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New statistical atom: A numerical study
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The new differential equation for the statistical atom is derived and discussed in detail. Numeri-
cal results are presented which provide evidence for the validity of all approximations that have en-

tered the formalism. A comparison of experimental data for diamagnetic susceptibilities with

theoretical predictions shows that the new statistical atom significantly surpasses its Hartree-Fock
competitor.

INTRODUCTION

This paper supplements the immediately preceding
one. ' lt contains a detailed derivation of the new differen-
tial equation for the single-electron potential of the statis-
tical atom. There follows a discussion of the properties of
this equation and, in particular, of its implications con-
cerning both the vicinity of the nucleus and the outer re-

gions occupied by the weakly bound electrons. Then we
explain the numerical procedure that has been employed
for solving the differential equation. Finally, numerical
results are presented for the inert-gas atoms argon, kryp-
ton, and xenon, as well as for the related singly and dou-

bly charged ions. Throughout this paper we use the nota-
tion defined in Ref. 1, and refer to this paper as I; e.g. ,
(161)of I refers to Eq. (161)of Ref. l.

DIFFERENTIAL EQUATION

The fundamental equation of electrostatics, Poisson's
equation (161) of I [see also (131)of I],

equates the negative Laplacian of the electrostatic poten-
tial of the electrons to their density, multiplied by 4n. . In
Ref. 1 we found an expression for n in terms of V, its gra-
dient, and its Laplacian [Eqs. (152)—(154) of I]. We also
recall that the exchange potential is related to the density
through [Eq. (162) of I]

a
V,„=m~Vn .

While we were content to make contact with an earlier
calculation in Ref. 1, where we checked the semiclassical
limit of the combination of Eqs. (1) and (2), we now con-
struct the new differential equation for the single-particle
potential V. This will lead us to the result already report-
ed in Eq. (177) of I.

We start by rewriting the electron density in such a way
as to facilitate the recognition of those parts that have to
be taken into account in Eq. (2). Upon carrying out the
differentiation in n [Eq. (154) of I] we notice that it splits
into two parts

n=n&+nz,

—V V —V„+—=4~n
I' of which the first one contains only terms in V and p V,

n, = [2%V((~,——,a, ) — (V'V)'(2V'V)-'" (a,+ —,'a, )

(2%V]' (a,——,'a, ),
4m

(4)

whereas the second one possesses second derivatives of V, too:

n2= — (&'V)
f
2&V

/

' '(~0+ —,'~ 3)— [VV V'(V'V)'] [ /2p'V
f

'r'(w + —,'~, )]
6m 6' g(q V)2

(&'V) ~2&V
~

-'"(~.+-,'~, ) — [V'V.(V V V) V V] ~2VV
~

-'"(~,+ —,', ~,) . (5)
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In (4) and (S) we made use of the differentiation rules
(144), (146), and (149) of I.

It ls tlm«o recall that the derivation of (2) [or (101) of
I] did not pay attention to the term (p V) V of (7) in I,
but merely used the momentum dependence lp +g.
Consequently, for consistency in calculating V,„wehave
to discard a11 contnbUtions to the clensity that contain or
originate in, second derivatives of the potential. This con-
cerns not only rT2, but also the M I term in the final
form of (4) because it ultimately stems from the Laplacian
part of Err in (29) of I. In short, we compute the ex-

change potential as

VV,„=VV + V(VV)'
B(V V)'

So It comes dan to replacing

V(VV) =2VV V V V

by something that no longer contains second derivatives
of the potential. Although not essential, spherical sym-
metry helps here. With the aid of

I2VVI'
BV 4Ir B(V V)&

wlllcll results 111 [Eqs. (149) Rlld (144) of I]

V,„=—
I
2V V

I

I"(~I——,
' ~,) . (7)

B V2VVV VV=2 VV=2 V V—— VV,
Br r Br

(12)

We remark that after dropping the contributions that
refer to the strongly bound electrons, we do not reproduce
(107) of I for which a simplified density [Eq. (106) of I]
was used. Both the density and the exchange potential
have one additional term which is created by the variation
of V V in the energy [Eq. (150) of I] and could not have
been antlclpated ear11er. However, these extl a te1 ITls do
llot contribute 111 thc TF 11111lt ( —g Q) 1 ).

Having found the exchange potential, we face the ques-
tloll of wllat to do wltll lts LRplaclall 111 tllc Polssoll cqllR-
tion (1). Were we to actually evaluate the Laplacian of (7)
as it stands, we would end up with a third-order differen-
tial equation for V. But if one wants, as we do, to main-
tain the basic simphcity of TF, one ingredient of which is
the low order of the differential equation, one will aim at
a second-order differential equation and look for a sensi-
ble approximation of V V,„.

Since me cannot tinker vnth the divergence in the La-
placian without destroying the boundary conditions of V,
we really need an approximation of the gradient of the ex-
change potential,

VV,„=VV 4 BV BV,
„

" B" B(VV)'

V,
„+2V V

B(V V)',

V V,„=(VV)
4 BV BV,

„

Br B(VV)

=(V V)
I
2V V

I

' (2&o——,M S)

I2VVI ( —,~ z++~ g)

(14)

There are, of course, a number of options for the approxi-
mation of V V herein. For simplicity, let us make the
choice V V-=0. Then

and by utilizing (9)—(12) and the differentiation rules (144), (146), and (149) of I we get the ingredients of the Laplacian
of the exchange potential,

V V,„=(VV) -+VV V(VV) B
VV

r B VIV BVex 4 BV BVex

B(V V)2 r Br BV r Br B(VV)I

[ ' ]=—
I
2v v

I
(~ -I—6~ -~)+—

I
2v V

I
'"(

3 ~ -3+ 9 ~ -6)

v v v(v v)' —,-[ "]=— I2v v
I
-'"(-,'~, +-,'~,)+, I2v v I+I"(-',~,+-,'~, + —,'„~,)

B(VV)

—(V'V)
I
2V V

I

-'"(—,~,+—„~,)

(16)



~'V-—= —I2~VI(~-I —6~-4)+ — I2~V
I

'"(3~-I+9~-6)+, I2~VI+'"(~ 2+ z~ 5++~ s)

+~'V l2~VI '"(2~0—3~-3—i'8~-6) —— I2~VI '"(3~ 2+ 9 ~-~+ 27~-s)r

This and the density (152) of I, in which n is [Eqs. (3)—(5), and (9)—(12)]

n= I2VV I(2~,+ —,', W, )+„—I2VV
I

'~'( —,w, +—„P6)

(&'V)
I
2& V

I

-'"(—,~,+ —', ~,+ —,'„~,)
are now inserted into the Poisson equation (1), and solving for VIV supplies us finally with the differential equation for
V

—'()' V+—= 1 —12~VI '"(3~o—9~-3—2'7~-6)+ — l2~VI '"(3~-2+ 9'~-~+ 1'7~-s)

1 V4IrII„„„s+I2V'Vl(2/2+a I
——,'a g) —— I2V'Vl '~3( —,'W 1+—,', a 6)

, l2V'V I+I~'(a

which we have already reported in (177) of I.
We are ready to admit that this, although being an ex-

tension of the TF equation, no longer has any striking
resemblance to it. However, there are common features:
first, it is a second-order differential equation; second, it is
one equation for all systems, as compared to Hartree-Fock
formulations, where going from N to %+1 changes the
number of functions to be found; third, different N and Z
CQtCf thC PX'OMCm V1R thC bOQQdM'P COQdlt1OQS~ %'lthOUt,

dll'cc't cffcct oI1 tllc diffcrclltlal cquatloll.
There are enormous differences, too. Hut they are of a

more technical nature. In the case of the TF equation, the
numerical challenge was merely to find g and V such that
the differential equation along with the boundary condi
tlons, for glvcI1 X and Z,

Z SS 1~0
(20)—(Z N) as r —+a&—

was satisfied. Now, we encounter additional complica-
tions because of the special treatment of 'the s«ongiy
bound electrons. For fixed n„the four new parameters
gl, g2, gl, gz—each of them being given by an integral in-
VO1V1Qg thC POtCQt181—81SO hRVC tO bC R(i)UStCd. Th18 18

not a new quality, however; it is just an increase in the
number of parameters from one (g in TF theory) to five.
Our companion paper on the correlations for strongly

a

bOUQd ClCCflOQS 1Q thC TF mOdCl d1SCQSSCS hOVV tO hRQ(HC

these parameters. The main change from what is done
there comes from the abundance of Airy functions in the
new differential equation (19). That makes it numerically
more involved (and more expensive), but again this is not
a fundamental departure from the TF equation.

SMAK, L. MSTANCES

z
3' 3'

P
(21)

whereas their difference is

PJ 0
(2Z

2Z2

When approaching the origin we encounter the strong
cancellations that have been already briefly discussed fol-
lowing Eq. (36) of I. In the P „[Eq.(134) of I)], y and
the yJ are for small r given by

,
' [r„(y, sy, ) r„(y—,) ay,—r„,(y—, )] = $——

, (ay, )'F„,(y, )+ ——,(&y, )'+. &(y, )+
J =1 j ].

2

=—-'(2')s"S (0) g—8 pt —2
j=l



We insert this into the differential equation for V [Eq. (19)] and learn that at the orlgln the demon'nator 's 1 w ' e th
2 ~ +&/3numerator has contributions from II„„„sand from its last term, which Possesses the factor ( —I/r )

~
2%V~-r-'/'. Thus

r

—V V+ =47rII g(I =0) (2Z) [F 4(0)+ F 7(0)+ ' F—10(0)]
'=1

as r —+0.

Upon recalling that

3
—1/2F,(0)= —2Ai(0)Ai'(0) =

n(I'=o)= (I+—,Ql+», Q2) for n, =l . (31)
(2Z)'

4m

and employing the recurrence relation (119)of I, we find

n(r =0)=n„„„s(r=0)
r

2
— p, + X,Q, IV., I.,

j=l
(27)

With the aid of the following familiar property of the
Coulornbic densities:

3 (2Z)I g 1+2-,= ~ Z' .
An implication of both this and (23) is the vanishing of n

[Eq. (18)] at the origin. Therefore, the electronic density
at that point is entirely given by n„„„g.

LARGE DISTANCES

Now we turn to the region of large distances where all
terms that refer to the strongly bound electrons are effec-
tively zero. Thus, all P„'sare now just F„(y)'s, andn„„„sis absent. By "large r" we mean distances suffi-
ciently far beyond the edge. That becomes more concrete
by stating that the potential Vis small compared to g, al-
lowing the approximation

~ =2(V+&)
I
2~ V

I

-'"=-2r
I
2«

I

-'"

Then, the combination of (62) from I with the asymptotic
form for the Airy functions [Eq. (67) of I] produces, more
precisely than (66) of I,

1Fo(y)—= y
' 'exp( ——,'y' ') «ry»1

which by differentiation or integration yields

(2Z) 1
I @.I., 1.=0=

4m 2' (28) Fo(y)

~.«=0)= X 2~'I W. I.', l, =o (4y) '"+"i exp( ——,y i ) for y &&1

(2Z) ~ 1

3
] fE

we get from (27)

or, if we make use of (32),

F (y)=- (8$) '"+"
i
2V'V i'"+"n

n(r =0)= (2Z)'
4m'

Ql Q2

I n 4n, 4(n, +I)3+ s+ 5 (30)
)
3/2

Xexp ——,r large .

The first term in the large parentheses is the contribu-
tion of the specially treated strongly bound electrons,
while the terms containing the QI represent the statistical-
ly handled bulk of' electrons.

As we remarked in Ref. 1, for most practical applica-
tions n, equals 1, under which circumstance (30) reads as
follows;

The asymptotic boundary colldltloI1 ln (20) IIIlplles that,
for ions,

~

V' V
~

approaches zero like 1/r and even faster
for neutral atoms. Consequently, in a sum of F„'sthe one
E„with the most negative index dominates.

A first example for the application of all these prepara-
tory remarks is the gradient of the exchange potential [Eq.
(14)],

'"[—
3 F-3(~)]——

=-( V V)

C'

1 I 8/1 I 2 (2 )3~
(8$) (2VV( ' 1+ —~2%V~ ' exp ——,r large6m' 3 r 3 /lpVJ
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4mn = —V V —V,„+—-=—V V, (37)

where the density n —=n is now approximately given by
[Eq. (18)]

4rrn= ~2VV~ ,', F 4—(y)+— ~2VV~ ' —„F6(y)
r r

—(V'V)
~

2V V
~

'/' „F6—(y) .

wherein we used Bv/Br =
~

V V
~

. It is clear that in cal-
culating the gradient of the electrostatic potential,
V„=V —V,„,there V„is negligible compared to V.
Thus, asymptotically we find

V--=—
I
2V V

l

'"[Fi(y)—
6 F 2(y)]

[ 3 [«'(»]' —3 y [Ai(y)]'I,
( —y) [

2V'V [+'
(43)

where we inserted the explicit forms of F~ and F 2 given
in (63) and (64) of I. The Airy function factor is obvious-
ly positive for all y &0. Thus, in order to prevent V,

„

from growing large as compared to V, which would be
physically unacceptable in the asymptotic low-density
domain, possibility (42b) has to be realized. We can then
make use of the large-

~ y ~

behavior of the Airy functions
[Eqs. (67) and (69) of I] and arrive at

—V'V= (g)'" 1+
36m 3 r

)
3/2

)(exp (39)

After noticing that the second term in this sum asymptot-
ically outweighs the first one, we are led to

4 5/2V2V =—4~n = (2g)"
27m

1

r/VV[
(2 )

3/2

&&exp ——,r large . (40)
3 (vv[

Again we dispose of the term involving V' V because it is
negligible when added to the other V V in (37). At this

stage, on inserting (35) and 8 V/Br =
~

V' V ~, we have

V,„=V— [1+—,'sin( —', ~y ~'/')] .
~

1/2
~

2 V V
[

1/3

(44)

Here, V,„becomes a very small fraction of V for large r,
but the rapid oscillations of the sine function cause V V,

„

to be arbitrarily larger than V V. Again we encounter an
unphysical behavior. So (42b) is equally discredited.

The lesson learned from this discussion is that, indeed,

g is positive for neutral atoms. Consequently, (=0 ap-
plies to a negative ion, for which y is asymptotically a
large positive number, and there is no problem with the
exchange potential (43).

NUMERICAL PROCEDURE

The numerical search for the potential V, along with
the parameters g, g&, QJ, begins with an appropriate choice
of variables. For that, we remark that under scaling
transformations of the type

The message of this equation is twofold. For X &Z, it
tells us that beyond the edge of the ion the density drops
off very rapidly:

2

27772

(41)

V(r)~A~V(Ar),

y transforms according to

y (r) X'~-"/3y (Xr ),

(45)

(46)

For N =Z, the main information contained in (40) is, be-
sides the large-distance behavior of the density, the as-
surance that there is no contradiction in assuming that for
neutral atoms g is positive (though small), not zero.

We conclude this section by demonstrating why g can-
not be zero for N =Z. This could be done by investigat-
ing the asymptotic properties of V V once more, but we
prefer a simpler, physical argument. It starts with observ-
ing that in this case y would certainly be negative for
large r, with two possible limits:

V(&)= ——f(x)= —Z +, x =Z r .
Z i f(x)

x
(47)

For, since (47) looks like a scaling (45) with Z -A, and
Z'+ -k~, we have the relation

(48)

which is simplest for P =2. This observation enables us to
make an optimal choice for the argument of the function
giving the ratio between the potential V and the Coulomb
energy of an electron with the nucleus,

3'o &O~
y=2V~ZVV~ 2/3~ as r~~ . (42a)

(42b)

thus for P=2,

(49)

Now we look at the asymptotic form of the exchange po-
tential [Eq. (7)]

The function f is therefore most conveniently chosen as

V(r)= — f(Zr)= —Z, x =Zr—2 f(x)
r X

(50)
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where f(x) still possesses an implicit Z dependence, of
course. For original TF the basic scaling has P=4, so
that a= —,, x -Z' r there. More detail on scaling in TF
is given in the mentioned companion paper. In analogy
to (50) we also introduce a function g(x) that goes with
the derivative of V(r),

8 3 g(x)
Br

It is simply related to f(x) by a Legendre transformation,

X [F,(y, ) y,—Fo(y, )] (62)

[Eq. (140) of I]. Another one is that in the new variables,
the exchange potential (7) is a function of x, multiplied by
a single factor of Z,

Thus, the arguments of all the F„have no explicit Z
dependence. One simple implication thereof is that QJ
also does not contain Z explicitly,

QJ
———', I dx ~g(x)

~ (yj —y)

g(x)=f(x) —x f(x) .
dX

(52)
1/3

V,„=—Z
2 (W) —6W 2) .2g (x) 1

X
(63)

The new variable x =Zr is also particularly advanta-
geous in view of the known Z dependence of the Coulom-
bic densities

~ g„,~,„andp, :
J

Z3
(53)

We can therefore conclude that, for the bulk of electrons,
V,

„

is smaller than V by roughly a factor of 1/Z.
The density, being of the dimension 1/r, has, of

course, a factor Z . This becomes obvious when utilizing
Eqs. (47), (51), and (53)—(55) to rewrite (152)—(154) of I
as

Z
p, (r) = C, (Zr),

4n.

where

n

4, (x)= g 2n P„(x),

(54)

(55)

Zn= 4„(x)+g —,
' QJP„(x)

1=1

2g, (w, ——,W &)
Z x
2'

n=1

which introduces the density functions P„(x).Here is a
list of the first few:

r

Z3 8 g (x) 2g (x}
6n Bx

—1/3

(Wo+ —,
' P 3 } . (64)

P)(x)=4e

$2(x )= —,', ( 1 —x + —,
' x )e

4 4 8 2 16 3 4 4 2~/3$3(x ) 343 ( 1 3 x + 9 x 81 x + 343 x }e ~

(56)

This invites the definition of distances xj according to

Z
XJ.

(59)

As a consequence of the normalization of
~ g„,~„,they

J
are normalized to unity,

XX n X =1 (57)

Upon inserting (50) and (53) into (136) of I we find the
explicit Z dependence of gj to be simply given by an
overall factor Z,

gj =Z
2 + f dx x {t„(x) . (58)

2nj X

—V V(r)=-Z 8
Br

——V(r) =Z — f(x) .r 41 d
X dX

(65)

Not wanting to copy (19) we just remark that f(x) obeys
a differential equation of the structure

d f( }
a(x)

Z b(x)— (66)

which does contain Z explicitly in the denominator, while
a(x) and b(x) depend on Z only implicitly. This is a
consequence of the extra factor Z in V as compared to
V,„.Contrary to simple TF, it is impossible in the new
theory to derive a universal (i.e., Z-independent) differen-
tial equation.

For given N and Z, the numerical challenge is to find a
solution to (66), subject to the boundary conditions of (20),

The differential equation for V, Eq. (19), will now be
expressed in terms off(x) by employing

T

supplemented by
f(0)=g (0)=1,

(6?)

Z
Xo

which leads to

X 2Xy= —f(x) xo, [g(x)]'

' 1/3

1/3
X 2X

y~ = —f(x)
xj,

,

fg(x)]',

(60)

(61)

f( oo )=g ( oo ) = 1 ——,N
Z '

together with the five parameters g, /&2, Q& 2, fo««
which themselves are given in terms of integrals involving
f(x) and g(x).

For positive ions, X &Z, one begins by making a guess
for g, gJ, QJ. Then starting with the known asymptotic
values of f and g, (67), at a distance x so large that the
right-hand side of (66) is numerically zero, one integrates
the differential equation inwards to x =0 and evaluates



the integrals for QJ and . The ct z. e comparison with th
s ea s to improved values e ers

The test
va ues for these parameters.

f(0)=1

pp lcs iilfol'B1Rtloll Rbollt g, R Rillagain yielding a better
v . , p rameters one in-

Unfortunatcl thi
tr

ls ploccduI'c ls Ilot ai apphcable to neu-
r use t e asymptotic forms of f(x) and

vaues o x are unknonown, so t at snit al
umerlcal inward inte

erent rom the situation of Ref. 3 whe
a - m potential at large dis-

potential. ) Sin
'nning with f(0)= 1

(dfldx)(0), would b e
' ' '

oe unstable because
round-off errors d

ol c nuIIlcrlcal araDl

p

(69)

o which the first two are h sicao wo are physical systems interesting in

%"e report np numerical results forp n s or the inert gases
an or the related ions with

The &e first step toward f d
the quantities deriv df, as n

s in lng the
erive rom it, such as t

t 1 dth d t —f
d ho of h 1

si y—or these concrete

pecial manner des' d f
e eectrons are to be treated in the

practice, the ch
' '

b
esigne or stron 1 bog y ound electrons. In

01cc 1s bctwccIl corI'ectmg for one sh ll
or or two (n, =2, E =1

c

made in such a way that them
'

a t e condition [Eq. (82) of I]

I ((X,((Z=X
is satisfied. Howcvclis s . wever eah. ng with reahsticwcvcI', wc alc now d

quite impossible to take (70 very scriousl

hlf bt 1 dZn an Z. nother way of stating this
ls to sa sc Rt N~ wlllcll ls closest to tlM

and 54, the answer' is). For %=18 a
n, = and 2, respectivclp ly. In the case of

ot %,=2 and 10 are equall d'-

n

e square root of X '0 or
1S-

o avoid the dan
o ( Z); we vote or

anger of overcorrect-

%'e
g y ound electrons.

e start our survey of results with
ive system, servin as

a
'

g as an illustration of
'um ion jX=36, Z =

tained these values f hes o t e parameters:

-0,4 J I

2 3

g =0.32989,

gl ——526.57, $1——63.425,

Q I
——0.6132, Q2

——3.971 .

(71)

0 particular interest are the actual n
because they tell h
pie Coulombic den

' '
n

To
c ensities or the stron 1 b

o extract that inform t
ng y ound electrons.

mark that as a c
ormation out of

conscqllcllcc of E
I and gl, we first re-

has the small-distance form

zV= ——+C+O(r ), (72)

(73)

0,4

0.2

FIG. 2. func
'

unctions belonging to theg o t e foBoming potentials.
= V —V,„,curve c: VT~, for Rb+.

where the constant C is, o course relw ls, 0 colll'sc, I'clatcd to thc 1111'tlR1

C = —Z f'(0) .



2360 BERTHOLD-GEORG ENGLERT AND JULIAN SCHWINGER 29

20

10,

0
0 0.2 0.5 2 4 6

2 3 4

FIG. 5. Radial electron density in Rb+, tail amplified by IO.

Abscissa is linear in the square root of r.

FIG. 3. Exchange potential for Rb+ as a function of the dis-
tance from the nucleus.

, +Z'f'(0) —(O(r') )„,
2nj

to express f'(0) in terms of gj ..

(74)

1 kj' 0.1154 for j=1
2 Z~ 0.0787 for j=2.J

Only the O(r ) term gives rise to deformations of the
Coulomb wave functions. Consequently, we have to ask
how big is this term in the domain of the specially treated
stron ly bound electrons. A quantitative answer to thisstrong y oun
question employs the definition of the gz [ q.E . (136) of I],

We compare this with the numerical result for the initial
slope of f, —f'(0)=0. 1412, and see a reasonable agree-
ment for the first shell and a somewhat worse situation
for the second one. Since the latter does not contribute
very much to the whole description we feel entirely justi-
fied in using Coulombic densities for the strongly bound
electrons, or, in other words, in treating V+Z r as a
small perturbation for those electrons.

Another check for internal consistency concerns the ap-
proximation for the gradient of the exchange potential,
Eqs. (13) and (14). In Fig. 1, we give a graphical presenta-
tion of the multipliers of V' V in these two equations, as a
function of r The dif.ference of the two curves is relative-
ly small, and where it is largest, one is already practica y
outside the ion—there V V is small. Again we have suffi-
cient justification for the applied approximation.

In Fig. 2 we show, as a function of r, the f functions
belonging to V [cf. Eq. (50)] and, analogously, to the elec-

the corresponding TF potential VTF. One notices that a
these functions are very smooth and practically structure-
less. This justifies our remarks, in the Introduction o
Ref. 1, about the advantage of potential functionals over
density functionals.

Since we are at it, why not take a look at V,
„

itself, Fig.
3? With the exception of extremely small r, where one
cannot believe it anyhow, we notice that the exchange po-
tential is attractiv~an obvious consequence of the minus
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FIG. 4. y,y&,yz for Rb+ as a function of r. Abscissa is linear
in the cubic root of r.

FIG. 6. Radial electron density in Rb+. Curve a, D(r);
curve b, D„„„~(r);curve c, D(r). Abscissa is linear in the
square root of r.
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FIG. 9. Radial electron density in Rb+. Curve a, new sta-
tistical calculation; curve b, HF calculation. Abscissa is linear
in the square root of r.

FIG. 7. Radial electron density in Rb+. Curve a, D(r);
curve b, Dy(r); curve c, Dv (r). Abscissa is linear in the square

root of r.

sign in (86) of I, reflecting the antisymmetry of the two-
electron wave functions. Furthermore, one sees that V,

„

has very little structure implying that the oscillatory part
in (7), F 2(y) in P 2 (cf. Fig. 3 of I), goes only through
very few ups and downs. Consequently, y(r) cannot be-
come very negative in the interior of the ion. Indeed, the
plot of y along with yi and yl in Fig. 4 confirms this ob-
servation: y(r) is nowhere less than —1.6. Incidentally,
we note that yi and y2 are, of course, always greater than

y, both turning positive still far inside the ion (roughly at
r =0.055 and 0.26, respectively), while y stays negative

120I

80~

up to r =3.383, which is the classical radius of the Rb+
ion. For r~0, according to (21), all y's are proportional
to the cubic root of r—straight lines in Fig. 4 where, for
this very reason, the abscissa ls linear in rr' . It is also
clear that only for systems with an enormous number of
electrons can y(r) be sufficiently large and negative or
th symptotic forms of Airy's function to be valid.
From this point of view, one would not expect t e
limit to be particularly accurate for real atoms; but it is.
(Look again at Fig. 1 of I.)

Now we come to various plots of the Rb+ density,
which all use an abscissa that is linear in the square root
of r astandard —tool to stretch the structure at small dis-
tances. Figure 5 shows the radial density

D (r) =4am (r). (76)

with the low-density tail amplified by a factor of 10. The
first, and most important, observation is that the density
is positive everywhere, which is by no means obvious
from Eqs. (152)—(154) of I. There are two inain peaks
and a very small third one beyond the edge of the ion,
reminiscent of some kind of shell structure. The "fine
structure" of the first peak and the following minimum
should not be taken too seriously. It may well be spurious
in view of Fig. 6, where D(r) is decomposed into its two
contributions from ns$rpzg all n.n These a. re much
smoother, and only the rapid decrease of D„,»g on top o
the equally rapid increase of D produces the wiggles.
Another decomposition of D(r) is shown in Fig. 7, where
we see the graphical presentation of Eq. 1

D(r)=( —r V V) —( rV V,„):Di, D~—— —(77)

0
0 0.2 0.5 1

TABLE I. Experimental data for r .2

Z =1V+2

FIG. 8. Radial electron density in, curve a, Cs+; curve b,
Rb+; curve c, K+. Abscissa is linear in the square root o r.

18
36
54

1.373
1.010
1.027

1.023
0.772
0.821

0.750
0.632
0.678



TABLE II. Hartree-Pock predictions for r .
Z=X Z=X+1 Z

TABI E IV. PrevloUS stRtlstlc3, 1 predlctlon fol r

Z=X Z=X+1 Z=
1.447
1.097
1.160

1.087
0.884
0.973

0.857
0.742
0.842

1.413
1.152
1.001

1.013
0.903
0.819

0.767
0.737
0.691

(78)

since it provides a sensitive test of the density at large r.
Experimental data are obtained from measurements of the
molar diamagnetic susceptibility

2

%gaol =4.752 X 10 I, (79)

TABLE III. Predictions for r2 by the present, new theory.

Z =IV+2

1.46
1.03
1.01

1.036
0.812
0.831

0.786
0.664
0.704

Again we observe that the fine structure of D is made by
the interplay of two smoother, though strongly oscillating,
curves. Also remarkable is the fact that, beyond the edge
of the lon, Dy and Dy are of almost equal magnitude.

ex

This is a manifestation of the attractive nature of the ex-
change potential: the electron density in the exterior of
the ion is reduced to the benefit of the interior.

As illustrated in Fig. 8, the new theory yields a variety
of shapes for the electronic densities of systems with dif-
ferent X and Z. While original TF gave a uniform look,
there is now a lot of individuality. The potassium ion
( Z = 19, X= 18) has an almost structureless density
spread out over a large volume. The density of Rb+ is
much more localized and has much more structure, as we
already know. For the cesium ion (Z =55, %=54) we
see a smooth, wdl-concentrated main peak accompanied
by a smaller one which is farther away from the nucleus.
The obvious question now is: How do these densities
compare with those obtained by Hartree-Fock calcula-
tions~

For the comparison of a new statistical density with a
HF density, we once again pick out the Rb ion—it is the
most striking example. Figure 9 shows the differences.
The two densities agree only in the domain of the strongly
bound electrons. We observe quite different peak struc-
tures and notice that at large distances the HF density is
significantly larger. Unfortunately, there is no simple
way of telling which one is closer to reality because elec-
tron densities cannot be measured directly. However, one
can, of course, compare derived quantities. We chose the
expectation value of the squared distance,

where, expressed in atomic units,

Let us first look at the experimental numbers, Table I.
Besides the expected decrease of r for increasing Z and
fixed X, we notice that from %=18 to 36 the systems
shrink while growing by a smaller amount from N =36 to
54. This qualitative behavior —we anticipated it when
describing the curves of Fig. 8—is reproduced by the HF
numbers of Table II. But quantitatively the HF perfor-
mance is suprisingly poor. All HF predictions exceed the
experimental numbers by 5—24%. In the case of N =54,
the HF result for Z =56 is even larger than the one mea-
sured for Z =55. Obviously, HF densities are significant-
ly ln crrol at large dlstanccs.

On the other hand, our new statistical calculation,
presented in Table III, is in quite good agreement with ex-
periment, both qualitatively and quantitatively. For the
ions with Z =%+1 and %+2 the deviations are between
1.2% and 5.3% which is of the magnitude of the experi-
mental errors (the numbers reported for ions are extracted
from measurements of the susceptibility of crystals). The
predictions for the neutral atoms are off by 6.3%, 2.0%,
Rnd —1.7%, which would seem to be worse in the view of
the high experimental accuracy for these inert gases.
Since the calculated r for Z =N =54 is actually a little
bit smaller than the one for Z =%=36, one might say
that the new theory gives a wrong qualitative prediction
for neutral atoms. This remark would, however, ignore
the fact that for X =Z all numbers are obtained by the
cxtlapolatlon dcscI'lbcd In thc prcccdlng scctlon and Rfc
therefore less precise. That is also indicated in Table III
by the smaller number of decimals for X=Z. For the
same reason one should not be disappointed by the argon
(Z =N =18) atom where HF, for once, is better than the
new statistical calculation.

%'c summarize by stating that the new theory doubt-
lessly outperforms HF as far as electronic densities at
large distances are concerned. For electrons closer to the
nucleus the two approaches are competitive —here a sensi-
tive quantity is the total binding energy for which we
made the comparison in Fig. 1 of I.'

For the sake of completeness, we also compare with the
best pl cvlous stRtlstlcal calculation, thc onc that was
based on Eq. (176) of I. It produced the numbers of Table
IV. %'hilc they are not really worse than the new ones for
%=18 and 54, the %=36 systems are described badly—
only within HP accuracy. The obvious reason for this
flaw is the absence of the 18-36-54 oscillation, which was
not obtainable then; this previous approach was simply an
extrapolation of the leading exchange and kinetic-energy
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TAI)LE V. Values of the parameters g, g~ q, Q~ q, and of —f '(0) for the various systems.

Qi —f'(0)

18
18
19
20

0.009 4
0.35021
0.823 82

106.2
120.52
135.84

7.02
8.861

10.981

0.542
0.5485
0.5542

3.06
3.126
3.188

0.223 8
0.215 17
0.207 08

36
36
37
38

0.009 2
0.329 89
0.757 22

495.9
526.57
558.28

58.61
63.425
68.521

0.611
0.6132
0.6154

3.94
3.971
4.004

0.143 9
0.141 20
0.138 56

54
54
55
56

0.0090
0.309 91
0.697 78

148.1
155.96
164.13

11.73
13.482
15.383

4.30
4.316
4.340

10.4
10.45
10.54

0.1184
0.11682
0.11530

quantum correction into the outer regions.
It is worth mentioning that apparently all models have

the tendency to ascribe too large a size to atomic systems.
%e close this section by reporting, in Table V, the pa-

rameters g, g~ z, and Qi 2 as well as the initial slope of
f (x) for the nine Z-N pairs dealt with. While we do not
intend to comment on all the numbers, we do want to em-
phasize that one should keep in mind the fact that num-
bers referring to neutral atoms have been obtained by an
extrapolation and are therefore less reliable.
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