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The new differential equation for the statistical atom is derived and discussed in detail. Numeri-
cal results are presented which provide evidence for the validity of all approximations that have en-
tered the formalism. A comparison of experimental data for diamagnetic susceptibilities with
theoretical predictions shows that the new statistical atom significantly surpasses its Hartree-Fock

competitor.

INTRODUCTION

This paper supplements the immediately preceding
one.! It contains a detailed derivation of the new differen-
tial equation for the single-electron potential of the statis-
tical atom. There follows a discussion of the properties of
this equation and, in particular, of its implications con-
cerning both the vicinity of the nucleus and the outer re-
gions occupied by the weakly bound electrons. Then we
explain the numerical procedure that has been employed
for solving the differential equation. Finally, numerical
results are presented for the inert-gas atoms argon, kryp-
ton, and xenon, as well as for the related singly and dou-
bly charged ions. Throughout this paper we use the nota-
tion defined in Ref. 1, and refer to this paper as I; e.g.,
(161) of I refers to Eq. (161) of Ref. 1.

DIFFERENTIAL EQUATION

The fundamental equation of electrostatics, Poisson’s
equation (161) of I [see also (131) of 1],

equates the negative Laplacian of the electrostatic poten-
tial of the electrons to their density, multiplied by 47. In
Ref. 1 we found an expression for » in terms of V, its gra-
dient, and its Laplacian [Eqgs. (152)—(154) of I]. We also
recall that the exchange potential is related to the density
through [Eq. (162) of I]

Vex =7ra—al;n . (2)

While we were content to make contact with an earlier
calculation? in Ref. 1, where we checked the semiclassical
limit of the combination of Egs. (1) and (2), we now con-
struct the new differential equation for the single-particle
potential V. This will lead us to the result already report-
ed in Eq. (177) of L.

We start by rewriting the electron density in such a way
as to facilitate the recognition of those parts that have to
be taken into account in Eq. (2). Upon carrying out the
differentiation in # [Eq. (154) of I] we notice that it splits
into two parts

A=n,+n,, (3)

of which the first one contains only terms in ¥ and V¥,
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whereas the second one possesses second derivatives of ¥, too:
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In (4) and (5) we made use of the differentiation rules
(144), (146), and (149) of L.

It is time to recall that the derivation of (2) [or (101) of
1] did not pay attention to the term (B+V)*V of (7) in I,
but merely used the momentum dependence +p’+¢.
Consequently, for consistency in calculating V., we have
to discard all contributions to the density that contain, or
originate in, second derivatives of the potential. This con-
cerns not only 7,, but also the % _; term in the final
form of (4) because it ultimately stems from the Laplacian
part of Eg in (29) of I. In short, we compute the ex-

change potential as

90 |1 gp3__0
Va=mop |2 12VV| a(fiV)f? 6)

which results in [Egs. (149) and (144) of I]
Vee=— | 2VV | F—+7_,) . )

We remark that after dropping the contributions that
refer to the strongly bound electrons, we do not reproduce
(107) of 1 for which a simplified density [Eq. (106) of I]
was used. Both the density and the exchange potential
have one additional term which is created by the variation
of VV in the energy [Eq. (150) of I] and could not have
been anticipated earlier. However, these extra terms do
not contribute in the TF limit (—y >>1).

Having found the exchange potential, we face the ques-
tion of what to do with its Laplacian in the Poisson equa-
tion (1). Were we to actually evaluate the Laplacian of (7)
as it stands, we would end up with a third-order differen-
tial equation for V. But if one wants, as we do, to main-
tain the basic simplicity of TF, one ingredient of which is
the low order of the differential equation, one will aim at
a second-order differential equation and look for a sensi-
ble approximation of V2V,,.

Since we cannot tinker with the divergence in the La-
placian without destroying the boundary conditions of V,
we really need an approximation of the gradient of the ex-
change potential,

|
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So it comes down to replacing
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by something that no longer contains second derivatives
of the potential. Although not essential, spherical sym-
metry helps here. With the aid of
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There are, of course, a number of options for the approxi-
mation of V2V herein. For simplicity, let us make the
choice V?V'=0. Then
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and by utilizing (9)—(12) and the differentiation rules (144), (146), and (149) of I we get the ingredients of the Laplacian

of the exchange potential,
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This and the density (152) of I, in which 7 is [Egs. (3)—(5), and (9)—(12)]
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are now inserted into the Poisson equation (1), and solving for V2¥ supplies us finally with the differential equation for
v
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which we have already reported in (177) of L.

We are ready to admit that this, although being an ex-
tension of the TF equation, no longer has any striking
resemblance to it. However, there are common features:
first, it is a second-order differential equation; second, it is
one equation for all systems, as compared to Hartree-Fock
formulations, where going from N to N +1 changes the
number of functions to be found; third, different N and Z
enter the problem via the boundary conditions, without
direct effect on the differential equation.

There are enormous differences, too. But they are of a
more technical nature. In the case of the TF equation, the
numerical challenge was merely to find £ and ¥ such that
the differential equation along with the boundary condi-
tions, for given N and Z,

—Z asr—0
—(Z —N) asr—o

was satisfied. Now, we encounter additional complica-
tions because of the special treatment of the strongly
bound electrons. For fixed ng, the four new parameters
£1,62,0Q1,0,—each of them being given by an integral in-
volving the potential—also have to be adjusted. This is
not a new quality, however; it is just an increase in the
number of parameters from one (§ in TF theory) to five.
Our companion paper’ on the correlations for strongly

rV— (20)

2 2

1
2 70— Ay —Fa(3) = Ay;F (3] = 3 5
=1 j=1

23T s+ TF _s)

(19)

Ibound electrons in the TF model discusses how to handle
these parameters. The main change from what is done
there comes from the abundance of Airy functions in the
new differential equation (19). That makes it numerically
more involved (and more expensive), but again this is not
a fundamental departure from the TF equation.

SMALL DISTANCES

When approaching the origin we encounter the strong
cancellations that have been already briefly discussed fol-
lowing Eq. (36) of I. In the &, [Eq. (134) of I)], y and
the y; are for small r given by

2z —-2/3
»yj=2|— l =—(2Zr'3, 21)
r r
whereas their difference is
7 -2/3
Ayj=y;—y=2{;—8) | =5
§i—§
== (2zr1”? (22)
This implies that the %, for »—0, behave like
L Ay, 2P, )+ (A9, P F sy -
Y Vi) Ly _2\Yj 3 Vi) Ly ~3\);j
; 21 [g-¢)
=+(2Zr*°F, 0 3 = |22 23)
=12 Z
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We insert this into the differential equation for ¥ [Eq. (19)] and learn that at the origin the demonmatorzls 1 wh11e+t1}}§
numerator has contributions from 7., and from its last term, which possesses the factor (—1/7%)[2VV |

r~83. Thus

—v?

v+Z
r

Upon recalling that
—-1/2

F_,(0)= —2 Ai(0)AI"(0)= > (25)

and employing the recurrence relation (119) of I, we find

vyl
r
= AT N gyong (r =0)
172
3 (22)32 §,ZZ§] as r—0. (26)

An implication of both this and (23) is the vanishing of #

[Eq. (18)] at the origin. Therefore, the electronic density
at that point is entirely given by ngyon,:

7 (r =0)=ngone(r =0)
2
ot 3 %lewnjliv}
i=1

With the aid of the following familiar property of the
Coulombic densities:

(27)

r=0

(22) 1

l'pnlavlr 0= 41 25’ (28)
(r—O)—zznzl'ﬁnlavlr =0
n=1

_zP &1

- 41 n=1n3 ’ (29)
we get from (27)
227 | < 1 @ %)

=0)=-"21 — — 30
n(r=0) 25t 4ng+1)° 0

41 n=1 n3 4’1_‘5

The first term in the large parentheses is the contribu-
tion of the specially treated strongly bound electrons,
while the terms containing the Q; represent the statistical-
ly handled bulk of electrons.

As we remarked in Ref. 1, for most practical applica-
tions n; equals 1, under which circumstance (30) reads as

follows:

4 oV

VVa=(VP) [ [2VV| —1/3[-—F_3<y>]—~— [2VV |

(VP (88)[2VV |1

I

1
61

2 1
= 4T N girong (7 =0) — 3 (2Z)’[F_4(0)+ +F_7(0)+ 5 F_10(0)] z 2 [

1+§51|2\”7’V;—1
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2
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(ZZ)

n(r=0))=—"—"—(1+ 4Q1+128Q2) for ng=1. (31)

LARGE DISTANCES

Now we turn to the region of large distances where all
terms that refer to the strongly bound electrons are effec-
tively zero. Thus, all %,’s are now just F,(y)’s, and
Rgirong 1S absent. By “large r” we mean distances suffi-
ciently far beyond the edge. That becomes more concrete
by stating that the potential V is small compared to £, al-
lowing the approximation

y=2V+&)|2VV | ~¥=2£|2VV |73, 32

Then, the combination of (62) from I with the asymptotic
form for the Airy functions [Eq. (67) of I] produces, more
precisely than (66) of 1,

Fo(y)zﬁy_'/zexp(——}yyl) for y >>1 (33)
which by differentiation or integration yields

—n

F,(y)= Fy(y)

_d

dy
E%(4y)‘<"+1’/2exp(—%y3/2) for y >>1 (34)
or, if we make use of (32),

F,,(y)z i(sg)—(n+l)/2 l 2€V ’ (n+1)/3

3/2
X exp _li%_é;)__ , rlarge. (35)
319v|

The asymptotic boundary condition in (20) implies that,
for ions, | V¥V | approaches zero like 1/72 and even faster
for neutral atoms. Consequently, in a sum of F,’s the one
F, with the most negative index dominates.

A first example for the application of all these prepara-
tory remarks is the gradient of the exchange potential [Eq.

(14)],

—5/3 1 F S(y)
3/2
exp 2 Q_é:i—— , r large (36)
3 vy
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wherein we used 8V /dr=| VV|. It is clear that in cal-
culating the gradient of the electrostatic potential,
V=V —V¢, there V. is negligible compared to V.
Thus, asymptotically we find

darn = — V2 V—Vex+% =-VV, (37)

where the density n=# is now approximately given by
[Eq. (18)]

. 19 =
drii= |2V V| %F_4(y)+731:— |2VV | ~13LF_¢(y)

—(V2W) |2VV | ~V3LF_¢(y) . (38)

Again we dispose of the term involving V>V because it is
negligible when added to the other V2V in (37). At this
stage, on inserting (35) and 0V /dr=| VV |, we have

ey L 3/21§£i2€y’—1
VY = 36W(sg) +3 rl I

3/2
xexp | — 226" 1 (39)
39v

After noticing that the second term in this sum asymptot-
ically outweighs the first one, we are led to

4 spp_ 1
— VWV =4rn= (2¢) =
32
X exp —2(—2-_@—— , rlarge. (40)
3 1Vy|

The message of this equation is twofold. For N <Z, it
tells us that beyond the edge of the ion the density drops
off very rapidly:

1
277

_rr
Z_N

r
Z—-N

n= .

__2(2;)3/2

572
(28) 3

exp

(41)

For N =Z, the main information contained in (40) is, be-
sides the large-distance behavior of the density, the as-
surance that there is no contradiction in assuming that for
neutral atoms § is positive (though small), not zero.

We conclude this section by demonstrating why § can-
not be zero for N =Z. This could be done by investigat-
ing the asymptotic properties of V>V once more, but we
prefer a simpler, physical argument. It starts with observ-
ing that in this case y would certainly be negative for
large r, with two possible limits:

(42a)
(42b)

y0£07
as ¥r— oo .

y=2V|[2VV]| 23

— 00,

Now we look at the asymptotic form of the exchange po-
tential [Eq. (7)]
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Ve — | 2VV | V3[Fy(p)— +F _2(»)]

2 _ _
=V(_y) 2y |+ (FIA P =3y A,

(43)

where we inserted the explicit forms of F; and F_, given
in (63) and (64) of I. The Airy function factor is obvious-
ly positive for all y <0. Thus, in order to prevent V.,
from growing large as compared to ¥V, which would be
physically unacceptable in the asymptotic low-density
domain, possibility (42b) has to be realized. We can then
make use of the large- | y | behavior of the Airy functions
[Egs. (67) and (69) of I] and arrive at

2 1

= = [1+5sin(5 |y [*)].
T |y|1/2|2VV|1/3 3 3‘ |

f—4

ex —

(44)

Here, V., becomes a very small fraction of V for large r,
but the rapid oscillations of the sine function cause VV,,
to be arbitrarily larger than VV. Again we encounter an
unphysical behavior. So (42b) is equally discredited.

The lesson learned from this discussion is that, indeed,
§ is positive for neutral atoms. Consequently, {=0 ap-
plies to a negative ion, for which y is asymptotically a
large positive number, and there is no problem with the
exchange potential (43).

NUMERICAL PROCEDURE

The numerical search for the potential ¥V, along with
the parameters &,§;,Q;, begins with an appropriate choice
of variables. For that, we remark that under scaling
transformations of the type

V(r)—ABV (Ar),

(45)
g_))\ﬂg s
y transforms according to
y(r—AB=23y (Ar) (46)

which is simplest for 3=2. This observation enables us to
make an optimal choice for the argument of the function
giving the ratio between the potential ¥ and the Coulomb
energy of an electron with the nucleus,*

V(r)=__%f(x):-zl+“f—;xl, x=Z%. (47)

For, since (47) looks like a scaling (45) with Z*~A and
Z'*t2 A5, we have the relation

l B

a= B_1 ; (48)
thus for =2,
a=1. (49)

The function f is therefore most conveniently chosen as

V(r)=—%f(Zr)=—sz%, x=2Zr (50)
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where f(x) still possesses an implicit Z dependence, of
course. For original TF the basic scaling has =4, so
that =, x ~Z!/3 there. More detail on scaling in TF

is given in the mentioned companion paper.> In analogy
to (50) we also introduce a function g(x) that goes with
the derivative of V(r),

K _ 38(x)
ar Vin=Z2 el (51)

It is simply related to f(x) by a Legendre transformation,
g)=f(x)—x—f(x) . (52)
dx

The new variable x =Zr is also particularly advanta-
geous in view of the known Z dependence of the Coulom-
bic densities | 1/1,,j |2, and p;:

, 23
l ¢nj ' av= Z;Qﬁnj(zr) ’ (53)
3
pin=2a,zn, (54)
where
ns
D (x)= 3 2n%p,(x), (55)
n=1

which introduces the density functions ¢, (x). Here is a

list of the first few:

bi(x)=4e >,
$(x)=+5(1—x +5xNe™*, (56)
Py(x)=55(1—%x +%x2—%f—x3+%x4)e —x/3

As a consequence of the normalization of I‘I/J,,j |2,, they
are normalized to unity,

fo“’ dx x%¢,(x)=1. (57)

Upon inserting (50) and (53) into (136) of I we find the
explicit Z dependence of {; to be simply given by an
overall factor Z2,

(=2 50+ [ e =g | o
J

This invites the definition of distances x; according to

ZZ
supplemented by
2
_Z (60)
X0

which leads to

2x 1/3
[[g(x)]2 } ’

2x 1/3
[[g(x)]2 ] '

[f(x)

(61)

o
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Thus, the arguments of all the F, have no explicit Z
dependence. One simple implication thereof is that Q;
also does not contain Z explicitly,

Q=7 fowdx lg(x) | ;=)
X[F1(y;)—y;Fo(p;)] (62)

[Eq. (140) of I]. Another one is that in the new variables,
the exchange potential (7) is a function of x, multiplied by
a single factor of Z,

2g(x)
x

Vy=—2Z (5«'1— +F _y) . (63)

We can therefore conclude that, for the bulk of electrons,
Ve is smaller than V by roughly a factor of 1/Z.

The density, being of the dimension 1/r% has, of
course, a factor Z3. This becomes obvious when utilizing
Egs. (47), (51), and (53)—(55) to rewrite (152)—(154) of 1
as

n—Z— [CD (x)+ 2 2QJ¢,, (x)

Am =1
3
+Z 8% (o1
2w
—1/3
Z3 3 |g(x)|2g(x) 1
_L_ 0 18X 18X (gortT ],
67T ax x2 x2 ( 0+ 6 _3) (64)

The differential equation for ¥V, Eq. (19), will now be
expressed in terms of f(x) by employing

2 2
_VZV(r>=%§2- —Z V() |= id—f( ). (65

Z

Not wanting to copy (19) we just remark that f(x) obeys
a differential equation of the structure

a(x)

dxzf(x)—"Z—b(x) ) (66)
which does contain Z explicitly in the denominator, while
a(x) and b(x) depend on Z only implicitly. This is a
consequence of the extra factor Z in V as compared to
Ve. Contrary to simple TF, it is impossible in the new
theory to derive a universal (i.e., Z-independent) differen-

tial equation.
For given N and Z, the numerical challenge is to find a
solution to (66), subject to the boundary conditions of (20),

f(0)=g(0)=1, 67

N
together with the five parameters §,§;,,Q,,,, four of
which themselves are given in terms of integrals involving
f(x) and g(x).

For positive ions, N < Z, one begins by making a guess
for £,8;,Q;. Then starting with the known asymptotic
values of f and g, (67), at a distance x so large that the
right-hand side of (66) is numerically zero, one integrates
the differential equation inwards to x =0 and evaluates
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the integrals for Q; and £;. The comparison with the ini-
tial guesses leads to improved values for these parameters.
The test

FlO)=1 (68)

supplies information about £, again yielding a better
value. Then, with the new set of parameters one in-
tegrates once more, and by iteration finally finds f(x) as
well as £,5;,0;.

Unfortunately, this procedure is not applicable to neu-
tral systems because the asymptotic forms of f(x) and
g(x) for large values of x are unknown, so that initial
values for the numerical inward integration are not avail-
able. (This is different from the situation of Ref. 3, where
one knew that the neutral-atom potential at large dis-
tances is a rescaled TF potential.) Since a simple outward
integration, beginning with f(0)=1 and a guess for
(df /dx)(0), would be unstable because of its sensitivity to
round-off errors, and since a mixed strategy of integrating
in both directions from an intermediate distance would in-
troduce two more numerical parameters (e.g., f and g at
the intermediate point), we resort to extrapolating the
N =Z data from results obtained for ions in the manner
described above. For this extrapolation we use the five
ions which have fixed N and

Z-N=21,54%, (69)

of which the first two are physical systems interesting in
themselves.

NUMERICAL RESULTS

We report numerical results for the inert gases
Z =N =18,36,54, and for the related ions with
Z=N+1,N+2.

The first step towards finding the potential V—and all
the quantities derived from it, such as the exchange poten-
tial and the density—for these concrete systems is to de-
cide how many of the electrons are to be treated in the
special manner designed for strongly bound electrons. In
practice, the choice is between correcting for one shell
(ng=1, Ny=2) or for two (n;=2, N;=10). It has to be
made in such a way that the condition [Eq. (82) of I]

1<<N;<<Z=N (70)

is satisfied. However, we are now dealing with realistic,
and therefore rather modest, values of Z and N, and it is
quite impossible to take (70) very seriously. The best one
can do is to opt for that N; which, on a logarithmic scale,
is halfway between 1 and Z. Another way of stating this
is to say that we choose that N, which is closest to the
square root of Z (=N). For N =18 and 54, the answer is
unambiguous: n,=1 and 2, respectively. In the case of
the N =36 systems, both Ny;=2 and 10 are equally dis-
tant from 6, the square root of N (or Z); we vote for
ng=1, Ny=2 in order to avoid the danger of overcorrect-
ing for the strongly bound electrons.

We start our survey of results with a very close look at
one representative system, serving as an illustration of
all—the rubidium ion (N =36, Z =37). For it we ob-
tained these values of the parameters:
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06—

041

-02

0 1

FIG. 1. Comparison of the multipliers of VVin Eq. (13) (for
curve a) and Eq. (14) (for curve b), for Rb*.

£=0.32989 ,
£1=526.57, {,=63.425, (71)
Q0,=0.6132, Q,=3.971.

Of particular interest are the actual numbers for &; and &,
because they tell us whether it is justifiable to use the sim-
ple Coulombic densities for the strongly bound electrons.
To extract that information out of §; and §,, we first re-
mark that, as a consequence of Eq. (26), the potential V'
has the small-distance form

V=—%+C+0(r2>, (72)

where the constant C is, of course, related to the initial
slope of f(x) [Eq. (50)] by

C=—2Z%"0). (73)

0.8 .

f(r)

041 1

FIG. 2. f functions belonging to the following potentials.
Curve a: V,curve b: V=V —V, curve ¢: Vg, for Rb*.
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Vex (1)

FIG. 3. Exchange potential for Rb* as a function of the dis-
tance from the nucleus.

Only the O(r?) term gives rise to deformations of the
Coulomb wave functions. Consequently, we have to ask
how big is this term in the domain of the specially treated
strongly bound electrons. A quantitative answer to this
question employs the definition of the §; [Eq. (136) of I],

ar=(r+F)
gj 2nj2 +r n;

2
—Z 1z - (00D, (74)

2nj2 J
to express f7(0) in terms of §;:

, 1 1
—f(0)=5j7——z7[§j+<0("2)>n].]
1 & _Jo1154 forj=1

m? Z2 |0.0787 for j=2. (75)
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FIG. 4. y,y,,y, for Rb* as a function of r. Abscissa is linear
in the cubic root of r.
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SOI—Y—F* L e Y B
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FIG. 5. Radial electron density in Rb™, tail amplified by 10.
Abscissa is linear in the square root of r.

We compare this with the numerical result for the initial
slope of f, —f'(0)=0.1412, and see a reasonable agree-
ment for the first shell and a somewhat worse situation
for the second one. Since the latter does not contribute
very much to the whole description we feel entirely justi-
fied in using Coulombic densities for the strongly bound
electrons, or, in other words, in treating V+Z/r as a
small perturbation for those electrons.

Another check for internal consistency concerns the ap-
proximation for the gradient of the exchange potential,
Egs. (13) and (14). In Fig. 1, we give a graphical presenta-
tion of the multipliers of V¥ in these two equations, as a
function of r. The difference of the two curves is relative-
ly small, and where it is largest, one is already practically
outside the ion—there V¥V is small. Again we have suffi-
cient justification for the applied approximation.

In Fig. 2 we show, as a function of 7, the f functions
belonging to V [cf. Eq. (50)] and, analogously, to the elec-
trostatic potential V=V —V,,, and, for comparison, to
the corresponding TF potential Fpg. One notices that all
these functions are very smooth and practically structure-
less. This justifies our remarks, in the Introduction of
Ref. 1, about the advantage of potential functionals over
density functionals.

Since we are at it, why not take a look at V., itself, Fig.
3? With the exception of extremely small », where one
cannot believe it anyhow, we notice that the exchange po-
tential is attractive—an obvious consequence of the minus

FIG. 6. Radial electron density in Rb*. Curve a, D(r);
curve b, Dgong(r); curve c, D(r). Abscissa is linear in the
square root of 7.



D(r)

FIG. 7. Radial electron density in Rb*. Curve a, D(r);
curve b, Dy(r); curve c, Dyex(r). Abscissa is linear in the square

root of r.

sign in (86) of I, reflecting the antisymmetry of the two-
electron wave functions. Furthermore, one sees that ¥V,
has very little structure implying that the oscillatory part
in (7), F_,(y) in & _, (cf. Fig. 3 of I), goes only through
very few ups and downs. Consequently, y () cannot be-
come very negative in the interior of the ion. Indeed, the
plot of y along with y; and y, in Fig. 4 confirms this ob-
servation: y(r) is nowhere less than —1.6. Incidentally,
we note that y; and y, are, of course, always greater than
¥, both turning positive still far inside the ion (roughly at
r =0.055 and 0.26, respectively), while y stays negative

120

80~

D(r)

FIG. 8. Radial electron density in, curve a, Cs*; curve b,
Rb*; curve ¢, K*. Abscissa is linear in the square root of .
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FIG. 9. Radial electron density in Rb*. Curve a, new sta-
tistical calculation; curve b, HF calculation. Abscissa is linear
in the square root of #.

up to r =3.383, which is the classical radius of the Rb*
ion. For r—0, according to (21), all y’s are proportional
to the cubic root of r—straight lines in Fig. 4 where, for
this very reason, the abscissa is linear in /3. It is also
clear that only for systems with an enormous number of
electrons can y(r) be sufficiently large and negative for
the asymptotic forms of Airy’s function to be valid.
From this point of view, one would not expect the TF
limit to be particularly accurate for real atoms; but it is.
(Look again at Fig. 1 of I.)

Now we come to various plots of the Rb™* density,
which all use an abscissa that is linear in the square root
of r—a standard tool to stretch the structure at small dis-
tances. Figure 5 shows the radial density

D(r)=4mr’n(r) (76)

with the low-density tail amplified by a factor of 10. The
first, and most important, observation is that the density
is positive everywhere, which is by no means obvious
from Eqgs. (152)—(154) of I. There are two main peaks
and a very small third one beyond the edge of the ion,
reminiscent of some kind of shell structure. The “fine
structure” of the first peak and the following minimum
should not be taken too seriously. It may well be spurious
in view of Fig. 6, where D(r) is decomposed into its two
contributions from ng.,,, and #. These are much
smoother, and only the rapid decrease of Dyng On top of
the equally rapid increase of D produces the wiggles.
Another decomposition of D(r) is shown in Fig. 7, where
we see the graphical presentation of Eq. (1),

D(r)=(—r2v2V)—(—rzleex)EDV_DVex. (77)

TABLE I. Experimental data for 72.

N Z=N Z=N+1 Z=N+2
18 1.373 1.023 0.750
36 1.010 0.772 0.632
54 1.027 0.821 0.678
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TABLE II. Hartree-Fock predictions for % TABLE IV. Previous statistical prediction for e
N Z =N Z=N+1 Z=N+2 N Z=N Z=N+1 Z=N+2
18 1.447 1.087 0.857 18 1.413 1.013 0.767
36 1.097 0.884 0.742 36 1.152 0.903 0.737
54 1.160 0.973 0.842 54 1.001 0.819 0.691
Again we observe that the fine structure of D is made by where, expressed in atomic units,
the interplay of two smoother, though strongly oscillating, l N =
curves. Also remarkable is the fact that, beyond the edge I=% f (dT)rn(T)= ?rz . (80)

of the ion, Dy and Dy, are of almost equal magnitude.

This is a manifestation of the attractive nature of the ex-
change potential: the electron density in the exterior of
the ion is reduced to the benefit of the interior.

As illustrated in Fig. 8, the new theory yields a variety
of shapes for the electronic densities of systems with dif-
ferent N and Z. While original TF gave a uniform look,
there is now a lot of individuality. The potassium ion
(Z=19, N=18) has an almost structureless density
spread out over a large volume. The density of Rb™ is
much more localized and has much more structure, as we
already know. For the cesium ion (Z =55, N =54) we
see a smooth, well-concentrated main peak accompanied
by a smaller one which is farther away from the nucleus.
The obvious question now is: How do these densities
compare with those obtained by Hartree-Fock calcula-
tions?

For the comparison of a new statistical density with a
HF density, we once again pick out the Rb™ ion—it is the
most striking example. Figure 9 shows the differences.’
The two densities agree only in the domain of the strongly
bound electrons. We observe quite different peak struc-
tures and notice that at large distances the HF density is
significantly larger. Unfortunately, there is no simple
way of telling which one is closer to reality because elec-
tron densities cannot be measured directly. However, one
can, of course, compare derived quantities. We chose the
expectation value of the squared distance,

= [ @0 78)

since it provides a sensitive test of the density at large ».°
Experimental data are obtained from measurements of the
molar diamagnetic susceptibility

2
— X, = {—1157—] N4adl =4.752x107°I (79)

TABLE III. Predictions for r2 by the present, new theory.

N Z=N Z=N+1 Z=N-+2
18 1.46 1.036 0.786
36 1.03 0.812 0.664
54 1.01 0.831 0.704

Let us first look at the experimental numbers,” Table I.
Besides the expected decrease of r? for increasing Z and
fixed N, we notice that from N =18 to 36 the systems
shrink while growing by a smaller amount from N =36 to
54. This qualitative behavior—we anticipated it when
describing the curves of Fig. 8—is reproduced by the HF
numbers® of Table II. But quantitatively the HF perfor-
mance is suprisingly poor. All HF predictions exceed the
experimental numbers by 5—24%. In the case of N =54,
the HF result for Z =56 is even larger than the one mea-
sured for Z =55. Obviously, HF densities are significant-
ly in error at large distances.

On the other hand, our new statistical calculation,
presented in Table III, is in quite good agreement with ex-
periment, both qualitatively and quantitatively. For the
ions with Z =N +1 and N +2 the deviations are between
1.2% and 5.3% which is of the magnitude of the experi-
mental errors (the numbers reported for ions are extracted
from measurements of the susceptibility of crystals). The
predictions for the neutral atoms are off by 6.3%, 2.0%,
and —1.7%, which would seem to be worse in the view of
the high experimental accuracy for these inert gases.
Since the calculated 72 for Z =N =54 is actually a little
bit smaller than the one for Z =N =36, one might say
that the new theory gives a wrong qualitative prediction
for neutral atoms. This remark would, however, ignore
the fact that for N =Z all numbers are obtained by the
extrapolation described in the preceding section and are
therefore less precise. That is also indicated in Table III
by the smaller number of decimals for N =Z. For the
same reason one should not be disappointed by the argon
(Z =N =18) atom where HF, for once, is better than the
new statistical calculation.’

We summarize by stating that the new theory doubt-
lessly outperforms HF as far as electronic densities at
large distances are concerned. For electrons closer to the
nucleus the two approaches are competitive—here a sensi-
tive quantity is the total binding energy for which we
made the comparison in Fig. 1 of I.10

For the sake of completeness, we also compare with the
best previous statistical calculation,”? the one that was
based on Eq. (176) of 1. It produced the numbers of Table
IV. While they are not really worse than the new ones for
N =18 and 54, the N =36 systems are described badly—
only within HF accuracy. The obvious reason for this
flaw is the absence of the 18-36-54 oscillation, which was
not obtainable then; this previous approach was simply an
extrapolation of the leading exchange and kinetic-energy
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TABLE V. Values of the parameters &, {12, Q1,2, and of — f'(0) for the various systems.

N z § &1 & Qi Q2 —f'(0)
18 0.0094 106.2 7.02 0.542 3.06 0.2238
18 19 0.35021 120.52 8.861 0.5485 3.126 0.21517
20 0.823 82 135.84 10.981 0.5542 3.188 0.20708
36 0.0092 495.9 58.61 0.611 3.94 0.1439
36 37 0.32989 526.57 63.425 0.6132 3.971 0.14120
38 0.75722 558.28 68.521 0.6154 4.004 0.13856
54 0.0090 148.1 11.73 4.30 10.4 0.1184
54 55 0.30991 155.96 13.482 4.316 10.45 0.116 82
56 0.69778 164.13 15.383 4.340 10.54 0.11530
quantum correction into the outer regions. ACKNOWLEDGMENTS

It is worth mentioning that apparently all models have
the tendency to ascribe too large a size to atomic systems.

We close this section by reporting, in Table V, the pa-
rameters §, 12, and Qq, as well as the initial slope of
f(x) for the nine Z-N pairs dealt with. While we do not
intend to comment on all the numbers, we do want to em-
phasize that one should keep in mind the fact that num-
bers referring to neutral atoms have been obtained by an
extrapolation and are therefore less reliable.
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