'

and the expression (21) gives again the flat Dirac hydro-
genic functions.

with the associated condition

R c (e 1)+—y =(u+y) —Z R e /(v+y)

' 1/2

X 1+ u (u +2y) —1
R

(22)

or
—1

Z2' 2
~2 1

(v+y)
CX1+ - u (u +2y)
R

(19)

In order to include all the 1/R curvature contributions to
the fine-structure energy levels, it is sufficient to calculate
the first-order perturbation energy E„'k'. Indeed, the Dirac
equation can be written again

Finally, an approximate solution of the Dirac equation in

a spherical three-space has been obtained in terms of the
"curved" generalized Kepler functions Rs~ and of the
spherical spinors 3'~J [see Eqs. (84) and (8)]

P.k
R slBX lgvk

(21)

where

, ek
Puk ~ (y2+y1 ) + 1

. r

' 1/2

RV+y

The normalization constant M in the expression (14) of
P and Q is readily obtained by generalizing a procedure
outlined in Ref. 9. One gets (see Appendix C)

1/2 —1/2
CX21+,v (v +2y)
R

where A o is the zeroth-order Hamiltonian with eigen-
function 4„k~ and eigenvalue ET '= mc +E,'k' and

EC 1
A

~
——— . —cotX azf3E

R sing

or

A 1
—— 2R tan—EC x

2R 2 o.„(1+o"l )

oz(1+o" l )

E.'k'=
& C'.k I ~i

I
@.k &

As pointed out before, at the asymptotic flat-space limit
2R tan(X/2)~r and it is easily seen that A

&
is of an or-

der of magnitude —1/R . The first-order perturbation
energy is

ek+ (yz —yi)
y

ek
g„,=m (y, —y&) +1

y
'

ek+ (y&+yi)
,

y

Rv+y 1 y

1/2

Rv

1/2

Rv+y

kc x2R tan —P,kQ„kdX,V U (25)

where the P„k and Q„k are linear combinations of the

Using the expression (21) of the Dirac spinor 4„k~ togeth-
er with the properties (9) of the S'~J and 9'~. spinors,
one gets
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"curved" generalized Keple ~„+~ ~, ~ and ~, +&
functions. The calculation of E,'k' is detailed in the Ap-
pendix C, one obtains

(1)
Euk =—

—1/2

4R2 (u+y)
+0 1

R

(26)

Finally, including the curvature effects (up to 1/R ),
the Dirac energy E,k ——E„'k'+E,'k' is

' —1/2
1

+2

Z cx1+
(v+y)

(~ +y)2+Z2~2 Z 2~2

2R (~+y)'

Z Zcx 3 1 n

2n' 2n' « ~k
~

2R'

k Za 2n+ 1—
4Z'

(28)

or alternatively

Z' n4
E = — 1—

2 ' Z'Z'

3Z4n' 2n4

8 4 3Z2g 21+

%hen retaining in E,k the terms up to a and introducing
the usual radial quantum number n =u+

~

k ~, one ob-

tains

where ~= 1.159644 && 10 . Obviously, the curvature-
induced splitting should be detectable and comparable to
the Lamb shift, only in regions where the local curvature
is really important. As pointed out by Parker, the curva-
ture contributions to the energy levels should be compar-
able to the Lamb shift for R=2&&10 cm.

V. "CURVED" DIRAC ORBITALS

In order to be somewhat consistent when gathering all
the 1/R 2 curvature contributions to the hyperfine-
structure energies, it is necessary to determine, first, a
solution of the Dirac equation containing all the 1/R
terms of the exact eigenfunction. Since the perturbation
A

&
is of an order of magnitude —1/R [see Eq. (23)], one

has to calculate the first-order perturbed function

&+.k
C„km . (30)

I kl I

From (9), it follows that cd(1+o" l )P~. ——k9'~ and

or(1+o" I )9'~jm ———k3r~. , and therefore, since 4
&

is
contradiagonal, one gets

k(~ u'k'm'
~
~1

l
@ukm ~ ~ ' ~k'kT '

2R
(31)

trum which, qualitatively in some respects, are compar-
able to the Lamb effect. In Table I, these curvature modi-
fications of the theoretical spectra are compared with the
Lamb-shift contributions,

g (X K

n' k(21+1) '

Z4o, ' n4
1+—

2n ski ZR 4R

The two first terms in (28) are just the electronic and
fine-structure hydrogenic flat-space energies and the
remaining terms correspond to additional curvature con-
tributions which vanish at the asymptotic flat-space limit.
From (29), it appears that the curvature modifications of
the energies increase with n as n /Z R . The last term,
—k/4R, will induce splittings in the hydrogenic spec-

1 x
Tu'u (Pu'k Quk +Qu'kPuk ) 2R tan dX

0 2

] oo

T, ,=— (P'kQ. k+Q, kP„k)r dr .a (32)

As long as we are concerned just by the evaluation of the
1/R contributions to /uk, it is easily inferred that T„,
can be replaced by its effective value, i.e., its asymptotic
flat-space llmtt

5/2

lfcf3 /2

~1/2

1/2

Electronic
energy

—Z n2 2

2 2+2

Z4a2 3
2n' 4n 3

Z"n2

2n

3 1

4n 2

Z40.2 3——1
2n3 4n

TABLE I. Fine structure of the

Flat fine
structure

hydrogenic energy levels (in a.u. )

Curvature fine-
structure contributions

3 Z cx 2n1—
4g2 4@2 3

2R'
] —(1—n)

2R
1

4R Z»
, (1—2n}

1

Lamb shift

Z'n' ~
n' l5

Z4cz2 a
n3 10

Z4n2 x
n' 6
ZA' K

n
Z4~2

K
n



N. BESSIS, G. BESSIS,AND R. SHAMSEDDINE

The I'„k and Q„k functions are given by (21) where the
curved generalized Kepler Rs~{X) functions are replaced
by the flat ones RsM(r). The calculations of T„„in terms
of the flat radial integrals (S',M

~

I'
~
S,M ) and

(S',M —1 ~r ~S,M —I) is detailed in the Appendix C
and, finally, the "curved" Dirac orbitals can be written

e Px cosX 0 o.
sin8~ Z' sin'X

(35)

In order to derive the dipolar magnetic hyperfine Hamil-
tonlan ln a spherical &.I'cc-space, lct Us introduce thc local
Cartesian unit vector (i, j,k) with origin 0 (X=O) and
the unit vectors (uz, us, u~) associated with the spherical
coord1natcs,

k [(u+
~

k
)
)(u'+

~
k

) )] T
Z2 (u u'—)(u+u'+2

(
k

( )

I.et us remark that, owing to the 1/R factor in (33), in
the practical computation of a matrix element

(P„k ~

8'
~ P„k ) (up to 1/8 ) the off-diagonal u'&u

generated matrix elements between the C„k functions can
bc Icplac'cd by tllclr flRt cvRlllRtloll

As usually done, we shall limit ourselves to the con-
sideration of the dipolar magnetic and quadrupolar elec-
tric hyperflne-structure interactions.

uz ——sin8(cosg i +sing j ) +cos8 k,
us ——cos8(cosp i +sing j )—sin8k, (36)

sine o~ ——I v 2(C("o'"),") . (37)

Hence the dipolar magnetic hyperfine Hamiltonian in a
spherical three-space 1s

0 Ag)
8'D ——

uII= —sing I +cosp 1

Introducing the tensorial notation C of u and o of o,
it is easily verified that

A. Dip618f ISgnetic hfpef%1M 1ntcx'sctlon

) )v cosX ~1 (C(l) (l))(l)P~x I 2. 2 (38)

Infeld and Schild have already examined the solutions
of Maxwell equations with a singularity at the spatial ori-
gin. Particularly, for the case of a spherical three-space,
they have given the expressions of the vector potential
components Ak in terms of the eigenfunctions of a dif-
ferential equation. Starting from their results, we have
obtained the following expression of the vector potential
components associated with a static magnetic dipole rno-
mcnt p~ =p~k ly1ng along thc z axis:

A I =22 ——0, A3 ——{)M&/R)cotX sin28 .

Consequently, one gets the following expression of the di-
polar magnetic hyperfine interaction [see Eq. (5)]:

where )M& Rnd p~ are the Bohr and nuclear magneton and
p& and I, the values of the dipolar magnetic moment and
spin of the nucleus.

At the asymptotic flat-space limit, the expression (38)
reduces to the well known flat-space expression (39)

r

, 1.(c"4(")"'. (»)
. I . r'

The determination of the dipolar magn«lc hypcrf Inc
energies (p„k ~

8 D ~
1/i„k ) 111 R spllcrlcal tllrcc-space

amounts to calculate two types of integrals: one involving
the spin and angular (8,p) variables w»ch Rs cxp«tcd 's
the same as in flat space

and the other, l.c., tile pscudoradiaj llltcgl'Rl Involving thc
hypersphcrical variable 7 is

COSJfu(u'») = (I"kQ.k+Q'kP. k)
R sing

When computing off-diagonal fD(u+u'} this integral can
bc rcplaccd by its Rsy111p'totlc flat, llmlt owlIlg to tllc lc-
marks on the order of magnitudes (in 1/R ) (see Sec. V}

")= I (P~'kQvk+Qv'kPuk)» « .

Thc corn«p«aon offD for u =u is detailed in the Appen-
dix C.

B. 'Quadrupoiar ei«trlc hyper'&ne interaction

The exp«sslon of the quadrupolar electric interaction
directly follows from the multipolar expansion of the
Coulombic lntclactlon bctwccn two part1culcs E and J,
which has been derived in Ref. 7

cota). . cotX + y ( ~(l)C~(l)~ (X )g (X )
/=1
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1 eP &(X)= „(sinX) (cotX),

Qx '= g e,g,c"'(|)„p„)&2(X„), (44)

7& and 7& have the usual meaning. As it has been veri-
fied, at the asymptotic fiat limit, the M I(X) and 9I(X)
functions converge to the fiat radial harmonic functions
(1/r)'+' and r', respectively.

If one introduces the curved expression of the quadru-
pole moment of the nucleus

Wg —— (e/—r )O' 'Q~'. (46)

The determination of the quadrupolar electric hyperfine
energies (f„k~ ~

8'g
~ P,k~ ) in a spherical three-space

leads to the calculation of the following integrals:

where e„, g„and (X„O„Q„)are, respectively, the charge,
the orbital gyromagnetic factor, and the coordinates of
nucleon n, one gets the following expression for the qua-
drupolar electric hyperfine interaction:

Wg ———e(cosX/R sin X)C' 'Qz' .

At the asymptotic flat limit, one finds again the classical
expf esslon

J 2 J
10. 2 2

fg(U U)= J (~'k~.k+Q. kQ.k), , dX. (4s)o

fg(U'»)= I, (~'k~.I +Q'kQ. k)r «.
VII. NONREI. ATIVISTIC FINE- AND

8YPERFINE-STRUCTURE HAMII. TGNIANS

One could obtain the nonrelativistic expressions of the
fine and llypcIflIic HallllltoIliaIis aftci scpai'atlllg tllc small
and large component of the Dirac spinor. Indeed, setting

1

2

and W = WD in the Dirac equation (5), one gets

ep cosX
Pz —— m(X ) cr&II — 2 2 o ~sin0

2m' «R2Sin2X
(50)

When calculating fg the same arguments as before when
calculating fD hold and one can replace the off-diagonal
U'+U integrals fg by their fiat definition

In this last expression, the p~ term has been disregarded
owing to its relative order of mag»tude. Using the ex-
pression

1(Ir I )=—io.
p +igg .

sin8 8

and since the Pauli matrices satisfy gag& —ig& (cyclic),
one obtains the anticommutation property (1+g J )Irz
= —or(1+ o' & ). Aft«a little rea«angement using this
last property and the expression (5) ofpz, one finds

1 I) . 2sin g
2si n2+

2 2 2
cK

i ~ 1 dV Ix (E V)2
II gV

R2simg dX 2 8

+ —+l s
1 —cosX 1 Za (1—cosX)

sin g 2g 2 4g 3sjn3+

where s = —,g and m(X)-1 —(Ir2/2)(E V).
Since one can write

Px»»Ire=2[(pz u)( s u) —(p&. s )],
P~ cosH 0'r ——2{p~.u)( s u),

~(X)= 1+ E —eV
2l?lC

i (1+o" I )II=Ix+
A)2

Hp+Hi ——V+ a'rliPi(X)Irril,
2m

cosX
H& 2Ppu ~co(X) ———s»@~rIIoy+ ~ygxII ) .

R sing

where u is the unit vector defined by (36), one finds
cos+

2Pp(Px' I ) 8 sin3+

s —(1+2 cosX)( u. s )u+2pppx'
R S1ng

—pox'[s —(u s)u]
E. sin g dX

r~ g~ ~ w~w ( 1 cosX)cosX—~piap~ ~s —~u siuj- 8 sing
where Pp=eh/2rnc is the Bohr magneton.

(52)
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These expressions (51) and (52) can be compared with
the flat expressions

P V 1

1 a 2a
Ho ———

21' ap ap
l

Hi —— I 's — (E —V) + hV,
2 1 di' 2 8

1 3(s r)r 1
HD =—2pp(pN 1 ) +2pppiv' s—

r

(s r)r 1 dao—ppp~ s-
]p dp

One recognizes in (51), the curved form of the
Schrodinger Hamiltonian H0, of the one-electron fine-
structure Hamiltonian H~ completed by an additional
term which vanishes at the flat limit, and in (52), the
curved form of the dipolar magnetic hyperfine-structure
Hamiltonian where the third term, after averaging con-
siderations, leads to thc Fermi contact term and the last
term vanishes, at the asymptotic flat limit. These expres-
sions had been recently obtained via the covariant form of
the Pauli equation. ' Finally, the pseudoradial fine-
structure and hyperfine-structure integrals originating
from the "curved" expressions (51) and (52) of the Hamil-
tonians can be calculated when using the results of Ap-
pendix 8 with S=n —l and M = l.

case (i=n —1 and i=n —2 levels '). It should be noted
that this space-curvature splitting of degenerate levels
which, in some respects, compare with the Lamb shift, is
independent of n. Obviously, this curvature induced split-
ting h, =k/4R of the degenerate levels should be detect-
able only if R is extremely small. Nevertheless, such a
tractable model, putting in evidence the quantum number
(n, k) dependence of the space-curvature modifications of
the spectra could contribute to distinguish between the
space-curvature effects and the other small perturbations
of the spectra such as radiative corrections, nuclear ef-
fects, etc., and to extract from atomic spectra some specif-
ic information about the local curvature at the position of
a highly excited astrophysical ion.

On the other hand, as pointed out by Teague and Tho-
mas, there could be some practical interest of casting
quantum-mechanical problems in a spherical three-space
since the complete set of basis functions involves only
discrete functions. Moreover, the use of the curved model
Inay also pfcscnt soIIlc advantages 1Q many-center IIlolccu-
lar problems when changing of center. These points need
a moI'e elaborate investigation and will be discussed else-
whcl c.

APPENDIX A: DETERMINATION
OF DIRAC EQUATION

IN A SPHERICAL THREE-SPACE

VIII. CONCLUSION

Finally, wc have pI'oposcd a geometrically sin1plc
heuristic model in order to roughly investigate the space-
curvature effects in atomic structure calculations. Since
space-curvatufc concept 1S dccply I'ootcd m the fclatlvlty
theory, it seems theoretically more consistent to build up
the model with Dirac orbitals rather than with nonrcla-
tivistic orbitals. Indeed, spin-curvature interaction terms
have been more naturally introduced than in our prelimi-
nary 110111eiatlv1stlc stildles. Two specific close ap-
proximations of the Dirac functions in a spherical three-
space have been obtained which both are expressed in
terms of the curved generahzed Kepler functions.

Although the approximate curved Dirac functions (Sec.
III) do not carry the correct 1/R dependence, they are of
interest owing to their closed expression for constructing
orbital basis for many-electron calculations. Nevertheless,
the more elaborate ones (Sec. V) are more suitable for hy-
drogenic atoms.

The calculation of Dirac matrix elements of Hermitian
operators has been rendered as trac~able in the spherical
three-space as in the flat space. An efficient ladder opera-
tor procedure has been devised for obtaining closed-form
expressions of the Kepler integrals in terms of the quan-
turn nuInbers. This technique has avoided a problematical
termwise integration (noninteger quantum numbers).

Physically, we have put in evidence the curvature modi-
fications of the flat fine-structure hydrogenic energy lev-
els: curvature-induced shifts of the nondegenerate levels
and splitting of the degenerate levels. These results gen-
eralize the nonrelativistie ones obtained in a, restricted

The spin covariant derivatives of a spinor and of a ma-
trix are, respectively,

(Al)

where the subscripts;p stand for the covariant derivative,
the I & are the Fock-Ivanenko matrices and the 3& are the
electromagnetic four-vector components.

The covariant derivative of a vector P" is defined in
terms of the Christoffel symbols

(A2)

where, following from the vanishing condition g».~
——0,

the Christoffel symbols are

1 „p g'ap gyp
ap 2 gyp gya

(A3)

The Fock-Ivanenko matrices I
& are obtained from the

vRnishing coQdition

~p)'. =)'~p+&I:I'p F 1=0 (A4)

and are given by the expression
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It is easily found that a convenient choice of the Dirac
matrices y "(X) which obey the anticommutation relations
(2) and lead to the usual polar dependence (8,$) of the
Dirac wave function is H~ ——M cot+-+ q d

M dX (83)

where the ladder operators HM and associated factoriza-
tion function are

-0 0
V

y '=(I/R)(y'sin8cosg+y sin8sing+y cos8),

y =(R sinX) '(y'cos8cosg+y cos8sing —y sinO),

y 3=(R sinX sin8) '( y'si—nP+y cosP),

(A6)

L(M)=M —q /M

Analytical expressions of the RsM functions in terms of
the quantum numbers are known

RsM(X) =N„(sinX) +'exp[ —qX/(S+ 1)]P„"( i—cotX),

where the y& are the constant Dirac matrices

r 0, 0
y'=p= 0 I, y"=, , k=1,23

10 01
01' 10 (A7)

0 —i 1 02= 3=
i 0 ' 0 —1

APPENDIX 8: GENERALIZED KEPLER
FUNCTIONS AND MATRIX ELEMENTS

1. Solution of the Kepler eigenequation

The "curved" generalized Kepler functions RsM(X) are
solutions of the Infeld-Hull type-E (class-I) factorizable
equation of the standard form

M(M+1)
+2q cotX+As RsM(X) =0 (81)

sin g

with 0&7&+. The associated quantization condition is
S—M =u, where u is a non-negative integer (u
=0, 1,2, . . . ). Hence the normalized eigenfunctions
RsM(X) are solutions of the following pair of difference
differential equations:

These constant Dirac matrices y& obey the anticommuta-
tion relations (2) where g"" is the Lorentz diagonal con-
stant metric (1,—1,—1,—1).

From the above definitions, the nonvanishing Christof-
fel symbols and the Fock-Ivanenko matrices in a curved
space-time with line element (3) are found to be

I 2= —siHJ cos+, I 33——siHg cos+ s1n 8,
2 2= 2= 3 — 3=I 33——sln8 cosO, I )2= I ) =I 3 —I 3J —co+

23=P32=cot8, I 0——I i ——0,3= 3=

I k= — . yky for k =2,3./ 1 —cosX
2 S1Hg

One obtains for stationary states, expression (4) of the
Dirac equation.

d2 M(M+1) 2q
p2 p

(85)

with 0& T & Do ~

The normalized eigenfunctions RsM(r) are solutions of
(82) where the ladder operators H M and associated fac-
torization function are

M dr'
L(M)= —q /M

(86)

The analytical expression of the RsM(r) function is

RsM(r)=N„r +'exp[ qr/(S+—1)]L„+(2qr/S+1) .

Let us note that when setting M=y, S=U+y —1

(u =0,1,. . . ), the expression (84) with q =ZRe in the
spherical three-space [or the expression (87) with q=Ze
in the flat space] identifies to the generalized Kepler func-
tions. When setting M=l, S=n —1 (n =1,2, . . . ), and

q =ZR in the spherical three-space (or q=Z in the flat
space), the expression (84) [or (87)] identifies to the
"curved" (or "flat") hydrogenic radial functions.

2. Relations between matrix elements

As pointed out in Ref. 9, since the RsM(X) [and the
RsM(r)] are eigenfunctions of factorizable equations, there
exist particular relations between matrix elements of any
derivable function. Full advantage of these relations is
taken in order to obtain closed-form expressions of the ra-
dial Dirac integrals in terms of the quantum numbers.
Using the expression (83) of the ladder operators, one can
write

(84)

where a = —(S+1)+iq/(S+1) and, in spite of the pres-
ence of the imaginary quantities, the Jacobi polynomials
P„" in (16) are real polynomials in cotX; N„ is a normali-
zation constant.

In flat space, the generalized Kepler functions RsM(r)
are solutions of the Infeld-Hull type-F (class-I) factoriz-
able equation of the standard form

T

HM Rs, M i =As(M)RsM

As(M) = [As L(M)] i As=L (S—+ I)

(82) cotX = + (HM +HM )
q 1 +

2M

and/or

(88a)



cotX=
2 + (H~ I +HI ) ) .

(M 1)' 2 M —1

Then, using the Eqs. (82) together with the mutual ad-
I

Jolntncss pi'opcrty of H~ R11d Hsr, ollc gets RltcrilRtlvc cx-
pI'csslolls for R saIIlc matrix clcIIlcllt 111volviilg RIly deriv-
able function f(X)

&S' M —( If 'o(X
I
SM —» = &S',M —( If I

S M —(& — S',M —( S M —(jM2 ' ' 2M '
dX

+- [A (M)(S',M —1(f ASM)+A .(M)(S',M
i f (SM —1)7 (89a)

(M —1)' ' 2(M —1) '
&X, (S' M —( If l»M —()+ S',M (SM——(j

+, [A,(M —1)(S',M —1 ~f ~S,M —2)

+As(M —1)(S',M —2 )f i
S,M —1)] .

It is easily verified that relations analogous to (89) hold in fiat space with r ' and df/dr in the place of cotX and

df /dX.
3. Analytical expressions of the diagonal (S'=S) matrix elements

Let us set S'=S in (89) and introduce the shortened notation (S,M
~ f ~

S,M') =(M
( f ~

M') and As(M) =A(M).
First, setting f=1 in (89), one gets

(M —1(cotX(M —1)= ~, + (M —1~M)

(M 1)' M —1
(810)

Therefore, this matrix element (810) must be independent of M and, since A(S+1)=0, it is equal to q/(S+1) . One

gets for any value of M

(S,M i
cotX

i
S,M )=q/(S+1)

Setting in (89)f =cotX, fcotX=(1/sin X)—1 and using (811),one gets, after some rearrangements

(M ——, )(M —( z M —( =M+ +A(M(&M —(
I
co(X I M(

sin X M(S+1)

=(M —1)+ +A(M —1)(M —2
i
cotX

i
M —1) .

(M —1)(S+1)
(812)

Using the same arguments as above, it follows that both right sides of (812) are equal to (S+1)+q /(S+1) and one

gCtS

SM =,",1+ "+"
(M+ —,

' )(S+1)'

Setting in (89),f= 1/sin X, one gets

(813)

M(M —(((M —( -'",~ M ( —S M (', M (=M~(—M( M (—', M&- —
8m+ snab 81Il J

l=(M —((A(M —(((M —2, M —() .
S1Q g

Therefore, the left side of (814) is independent of M and equal to zero. Using (813), one gets

SM cosy SM q'
(S+1)'M(M +1)(M + —,

'
)

(S+1)'
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Setting in (89)

cosg df 3 cos X
sin g d& sin X

1

sin g
using both (813) and (814) and noting that —M =—2M +M(2M —1), M —1=—2(M —1) +(M —1)(2M —1), one

gets, after a little manipulation

(2M —3)(2M —l)(2M+1)M(M —1)(M —1 M —()sm g

(S+1) q
q +(2M+1)M (M —1)——,M(M —1)(2M —1)(2M+1)

~2M(M —l)(2M —()(2M+1)A(M)(M —1, M)sin 7

(S+1) q M —1
q 2+ (2M —3)M (M —1)~ ——,

' M (M —1)(2M —3)(2M —1)

After noting that

+2M(M —1)(2M —3)(2M —1)A(M —1)(M —2 M —)) .
sin g

(816)

2M+1 M(M —1) 2M —3 M(M —1)
M' ' M —1 (M —1)'

=3— =3—

and that

(2M + 1)M'(M —1)=3M'(M —1)—M'(M —1)',
(2M —3 )M (M —1) =3M (M —1) —M (M —1)

one finds

(2M —3)(2M —1)(2M+1)M(M —1) M —1 M —()M(M —1) sin g

4 S 1
1 [3 —M(M —1)]

(S+1) q

4q (S+1)4
3

1+
(S+1) q

4q (S + 1)4
1+

(S+1) q2

2

+3M ——,(2M —1)(2M+1) +2(2M —1)(2M+1)A(M) M —1, M)M sin g
2

, +3(M —1)'——,(2M —3)(2M —1)
(M —1)

+2(2M —3)(2M —1)A(M —1)(M —2, M —() .
sin 7

Therefore, the left side of (817) is independent of M, and, finally, one obtains

cos2X 4q [3(S+ 1) —M (M + 1)]
sin4+ (S + 1) (2M —1 )(2M + 1)(2M +3 )M (M + 1)

(S+1)'
g

(817)

1+ 1 (S+1)2M(M+1) 1 —1 (2S+1)(2S+3)
q2 2 3(S 1) —M(M+1)

(818)

This procedure can be continued in chain yielding the analytical expressions of matrix elements of the successive
derivatives of cotX. It should be noted that, at the asymptotic flat limit, for S =n —1 and M =l, the expressions (811),
(813), (81S), and (818) reduce to the well-known analytical expressions of the (n, l

~

r
~

n, l ) integrals with k =1, 2, 3,
and 4, respectively.

Since, one is mainly interested with the predominant I/R contributions, the asymptotic procedure described in Ref. 9
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is sufficient to yield the exact contribution required for the calculation of the dipolar magnetic hyperfine parameter fD.
OIlC Ca.Q Wntc

S,M . S,kl =(S,M ~cotZ fS,M)+ S,M stan —S,M),
I I X

811@ 2R 2
2

S.M -', SM =SM ', SM--'- ', SM 2A- —' S.M

Then, one replaces the &S,M
~

(2R tanX/2)k
~
S,M & lntegrals by the flat evaluation (see, for instance, Ref. 9 when setting

Z =q, n =S+1,1=M)

&S,M
~

r
~
S,M) =—[3(S~1)'—M(M ~1)],

2g
2

&S M
~

r'I, S,M &= +, [5(S~1)z+1—3M{M+1)],
2g

&S,M i
r '

i S,M) =q/(S ~1)
Finally, using previous results (811), (813), and (815) one obtains

1 q (S+1) [3(S+1)—M(M+1)j
sing (S ~1)l 4g

(820)

', SM=
»n X (S ~1)'M(M ~1)(M ~ —, )

(S ~1)[4(s~1)'~M(M ~1)(2M y 1)]
2

The determination of matrix elements of an Hermitian
operator between the Dirac spinors (21) involves the calcu-
lation of pseudoradial integrals which are of the general

I.'(f) = Jo (I"kI'.k+Q'~Q. a)f (»d&

+IEk
y

e.k

. . y

ek +I
y

~u u(f)= Jo (&'kQ.k+Q;k~.k)f+)d&

Using the expression (21) of the P,k{g) and Q„k(g) func-
tlolls ln terms of the generalized Kepler functions R&~(g)
one gets the following expressions:

I„,(f)=4~~kM, „(f)—Zu~„.,(f)j,
&„„(f)=4~~ ZaM, ,(f)~kW, ,(f—)j,

1 ~ Diagollal (o ' =U) pselldorad181 1lltcgl als

+1 &S,M ~f ~S,M)
. y

+ -1 &S,M-1 ~f ~S,M —»ek

y

~„.„(f)=d, &S,M~ f ~
SM) ~d, &S,M 1~I~

SM —»,
W„„(f)=d3 &S',M —1If i S,M ) ~d~ &S',MI f i S,M —1),

. I/2
e'k ekGI= +I +I

&s Rc (e 1)~yl, —— —
ZR e

L (y)=—,~y'
y'

[see Eqs (16) and {81),(82), and (83)], it can be showil
that d3=dg= —(11/R)&s(y). Then, using the relations
(89), one gets
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and/or

R

(S,M —1 M coty — f+— S,M —1)
1 df'

M 2dX

M coty — f — —S,M)
q 1 df

M 2dX

(C4)

Finally, the calculation of the pseudoradial Dirac integrals amounts to the calculation of integrals between Kepler func-
tions of same M(M=y or M =y —1) with 5+1=v+@and q =ZRe. Finally, one gets

r-(f)=4~ (cy+k)&y lf I
r&+(cr k)&—r (I—f I r —»+ r root» —y—

)
2 2Zcx 1 df

R 2 dX

J..(f)= —4~ zo(&rlf
I r& &r —(If—

I r »)—+ r root» ——r)
2 2k 1 df

ZR 2 dX

(C5)

(C6)

where the shortened notation &y
~ f ~

y) stands for diagonal matrix elements between the generalized Kepler functions

i, r(X).

a. Norma1ization of the curved Dirac orbi tais

In order that the Dirac spinor @„t,~ be normalized the P„k(X) and Q„k(X) functions (14) must satisfy the integral con-
dition I„„(f=1)=1, i.e.,

2ZQ4~' 2e/+ 1'&r
I
cotX

I r) =1
R

J

Using (811), the expression (19) of e and keeping in mind that y =k —Z a, one gets the expression (20) of ~.
(C7)

b. Diagonai (v'=v) dipolar magnetic hyperfine integral fv
From (41) and (Cl), it is easily seen that fD(v, v) =J»(f =cosX/R sin X). Using (C6) together with the required in-

tegrals (821), one obtains

4~ Za ek Z R e (1—2@k) (v +y)
(v+y) (y —4) Z R e

(C8)

c. Diagonal (v'=v) quadrupolar electric hyperfine integral f~
From (48) and (Cl), it is easily seen that fbi(v, v) =I,„(f=cosX/R sin X) or, using (C5)

fk =44' (Ey+k)(y t t y +(Ey —k) y —1 t t y —1 + t y y+ — + —
y)

cosJ COS+ 2ZCK 3 cos g 1 1

R sing R sing R~ 2 sing 2 sin X

(C9)

This hypeeine parameter can be exactly calculated from formulas (813), (815), and (818). However since its final ex-
prmsion in te~s of the quantum numbers is cumbersome, it has not been reported hereafter.

2. Calculation of the first-order perturbed energy E„'k'

From (25) and (Cl), it is easily seen that

E„k =— J„„ f=2R tan-ks
2R

and one gets
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2k' 2 ek
E„k ——— m —za +1

R y

~2k 2

+2k —1

. y'

y 2R tan —y —Zax
2

' 1/2

1
~
y 2R tan —y —1

x
2

ek x—1 y —1 2Rtan —y —1
y 2

(Clo)

As has been justified in the main text, the integrals (y I
2R tanX/2

I
y'& will be replaced by their well-known flat expres-

sions

&y Ir Iy&=I:3( v+y)' y—(y+1)l~2Z&

(y I
r

I y —1&=—3(v+y)[(v+y) —y ]'~ l2Ze .

Thus one obtains the expression (26) of E,'t", .
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