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Previously the inverse scattering method has been applied by various authors (Gardner, Greene,
Kruskal and Miura, and Lax) to obtain solutions u (x,#) of certain nonlinear equations [e.g., the
Korteweg—de Vries (KdV) equation] under the boundary condition u (x,?)—0 as x —+ . Recent-
ly via Bdcklund transformation, Au and Fung have obtained the KdV one-soliton solution which
contains the vacuum parameter =<0, and b has been shown to be of physical significance. In fact,
b is the boundary value of u (x,#): u(x,t)—b as x—* o0. In this investigation we provide the gen-
eralized inverse scattering theory under the more general boundary condition u(x,t)—b=0 as
x—*+ . The one-soliton solution obtainable from this inverse scattering method is identical to the
new solution just found by Au and Fung [Phys Rev. B 25, 6460 (1982)]. The solution containing
nonzero b is outside the square-integrable class. This extension of the class of functions has a cru-
cial feature in attempting to understand physical observables.

I. INTRODUCTION

Recently, via the Bicklund transformation!—3 we have
found new solutions to the Korteweg—de Vries (KdV)
equation u, + 12uu, +u,, =0. In our previous work, we
have emphasized that the new solutions contain one extra
parameter b more than that occur in previous solutions.
This parameter, which is nonzero in general, has been
called the vacuum parameter, and represents the value of
u as x— 1 o0. We have demonstrated,! in fact, that b is a
physical observable parameter: A soliton can travel to the
left or to the right, or remain stationary, depending on the
values of b taken. Moreover, for various b values, a soli-
ton with a smaller amplitude can travel faster than anoth-
er soliton with a larger amplitude. Our investigation im-
plies that we need to extend our study of the solutions of
the KdV equation of infinite length.

Based on our discovery, we raise the following question:
Since using the differential geometrical approach, via
Bicklund transformation, a nonzero parameter exists in
our solutions, can we use another approach to find the
same set of solutions to the KdV equation? Would the pa-
rameter b appear? It is therefore interesting and
worthwhile to review other standard approaches, to see
whether a more general solution should include the pa-
rameter b. If the answer to the stated question is positive,
such an investigation would also substantiate our previous
results. In this study, we shall reexamine the inverse
scattering approach in such an aspect.

Previously, Gardner, Greene, Kruskal, and Miura* have
developed the inverse scattering method to solve the KdV
equation under the boundary condition u—0 as x —t .
Lax> formulated the method in a more general form under
the same boundary condition. In Sec. II we shall provide
the essential mathematical theorems and expressions
within the inverse scattering regime under the more gen-
eral boundary condition #—b=40 as x—* . Using the
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results deduced in Sec. II, we obtain in Sec. III the more
general one-soliton solution which does include one more
parameter b. Section IV lists the crucial ideas and impli-
cations of our investigation.

II. RELEVANT THEOREMS
Let u (x,¢) be a solution of the KdV equation

Uy + 120y, + 1 =0 (1)

such that u(x,?) is sufficiently smooth and satisfies the
boundary condition

u(x,t)>b as x>+ , (2)

and also, all its x derivatives tend to zero as x — + .

The inverse scattering method of solving the KdV equa-
tion is proposed by Gardner et al.* In their application of
the method, u (x,?) is required to vanished as x —+ o« and
satisfies the condition

SO At x D~ 260 dx <o . 3)

Clearly, under the nonvanishing boundary condition (2),
u (x,t) does not satisfy condition (3). Hence difficulties
arise in solving u(x,t) by using the inverse scattering

method.
In our analysis, we do not attempt to solve u(x,?)

directly using the inverse scattering method. Instead, we
replace u (x,t) by u (x,t)—b, use

Vi(x,t)=—2[u(x,t)—b] 4)
as a scattering potential of the Schrodinger problem, and
assume that

J5 a4 x D Ven dx <o . (5)

The reason for adopting such an approach will be clarified
as we follow our analysis.
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Define the operators L (t), B(t), and U(z) by

—d? =3

Lty =——7F+V(x,t)=—— —2[u(x,) —b], (6)
ox

3 d d
B(t)=—4i-2— _6i —
(2) lax3 6i |u(x,t) o + axu(x,t) , )]

l,aU(t)
ot

By a straightforward manipulation, we obtain the follow-
ing theorem specifying the properties L (¢), B(t), and
U(1).

Theorem 1. Let L(t), B(t), and U(t) be defined by (6),
(7), and (8), then

=B(1)U(2), U0)=I. ®

oL,
=80, L], ©)
L(t)=U@LOU ), (10)
and
L(OW)=k2(0), l(ﬁ_B(mp(t) (11)

where k? is independent of the parameter . The operators
—3%/3x%*—2u(x,t) and B(t) are the common Lax’s pair.
In our case of study, the Lax’s pair is replaced by
L(t)=—23%*/0x%—2[u(x,t)—b] and B(t). In view of
theorem 1 and the condition (5), we can employ the in-
verse scattering method to obtain V'(x,t) for each time ¢.
The function u (x, t) can then be determined by using the
relation u(x,t)=—5[V(x,t)—2b]. Hence u(x,t) can be
deduced readily under the more general boundary condi-
tionu—basx—+ .

To carry out the inverse scattering method, we consider
the following eigenvalue problem:

2
——-g—lé~2[u(x,t)——b]¢=k2dz , (12)
X

where k is a constant. Suppose ¥(k,?) is a solution of (12)
satisfying the following boundary conditions:

e~ L R (k,t)e?™™ as x— oo (13)

k) {
T (k,t)e ™% as x— — oo (14)
where R (k,t) and T(k,t) are, respectively, the reflection
and transmission coefficients of the wave solution to (12).
Using (8), (10), and (11) we obtain the following theorem
(see Appendix A for proof).
Theorem 2. Under the boundary condition u(x,t)—b
as x—* o, the reflection and transmission coefficients
R (k,t) and T(k,t) of the wave solution ¥(k,?) are given by

R (k,t)=R (k’o)ei(8k3—24kb)t ,

(15)
T(k,t)= T(k,o) B

We see that as b=0, theorem 2 is reduced to the known
result R (k,t)=R (k, O)eg""’ ! for the special case u—0 as
X—>* .

Since the potential V(x,t)=—2[u(x,t)—b] satisfies
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condition (5), we can employ the inverse scattering
method to determine V(x,t) for each time t. Within the
regime of this method, the potential ¥ (x,?) is given by

dg(x,x)
dx ’

where g(x,y) for x <y is the solution of the Gel’fand-
Levitan equation®’

Vix,t)=—2 (16)

gx,»)+K(x +y)+ f:K(y +y)g(x,y')dy’'=0 (17)
with
K(y)——f Rk0e™dk+ 3 Mye™ , (19)

n=1

where —K,f, n=1,2,...,N are the bound-state energies
of the operator L (t)=—3%/3x?+V(x,t), and M,, are the
normalization constants for the bound states.

Given the reflection coefficient R (k,t), the bound-state
energies —K,f, and the normalization constants M,, we
can solve the Gel’fand-Levitan equation for g(x,y), and
thus V(x,t) can be determined by using relation (16). By
employing equations (8), (10), and (11), we obtain the fol-
lowing theorem.

Theorem 3. Under the boundary condition u(x,t)—b
as x—* o, the normalization constant M, (¢) for the
bound states of the operator L (1)=—3?/3x%+V(x,t) is
given by

3
M ()= (8K +24bK, )t (0) (19)

Again, expressxon (19) becomes the conventional result

M, (t)=e K2 M (0) when b=0, as expected. The proof of
the theorem is presented in Appendix B.

III. ONE-SOLITON SOLUTION FOR b0

Let us consider the initial potential —2[u (x,0)—b]
which has only one bound state of energy —K?2, where K
is a real number, and with no reflection, i.e., R (k,0)=0.
From the Gel’fand-Levitan equation (17) and using rela-
tion (19), we yield

g (x’y,t)+M(O)e(8K3+24bK)te-K(x +y)

+ fx”M(o)e(sK3+z4bK>;e ~K+¥g (x,p",)dy’ =0 .

(20)
We now express g (x,,t) in the form
gx,y,t)=e"Bn(x,1) (1)
and substituting (21) into (20), we arrive at
e(8K3+24bK)te —K(x +y)
g(x’y’t)=—M(0) .
1 M(0) (sk3+24bK), —2Kx
2K
(22)
In view of relation (16), we obtain the solution u (x,?):
u(x,t)=b +K2sech? |K lx —(4K2412b)t — —155 ] . (23)
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where the “phase” & is

M(0)
5= %IHT . (24)
Expressing a parameter A such that
K=viAi-2b , (25)
we can write (23) in the form
u(x,t)=b +(A—2b)sech? [V A—2b [x —4(b +A)t
_ 5
VA=2b ||’
(26)

This one-soliton solution via the generalized inverse
scattering method is identical to that obtained from the
Bicklund transformation approach obtained by Au and
Fung! recently.

IV. CONCLUSIONS

From our investigation in this paper, we draw the fol-
lowing conclusions.

(1) Motivated by our previous work' on obtaining new
solutions to the KdV equation, we have presented the gen-
eralized inverse scattering method under the more general
boundary condition u —b5£0 as x—* . As an example,
we have deduced a set of one-soliton solutions which is
identical to that obtained recently by Au and Fung! via
the Béacklund transformation method. In treating our
problem, in the first step, instead of solving for u (x,t) in
the KdV equation, we solve for the potential V(x,t)
= —2[u(x,t)—b] using the inverse scattering method
under the generalized boundary condition u (x,?) tends to
different constant values as x —+ «. In the second (obvi-
ous) step, u (x,t) falls out readily once V' (x,t) is known.

(2) Perhaps one of the most important aspects of this
investigation is that we have learned from our mathemati-
cal deduction (as summarized in theorem 1) to extend our
class of wu(x,t) (solution) function to a non-square-
integrable class. That is, the length | _ u*u dx is infin-
ite. In the past, it was generally believed that most of the
physical observables are embedded in the restricted
square-integrable class. Our discovery indicates that in
the nonlinear world, we may obtain physical information
in the non-square-integrable class. For future research it
is meaningful, therefore, to study certain special proper-
ties of functions in the non-square-integrable class, and see
what new information about the physical world can arise.

(3) Under the general boundary condition, theorem 2
implies that the phase difference between the reflection
and transmission coefficients (R and T) of the wave solu-
tion to the Schrodinger equation is, in general, nonzero
and depends on the vacuum parameters b. For a one-
soliton solution, the fact that there is a new phase differ-
ence in R and T implies that the velocity, and amplitude
(and pulse width, in general) depend on the parameters b
and A. It is clear from expression (19) that the normaliza-
tion constant M, depends on b also. This result implies
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that the vacuum parameter b influences the energy spec-
trum and the properties of the bound states also. In fact,
it is not difficult to see that when the potential V' (x,?) has
changed from —2u(x,t) (old case) to —2[u(x,t)—b],
M, (¢) is necessarily changed.

(4) Some time ago, it was stated in Ref. 8 that “Interest-
ing conditions that we have not treated include the case
where u (x,t) approaches different constants as x — =+ 0,
and the case where u(x,t) is periodic in x; the former
would seem to yield to essentially the same approach
here.” This article has provided a concrete answer to the
first part of the query raised. It appears that, with the in-
clusion of the more general boundary condition, more
physical features can be deduced from solutions to non-
linear equations.”~!! This investigation strengthens our
belief, which Au and Fung have stated earlier:! that dif-
ferent vacuum states, as specified by the vacuum parame-
ter b, of the nonlinear processes represented by the KdV
and other nonlinear equations have different effects on the

observable physical state.

APPENDIX A
Let ¥(k,t) be a solution of the Schrédinger problem
L (t)(k,t)=k>(k,t)

satisfying the following boundary conditions:

(129

(13)

e~ 4 R(k,1)e™ as x— o
Pk )= o

T(k,t)e ™ as x—— o .

Define ¢(k,t) by
ok, t)=U()Y(k,0) ,

where U(t) is given by (8). By using the time-evolution
equation i0U(¢) /3t =B (¢)U(¢t) and (A1) we obtain

iﬁ%ﬁzmtwkﬁ .
Next, using the relation L (¢)=U(¢)L (0)U ~!(¢) [Eq. (10)]
and (12), we have

L()p(k,t)=k*P(k,t) .

In view of (12) and (A3), ¢(k,t) satisfies the same equation

(A1)

(A2)

(A3)

as Y(k,t).

Let us now find out the asymptotic form of #(k,z).
Since V(x,t)= —2[u (x,t)—b]—0 as x — + «, we have
bkt a+(k,t)e‘:k"+a_(k,t)e"’:’“‘ as X — oo (Ad)

b_,_(k,t)e‘k"-}—b_(k,t)e”'k" as X —— oo .
Now, as u (x,t)—b when x — + «, we have
B(t)=—4i—a—3——6i u(x t)—a-——f———a—u(x t)
ax3 " ox dx ’
z—-“l'i:é-—IZibi asx—too . (A5)
ox3 ox -
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Using (A2) and (A5), we arrive at

a+(k,t)=a+(k,0)ei(4k3—12kb)t ,

a_(k,t)=a_(k,0)e i 4k —12kb)

b+(k,t)=b+(k’0)ei(4k3—12kb)z , (A6)
b_(k,t)=b_(k,0)e —i4k’—12kb)t
From (A1) and (13) and (14),
1

i 3_ i . 3_ .
¢(k,t)z e i(4k 12kb)te 1kx+R(k’0)et(4k 12kb)teth

i 3_ i
T(k,O)e i(4k 12kb)te ikx as X — — oo .

From (A9), we have

T
¢(k,t)€'(4k ——12kb)t2

T(k,0)e ™™ as x—— oo .
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#(k,0)=U(0)¢(k,0)

e L R (k,0)e™®™ as x— o

. . 3 .
e“'k"+R(k,0)e'(8k ——-24kb)texkx as X — oo

=y(k,0)~ )
T(k,0)e ~** as x— — (A7)
hence we have
a,(k,00=R(k,0), a_(k,0)=1, (A8)
b, (k,0)=0, b_(k,0)=T(k,0).
Substituting (A6) and (A8) into (A4), we obtain
as X — oo
(A9)
(A10)
I
Y (=Ut), , (B5)

Since Y(k,t) and ¢(k,t)e’ * —12K0)X qaticfy the same equa-
tion, (12), and both of them satisfy the same boundary
condition, as can be seen from (13), (14), and (A10), we
conclude that

Wk,t) =(k,)e 4> —12kb) Al
hence we arrive at
R (k,t)=R (k,0)e!(8k’—24kb)t
" (15)
T(k,)=T(k,0) ,

which are the required expressions.

APPENDIX B

Let f(k,t) be the solution to Eq. (12) satisfying the fol-
lowing boundary condition:

(B1)

The bound states of the operator L (t)=—%/9x>2
—2[u(x,t)—b] are f(iK,,t), where —K7, n=12,...,N
are the bound-state energies of L(¢). The normalization
constant for the bound states is

M= [ [ Pwikndx] "

f(x,k,t)—>e™ as x— o0 .

(B2)

Let us determine the time dependence of M, (z). Con-
sider the solution ¢,, n=1,2, ..., N to the equation

3*Yn 2
——— —2[u(x,0)—b]=—K, ¢, (B3)
ax
satisfying the following boundary conditions:
R,(0)e ~En* a5 x> o0
Yn~ Kox (B4)
T,(0)e ™ as x— — o

where R, (0) and T,(0) are constants. Define

where U(t) is given by Eq. (8). Since idU/9t(¢t)

=B(t)U(t), we have
i3¢n
ot

Also, by using the relation L (1)=U(¢)L (0)U ~(z), we ob-
tain

()=B(t),(t) . (B6)

L (W, (t)=—KX,(1) . (B7)
Let
—K x
R,(tle ™ asx—o0
Yu(t)= K, (B8)

x
as X——oo .

T,(t)e

In fact, R,(¢t) and T,(t) can be determined by using the
i0Y,(2)/3t =B ()¢, (1) [Eq. (B6)]. The result is

3
(4K} +12bK,)t

R,(t)=R,(0)e (B9)
and
(4K
T, (1) =T, (0)e ~*Knt12Ka)0 (B10)
It is clear from (B8) that
U, (8)=R,(1)f1(iK,,1) . (B11)

Hence, by using Eq. (B9), we have [recalling that 1, (z) is
also a function of x]

[° woax=RX0 [* fixiK,,ndx

3
=R,f(0)e(8K"+24bK" )
X [° Fx,iKy,0dx . (B12)
As U is unitary, we have
f_: Ui (x,0)dx = f_w Y2 (x,0)dx . (B13)
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Hence
3 ©
R0 ™2 7 fhx ik, tdx
=R30) [ fi(x,iK,,00dx ,
or
[ Ak, nax

_ 3 0
— TR [T £2(x iK,,00dx . (B4)
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That is,

M, ()= [f_wwff(x,iK,,,t)dx]_l

3 w -1
=e(8K"+Z4bK")t[f_ f%(x,iK,,,O)dx]

(8K3+24bK, )t
e

= ""M,(0) . (B15)
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