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The Thomas-Fermi model is impxoved by simultaneously intx'oducing three different quantuxn

corrections. The fix'st concerns the nonlocality of quantum mechanics; we go beyond the von

Weizsacker approach by including arbitrary powers of the gradient of the single-particle potential.
The second is a special treatment of the strongly bound electrons, which removes the incorrect sta-
tistical description of the vicinity of the nucleus. In the third we generalize Dirac's way of handling
the exchange interaction by, again, including gradient effects to arbitrary order. All this is done in

the framework of a "potential-functional method" and xesults in a new differential equation for the
potential. The comparison of numerical results with both experimental and Hartree-Pock data for
the mean-squared distance indicates a superiority of the new statistical theory over the Hartx'ee-Fock

theory, at least for the description of the outer reaches of the atom.

INTRODUCTION

Two different attitudes have evolved toward the
Thomas-Fermi (TF) statistical model and its variants as-
sociated with the names of Dirac and von Weizsacker.
One is highly mathematical, rich in theorcms about re-
ceived formulations the other is more physical, aware of
the inherent errors of the model and dedicated to its im-
provement, while striving to maintain its essential simpli-
city Both. approaches are valuable, but there is danger in

judging one by the standards of the other. This paper is a
further contribution toward the quantitative improvement
of the statistical model through the incorporation of
quantal refinements. One aspect of that improvement is
displayed 111 Fig. l. It pl'csc11ts tllc total billd11lg cllcrgy of
neutral atoms, comparing integral-Z Hartree-Fock (HF)

calculations with continuous curves, first of the TF
model, then with the leading correction of relative order
Z '/, and finally with the inclusion of corrections of
relative order Z . The remaining deviations, which
are indiscernible in Fig. 1, are presented in Fig. 2 in a
manner that displays quite regular oscillations as a func-
tion of Z' . We intend to address the latter behavior on
another occasion.

Thc improvement 1Q total blnd1ng-cncrgy calculations
stems primarily from the corrected treatment of the
strongly bound electrons near the nucleus, for which the
TF IDodcl 18 scr1ously 1Q error. AQ RccoGlpanylng paper
develops this in detail, with emphasis on the implications
for the particle density. The other region of failure of the
TF Q1odel is Rt 1RI'gc d1stanccs. %c have Rlrcady dlscusscd
one improvement in the description of the outer reaches
of the atom —it gave not unreasonable values for the dia-
magnetic susceptibilities of the inert-gas config-
urations —but which had the serious flaw of ascribing a
811Rrp boundary to 10118 Rild atoms. T111s pRpcr ls designed
to remove that deficiency by introducing a better quantal
description of the weakly bound electrons oeeupying the
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PIG. 1. Comparison of calculations of the total binding ener-

gy. Crosses: HF data (for Z=1,2, 3,6,9, . . . , 120). Curve a
original TF; curve b TF with corx'ections of relative order
Z '~; curve c TP with cox'xections of relative orders Z and
Z —2/3
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PIG. 2. Deviation between. curve c of Pig. 1 and the HP data
(crosses, all Z here).
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outer atomic regions. At the same time, the accurate
quantum treatment of strongly bound electrons near the
nucleus is incorporated more consistently into the general
formulation.

As in Ref. 8, we use the single-particle potential as the
fundamental quantity from which everything else is de-
rived. It should be emphasized that this differs from the
so-called "density-functional formalism, " where —as in-
dicated by its name —this role is played by the density.
The advantage of our strategy becomes obvious as soon as
one recalls that the potential is a much smoother spatial
function than the particle density; according to Poisson's
equation, it is the Laplacian of the potential that has as
much structure as the density. Consequently, an approxi-
mation that expresses all quantities in terms of the poten-
tial and its derivatives should be significantly more reli-
able than a similar one based on the density.

(xt
i
xO) =

2n.i sin(cot )

0 —icos tan(, cot/2)e e

+" dp . ~ 2 sin(cot)
exp ' —i ~p + Vot2' N

~t+ coax tan (2)

It has already been remarked that

in the oscillator form (we now use atomic units:
e =m =Pi= 1)

v(x)= v, + —,'~'x',
for which the dynamic evolution is well known (it is here
stated for x'=x),

1/2

QUANTUM CORRECTION

In a previous paper there appeared under this heading
the sentences: "The correction we now consider is a prop-
erty of the bulk of electrons. It expresses the inadequacy
of the semiclassical approximation that relates the particle
density at a point to just the potential energy at that point.
There is a particularly simple way of looking at this ef-
fect. It begins in one spatial dimension. " There follows
the remark that in a small range of coordinate x, and with
a suitable change of origin, the potential can be presented

l

xO) =- f exp[ i( ,p—+ V—(x))t]2'
for cot &~1 (3)

is the semiclassical limit. The earlier paper also took the
next step of retaining the cubic term in the expansion of
the trigonometric functions. We now go beyond what was
done there by retaining these additional terms in the ex-
ponent, rather than regarding all such effects as small.
This yields

. 2

(xt
~
xO) = f exp i ——p + V(x) t+

+ dP 1 2 1 dV
2'7T 2 24 dx

d—2 p dx

'2

V t (4)

The principal justification for taking this seriously
comes from the consideration of the "edge of the atom, "
the region where V(x) (more generally, with an additive
constant) changes from negative values (classically al-
lowed region) to positive values (classically forbidden re-
gion). Let the transition point be labeled x =0, with the
potential in its neighborhood approximated by that for a
constant force (familiar in the WKB description of wave
functions near turning points)

V(x)= Fx . —
The known quantum-dynamical solution of this problem
1s

(xt ~xO)= f exp[ —i[( ,'p2 Fx)t+ ,', F t —J] .——

It is identical with what (4) yields for the linear potential
(5). This outcome also suggests that the term involving
the second derivative of the potential in the exponential of
(4) is of lesser importance, permitting further expansion.

The three-dimensional generalization of (4), presented
as a matrix element of the time-evolution operator for the
one-particle Hamiltonian H (we add the constant g) is

—l(H+g)t
~

~r)

3 exp —i —,p
' + V r + i(dp)

(2m. )'

[(V V)' —2(p V')'V]t'

and (the factor 2 is the spin multiplicity)

~

t 3
Tre "H+&"=2f exp —i[—,

'
p + V(r)+g]t —[(V'V) —2(p V—) V]—

which exhibits the quantum correction in the framework
of a classical phase-space integral.

In preparation for a more useful representation of the
exponential function of t, we remark that

I + oo

e ' = dx e'" Ai(x), (9)

where Ai(x) is the Airy function, ' given explicitly by the
integral
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j + (x)

Ai(x}= dx e '"ye
27T

ao
1 3dycos(xy+ —,y } . (10)

—g, &H'& —g .

This is [q(z) is the Heaviside step function]

Ef& =Tr(H+g)[ri( H—g—) ri—( H—g, }]

(17)

( eixy) iy3/—3

which has the special consequences

(13)

It is familiar that Ai(x) is oscillatory for x &0 and ex-
ponentially decreasing for x & 0 with the relevant variable
proportional to

I
x

I

f . We also infer, on setting y =0 in
(9), that

f dx Ai(x)=1, (11)

which permits one to introduce a definition of Airy
averaging:

(f(x)) =f dx Ai(x)f(x) . (12)

In this notation, we have

2 f (d r )(d p)
(2n. )

X ((h„+g)[i)(—h„—g) —i]( —h, —g, )] ) .

(18)

Now we follow the suggestion that an expansion in
powers of the second derivative of Vis acceptable:

[(VV) —2(p V) V]'

=—
I
vvl'" —

3 I
vvI '"(- v}'v+

We shall retain only the indicated terms, with the permis-
sible replacement

(x)=0, (x')=0, (x')=2.
On employing (9) and (12), we can now present (8) as

;(H+g)q (dr)(dp), i[i)„((', p—)+g]t,Tre ' =2 (e
(2m. )

where

(14)

(15)

(p V) V~ —,p2V V.

On introducing the symbols

z= ——,'p —V—g+ —,x
I

VVI

z, = ——,
'
p —V—g, + —,

' x
I

V V
I

f =z —(g, —g),

(20)

(21)

h„(r, p)= —,
' p'+ V(r)

——,x [(V V) —2( p V ) V] 'f ( r )

and recalling that the delta function is produced by dif-
ferentiation of the step function:

which identifies the effective, quantum-corrected, semi-
classical spectrum of H. We use it to write immediately
the sum over all values of H'+ g, such that

g(z) =5(z),
dz

we get the approximation

(22)

Eg =-2f, (I[—z+ —,'x
I
VV

I

'(p V'V)][rI(z) —g(z, )]——,'x
I
VV

I

'(p'V V)(g, —g)5(z, )I) . (23)

(24)

is used in producing the equivalent Airy averages,

The differential equation obeyed by the Airy function,

d
Ai(x) =xAi(x),

X

I

Now observe that

dX
q(z)=-,'

I

vvI'f35(z) (27)

(x"+') =k(k —1)(x"-') . (26)
I

(xf(x))= f(x))).
dX

One application, which generalizes (14), is the recurrence
relation

d2
p g(z)= ——,

'
I

VVI f p. 5(z),
dX ()p

(28)

with similar relations for q(z, ) and 5(z, )=rj'(z, ). After
partial integration with respect to p we are left with

E&& -2 f p ( I
—z[g(z) —i](z, )]+—,', (V V)[5(z)—5(z, ) —(g, —g)5'(z, }]I) . (29)

FIRST QUANTUM CORRECTION

Before continuing, it is advisable to check that the first
quantum correction that is contained in this more general
expression reproduces what is already known. For that
purpose we must carry out an expansion of

—z [rl(z) q(z, )]= zri(z) +z—,i)(z, ) + (g—,—g)i](z, ),

in powers of

5z=5z, = —,x
I

V V
I

(30)

(31)



2342 BERTHOLD-GEORG ENGLERT AND JULIAN SCHWINGER 29

dz
[zeal(z) ]=g(z) (32)

inasmuch as z5(z) =0, and therefore (the notation is a
reminder that z and z, are altered by the same amount)

that exhibits the cubic term [(x ) = (x ) =0]. No expan-
sion is required for the term already possessing V V as a
factor. Now,

displaying the maximum classical momenta associated
with the upper and lower energy bounds g and g, .

We should notice the significance of the combinations
appearing in Eq. (34), as expressed in terms of a variable
z' that analogously involves a parameter g' intermediate
between g, and g:

f (z) —f (z, ) (g, —g)f'—(z, )

{—z [g(z) —iI(z, )] J
B(z,z, )'

= —5'(z)+5'(z, )+(g, —g)5"(z, ) . (33)

This produces the energy correction

f (dr)(dp)
(2m )

y2=f dg'(g' —g) 2 f(z') . (36)

This form conveys the strong cancellation that occurs at
small distances where both z and z, become very large
( V= Zlr) w—ith a fixed difference between them. To
show this cancellation in action, we use the integrals

X [ ——,', ( V V)'[5'(z) —5'(z, ) —(g, —g)5"(z, )]

+ —,', (V'V)[5(z) —5(z, ) —(g, —g)5'(z, )]]

1
p p2 2 z

(2m. ) 0, P (0 (37)

in which z and z, now mean

z=
2 [2( —V —0)-p'] —=

2
(~'-p'»

.= -'[2( —V —0, )—S']—= -'(~,'—p'),

(34)

(35)

1 1
p

(2n. ) 0, P'&0

to produce

5E„„= (dr) —(V'V) d '( ' — )
24m' & dg'2 [2( —V —g')]' '

+ 2(V'V) f dg'(g' —g), [2(—V —g')]'~2 (39)

(40)
We now have the option of integrating the I.aplacian term
over all space with a null result, or, of excising a small
sphere around the origin (in which event there is no
delta-function term) with the same outcome. In short, the
first term of (39) is the negative of half the second one.
That leaves just

5E,„=f(dr) ', (V V)
24m

&& f dg'(g' —g), [2(—V —g')]'i' (41)

First we dispose of the delta function at the origin in
V V. Of course, [2(—V)]' is singular at that point.
But, the two derivatives with respect to g' wipe that term
out. Indeed, the whole structure of the second derivative,
—[2(—V —g')] ~, is thoroughly zero at the origin.
Then there is the connection between the two contribu-
tions. Note that

—(VV) [2( —V —g')] ' = —V t —,[2( —V —g')]

—(V V)[2( —V —g'))'

I

wherein use of Poisson's equation (V V= 4mn, r—)0.)
and the recognition that, with all singularities at the ori-
gin removed, g, can in good approximation be made arbi-
trarily large, yields (/=0)

5Eq„f (d r ) ( ———4m.n)[2( —V)]'
24

in agreement with Eq. (43) of Ref. 5.

(42)

QUANTUM CORRECTION (CONTINUED)

While we opted in favor of V V in seeking 5Eq„, we
proceed conversely with V V in (29), choosing to produce
a functional just of Vand

~

VV ~. First, a qualitative ar-
gument. To the extent that V V is related to the density,
it is most significant in the interior of the atom, far from
the "edge" where

~

VV
~

becomes important. And when
we do approach the edge,

~

V'V
~

is essentially constant.
All this means that, in writing

f (dr)(v'V)[5(z) —5(z, )—(g, —g)5'(z, )]

f (d r) V—V V[5(z) —5(z, ) —(g, —g)5'(z, )] (43)
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we feel justified in evaluating the gradient of z and z, as
' —n

V(z,z, )=- —V V,

leading to the replacement of (43) by

f (dr)
~

VV
~

[5'(z) —5'(z, ) —(g, —g)5"(z, )] .

We thus arrive at

Eg -=2 —z nz —nzs
(dr)(dp)

(21r)

+ —,',
i

V Vi 2[5'(z) —5'(z, )

(44)
F„(y)= I

2' ( (2—2/3 y)
—1/2 ) (52)

Similar statements evaluate the integrals involving z, in
terms of

2( V+(, )

„,=y+(g, —g) „, . (53
~2VV~'/3

'
~2qV~ /3

An immediate recurrence relation for these functions is

—(g, —ge"(;)]]) .

(46)

AIRY INTEGRAI. S

All the momentum integrals that appear here can be ex-
pressed in terms of the Airy function and its derivative.
We deal with these integrals as a set, exploiting their rela-
tionship through differentiation. To convey this compact-
ly, we shall introduce positive and negative powers of
derivatives:

F, (y) =F, 1(y) .
dy

To produce another relation we first remark that, for
n )0, (52) has the following explicit significance:

(y) ( (2
—2/3x y )n

—1/2 )
(tt —)1 21T

which can be checked against (54). Now observe that

( (2—2/3 )n + 1/2 ) ( (2—2/3 )(2
—2/3 )n —1/2)

2

g"(z) = 5'(z), 6"'(z)= &'(z),
dz

(47)
1 ((2—2/3 y)n —1/2)
4 dy

(56)

&(z) =
dz

on applying the Airy averaging relation of (25). Accord-
lnglp,

2)(z) =
dz

(3'(z),

—3

(48)

1(tt+ —,)F, +1(y)= — ', —y F, (y)
4 dy2

2(y) —yF. (y), (57)
z2)(z) =

dz
5'(z) .

d( —g) , ([2(—V —g+ -,
' x

~

V V
~

'")]-'"
&

(49)
which utilizes the known integral (38), where one has only
to replace —g with —g+ —,x

~

V'V~ and apply Airy
averaging. We reexpress this in terms of the variable

Then, in view of the linear dependence of z on the con-
stant —g, we can write

—n

(dp) d
(21r) dz

—n

which is compatible with (54) and therefore also valid for
n &0. Now, beginning with a knowledge of Fo(y), we
first use (54) to compute successively F 1(y),F 2(y),
F 3 (y), ~ . ~; then we apply (57) for a purely algebraic
computation of F1(y), F2 (y),F3 (y), . . . .

To find Fo(y), consider [Ai(y)] . It is given by

[Ai(y)] = f dtdt'e ' "+''
(2m. )

—I (t3+t'3)/3Xe

or, on changing variables,

y=

(dp) d
(2'�)3 dz

2( V+() (50)

which has the property of being negative (positive) in the
classically allowed (forbidden) region, to get [Ai(y)]'=, j do dre '~+3'

(2'�)
—l'(2 CT) /3Xe

(59)

(60)

The use of (13) converts this into
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[Ai(y) ]'=

1 ((2 2/2~ y)
—I/2) .

2%
(61)

1
d doge

+ ~ —1 (2+1—2 ~ }—00 2'
+"

+y 2-'~3x
2m'

0

indeed they
F1rst notice that

o(y) =[Al(y)]

cos —
fy f~ fy f'"

for —y»1
Fo(y) =[Al(y)]

We now produce

F l(y) = —2Ai(y)Ai'(y),

F-2(y) =2Iy[AI(y) l'+[Ai'(y)]']
(63)

(65)the classicalwh1ch co1Q .
e'er the oscillations-I/2

onl& after av«aging ove'(1/2')
1 y I .

(6g) ln contrast, , consld-of thc squared coslllc function
cr F (y) where ollc also needs

AII(y)
f y f

1/2 ~—I/2
f y f

—I/O

FI(y)= —y[Ai(y)]'+[Ai'y ',
F2 y) = —, ty [Ai(y)] ——,

' Ai(y)Ai'(y

—y f Ai'(y) l'],
F3(y)= —, t( —,—y i—,—') [Al(y) ]'+—,

'
y Ai(y)AI'(y)

+y [Ai'(y)]2I .

(64)
Icsultlng 1Q

3/2 77y sin —fy f

for —y »1 (69)

ns arc lotted in Fig. 3.

for very large values of fy f
is indepen en o

d
'

that of the classical limit:averaging anu 1s a

3/2 '1T+ cos' —
fy f

fy f

'/ for —y»1 (70)

F„(y)—

F„(y)-0 for y » 1 .

( )N
—I/2 f y

(n
~

)i 217

(66)

avera in over oscillations. Thewithout the necessity of averag g . The
Ids for the leading terms o 2 ansaIIlc sltlla'tloll holds ol' c

as is ev1den rom t1on
conncctlon 1t should Rlso be notlcc R

ofE I an d I' are entirely oscillatory.
h ld also cIncIgc froIIl thc RsyI11ptoticThcsc I'csUlts s oU R

form of Airy's function,

Ai(y)-m-I/2 fy f

f

I/2 — f« —y »1Q COS

I/2 I/4 21 /3 for yAi(y) ——,m y e
E,=Tr(H+g)ri( H —g, ), — (72)

Eg =Tr(H+g)[q( H g) q( —H ——g, ]- —
S

by a statistica rne o,1 th d onc that 1nclUdcs soIIlc quantum
corrections. Now we compute

(73)H (
mb otential.b Us1n t c cxach t energies in the Coulo py g

Morc precisely, we wr1 e e

z - z
&( r)= ——'+ V(r)+-

r

8 6
Y

FIG. 3. Plot of the F„(y) for n =3. . . , —,2 I 0 —1,-2.

and regard the latter part as a small pertucrturbation, leading
to thc cQcrgy value

T~-=-, + v+—

This treatment s ouh ld be justified if the energy at wh1eh
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the quantum calculation is connected with the (imp«ved)
semiclassical calculation is such that

Z Z
Z I ))gg » (76)

which is to say that the largest principal quantum number
Pl, of thc quantum treatment 1s 1Il thc 1RIlgc

Herc thc above-IIlcIlt1QIlcd RvcIagc Over thc var1QUs values
of g, is performed with uniform weight on the energy
scale, which effectively uses half the sum of the extreme
values. Evldcncc 111 favol of tllls being a reasonable way
of Rvcl'Rglllg ovcl gg ls plcscIltcd lfl R coIIlpa111011 papcl',
dedicated to the details of the special treatment of strong-
ly boUIld clcctI'ons.

Notice that
1 « /lg «Z

Thc quantum cnclgy Es 1s then glvcn by

(77)
- =Tel( H ——g) —%=0,

E, = —Z'n, +2 g V+ —+g
n, l, m num

where, to be accurate, n, and g, are related by

(78) which equates the number of electrons with the number of
states having single-particle energy H'& —g, all such
states being occupied.

Z2 V+-Z
2(n, +1)' ( &,+i

in which, in principle, ( . )„(( . )„+~) is the larg-

est (smallest) value found for this set of states. Only a
slight dependence on the particular choice of angular
qllalltllII1 IluInllcl s ls cxpcc'tcd, llowcvcr, Rlld tllcl'cfol'c wc
shall average away the angular dependence of the squared
wave functions:

The Fermi-Dirac antisymmetry of coordinate wave
functions for parallel spin states requires that the electro-
static energy of the electrons, as expressed in terms of the
pRrtlclc dcIlslty n ( 1'),

f (d )(d I) n (1 )/I ( I )

/

r —r'/

1 n r, r'n r', r

V+ — = r V+—Z Z
n, 2n,

=—f (dr) V+ —
~ f„ i,„(r),

1nvolv1ng 8 nond1agonal dcns1ty. In thc
phase-space trcatGlcnt,

(~ ~g) f (dP) tp. (r —p ')

(2n)

(g0) and

sclTllclasslcal

r= —,'(r+r ')

(87)

and 1ndccd th1s avc1agcd dcns1ty dcpcnds QIlly Qn & be-
cause of the spherical symmetry of closed Coulombic I
subshells. It is important to appreciate that no particular
value of g, in the range (79) is implied and, indeed, an
averaging process that smoothes the transition between
the two regions is to be understood.

The number of specially treated electrons is

n(r)=n( rr)= f —",n(r, p)
(2Ir)'

which p«duces the total number of electrons as

N =Trrt( H —g) =f — —II ( r, p ) .(dr)(dp)
(2m. )

» the cx«erne semiclassical limit (TF) and without refer
ence to strongly bound electrons, it is clear that

X,= g 2n I= —,
'

n, (n, + I )(2n, + 1), n ( r, p ) = 2II( ——,p —V—g) (90)

in view of which we rewrite (77) as

I «+g «Z ~ (S2)

This is to say that, Q must be a sIIlall f1actloll of 'tllc totR1

number of electrons. For most pra«lc» app»catlons t»s
means ng = I~ or Rt Qlost pig =2.

For a system of N electrons, the combination of Et~
and E, approximates the single-particle energy El plus

gX, or

.El ——Tr(H +g)I)( H —g) —gX-
= —, g Eg, +E,—gX.

j=l

being the selection (with spin multiplicity 2) of all states
of energy below —g, the counterpart of Ii( H —g). As-
with the energy density, there are quantum modifications
of this form, and the special treatment of strong1y bound
electrons will introduce the parameters g, on somewhat
the same footing as g. At the moment, it is sufficient to
appreciate that the momentum dependence of n (r, p) in-
volves —,p +g (and —,p +g, ), which dependence, harken-
ing back to Eq. (3), we take in the elementary Fourier
form exp[ —i ( ,p +g)t] where g is also a —stand-in for g, .

To set the stage for applying these remarks, we exhibit
the exchange energy as

E,„=f (dr)&,.(r) (91)
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in which the exchange energy density is

1

y
(dp) (dp )

l p l
(2m) (2m)

Xn(r, p)n(r, p') . (92)
I

Notice that the variables r and p used here signify the r
and r —r ' of (87). Now we represent n ( r, p ) and
n ( r, p ') by the typical Fourier terms from which they are
constructed. This directs us to the integral

exp i p p 'p exp —i 2 p + t exp —i
& p +

(2~) (2~)
+ ~2 l 1

exp[ i—( —,
'

p +g)t]exp[ i ( —,
'

p—' +g)t'] exp i
(2m. ) (2n )

(93)

as produced by suitable translations of the two momen-

tum variables. Now we perform the p integration:

J(d~) 1 . p r+t
lpl 2 tt

V,„(r)=m n(r) .
S

(101)

thereby defining the exchange potential V,„(r). We infer
that

i 2t+t'
0 dp exp —p2

In the TF example, where

2~ 4/3 (102)

tt'= —7Tl t+t' 5E,„=——f (dr)5n(3m n)'~ (103)

&(g, g, )
'"

&(g, g, )
(95)

Before continuing, we test this for the simple TF
theory, where

For the final steps, first note that differentiation of (93)
with respect, to g (g~ ) would supply the factor —i (i+ t'),
converting (94) into m( it)( ——it'). Then we remark that
the factors —it and —it' are just what is produced by dif-
ferentiating the individual exponentials with respect to g.
With those individual exponentials understood as the

basic elements of n ( r, p ) and n ( r, p '), respectively, we

have arrived at the result

the implied exchange potential,

(104)

z= ——,p —V—g+ —,'x
l

V Vl (105)

and recognize the appropriate modification" of the TF
form (96):

is indeed what is produced by (101),according to (97).
We are now going to consider simplified versions of the

particle density that incorporate quantum modifications
of the Airy type. First we ignore the special treatment of
the strongly bound electrons. Then, not bothering with a
derivation, we simply look back at the structure of

n(r)=2 g( —V —g ——,p )
(dp) 1

(2m. )

(96)

n(r)=, ([2(—V —g+ —,'x
l
VVl'~')]'~ )

l
2V V

l
F2(y)

2%
(106)

according to (50) and (55). The exchange potential then
derived from (101) is

This leads to
V,„=—l2VVl ' F|(y) . (107)

[2( —V —g)] (98) Then we go on to construct the exchange energy density
proceeding from

[2( —V —g)] = — (3mn) i.
4m 4m

(99)
(108)

5E,„=f (dr)5n(r)v, „(r) (100)

which is its well-known value (E,„=—,5Eq„).
We can regard (95) as providing information about the

manner in which E,„depends differentially on the densi-

ty,

or

(109)

What is needed here is provided by a general relation
that is derived by multiplying the recurrence relation (57)
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with F„+i(y): from which the F„(0)follow from the recurrence relation

d 2

(n+ 2 )Fn+i = 4Fn+i Fn yFn+iFn2
(n+ —,

' )F„+i(0)= ,'F—„(0). (119)

1 dd 1 d2+— Fn
4 dy

"
dy

" 8 dy

1 d 2+—y F„
2

(110)

Then, some edge values are

Vex I y=o= I
2V V ly=oFi(0)= 0 0670

I
2V V

I y=o
(120)

"
I y=o= I

2V V
I
y=oF&(0)=0 0048712V V ly=o .

2m.

or

1 1 2 1(n+1)F„,= ( F + F i+ sF— + zyF +i) .

——'FoF 2+ —,F 1+—,yFO ——0 . (112)

The special implication of n = —1 is immediately
checked; indeed,

ENERGY

First we review the situation without exchange. The
singleparticle energy E1 is not the total energy E
inasmuch as the electrostatic interaction energy of the
electrons is counted twice. That electrostatic energy is

,
)
n(r)n(r')

I

r —r'I

What we want is the example

2 d 1 1 2 1 2Fi —— ( —4F,F i+ , Fo+ ,yFi)—, — (113)
where

mr V„+-
r

(121)

leading to

8',„(r)=
I
2V V

I

~'( —, FiF I+——,Fo+ —,yFi )(y),2'
(114)

V„(r )+—= f (d r ') n ( r ')Z
r

obeys the Poisson equation

(122)

a structure that does not lend itself to further simplifica-
tion by introducing the explicit forms of the F„.

THE EDGE

One easily checks, with the aid of the asymptotic for-
mula (65), that, for —y »1, all these quantities assume
their TF forms. And, of course, they all tend rapidly to
zero for increasing positive values of y. What is the situa-
tion now at the edge, to which we assign the nominal
meaning y =0? We need the values of

—V V„(r)+—=4m.n (r) .
r

(123)

Now the total energy of the system is given by
2

ZE=E,— f (dr) V V„+-
8m r

(125)

The introduction of the latter into (121), with a partial in-
tegration, supplies the following version of E„:

E„= f(dr) V V +— (124)
8m. es

Ai(0) =—Re f dy e

3
—1/6

( ——,
' )!=0.355 03. . .

2m
(115)

The advantage of this form is its stationary property for
variations of V„. That involves the definition of the den-
sity based on the variation in Ei of the single-particle po-
tential V:

5Ei ——f (dr)5V(r)n(r) . (126)

—Ai'(0) =—Re f dy iye

31/6
( ——,

' )!=0.25882. . .
2m-

(116)

In the present situation, V(r ) is V„(r) and the variation

of E yields

which are related by 5E=f (dr)5V„n+ V V„+— =0.1 2 Z
4m

" r
(127)

3
—1/2—Ai(0)Ai'(0) =
2

We note the values

=0.091 888. . . (117) Now we include the effect of exchange. It changes the
single-particle potential into

V( r) = V„(r)+ V,„(r) . (128)
F 2(0)=0.1340, F,(0)=0 1837, Fo(0. ) =0.1260

(118)
We must also add E„,in constructing E, but avoid dou-
ble counting. This is accomplished by
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E=E&+E,„— r nV,„

f (dr) V' V„+—

First, the significance of the combination involving the
exchange energy and the exchange potential can be appre-
ciated by considering

5 E,„—f (dr)nV, „
L

=f (dr)5n V,„—f (dr)(5n V,„+n 5V,„)
= —f (dr)5V, „n (130)

accol'dlllg to thc dcflIlltloI1 (100). T1MI1, quite simply, we

get

5E= f (dr)5vn —f ( dr) 5v,„n

+ r V„Ves+

=z' z
2

—V+—,nl ——n, , n2 ——n +1;
2'~ ~ n)

(136)

the quantum-mechanical expectation value herein refers
to the angular average of (80),

'I

V+ — =f {dr) V+—
n. p J
J

(137)

' =2 I2v'VI -'"

is given by

where
I p„ I

~„depends ollly 011 &
1' SV

The variable V(r) en«r»n ~h~~~ way»n«EI: exp»-

citly as V(r) and as V' V(r ), and implicitly in the g~, for,

as V(r ) is altered, gz is correspondingly modified,

5g, = f—(dr)5v(r)
I y„ I.'„. (138)

Thc cffcct on E~~ which clltels through

=f (dr)5V„n+ — 7' V„+-es (131)
BE ' =—f (dr) I2VVI(y, —y)

which reaffirms thc equivalence of the stationary property
with the electrostatic Poisson equation.

X[+I(yJ)—6+ 2(y, )]

PARTICLE DENSITY

We proceed to construct n ( r ), starting from the
single-particle energy according to (126). The single-

particle energy is produced by [Eq. (83)]

El ——g , Egg +E, g—N, — (132)
J =1

its parts being displayed, respectively, in Eqs. (46) and

(78). The introduction of the various momentum integral
evaluations [Eq. (51)] into (46) gives

,'E« —f(—dr—) I2v vI'"
j=l

& [~3{v I
~ V

I
)—6~o{v

I
~ v

I )]

(133)

in which the a „are the g, -averaged functions

a„(v,
I vvI )

= y —'P;(y) —ey, ) —(yJ —y)+. -1(y )] .
j=l

For convenient reference we also note that [Eq. (78)]
T

E,= —Z'n, +2 g f {dr) V(r)+ —+g
n(~n },

=—f (dr) I2V'V I(y —y)

&& P'I(y, )—y,+o{y,)1

The recurrence relation {54)has been used in the form

[+.{y,)+{y,—y)+. 1{y,)]=(y,—y)+. 2{yj»

51y =51yj ——2
I
2 V V

I

~ 5V,

which implies, through (54), that

5IP„=—2I2VVI ~W„ 15V.

(143)

(144)

%e get
2

5I g 2Eg. ——f (dr)5V(r) I2V'VI(Wl —6P I) .
j=1 2m

(141)

and (57), with n =0, is responsible for the second version
of (140). Accordingly, this contribution to 5EI is

5gEI ——f (dr)5V(r, ) —,
'

QJ I @„,I,y . (142)

Next we consider the explicit dependence on V, as pro-
duced in Eg by

J

and the gj entering yz in (134) are [Eq. (79)] The consideration of explicit V V dependence begins
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with the observation that

5- I2VVI
"i = I2VVI'"i ' 5(VV)VV 3

with the implications (y also stands for yj)

5~ y= ——', I2VVI y5(VV)

5- F„(y)=4yF„~(y) , I

2—VVI '5(VV)'

= —,
'

I
2V V

I
[F„3(y)—(4n —2)F„(y)]

(146)

n ( r ) =n,t„„s(r)+n(r ),
where [Eqs. (142) and (151)]

2
1 2

nstrons =ps+ g YQj I Pn I av s

J=1

I2VV I(~2 ~—t)2'

(147)
and [Eqs. (145) and (150)]

(152)

(153)

X5(V V) (148) V [V'VI2VV
I

' (Po+ —,'W 3)] . (154)

we obtain from (133) that
2

5%v Xj=l

= f (dr)5(VV)' —I2VVI '~'(P;+ —,~,)
4~ 3

= f (dr)5VV —V V —
I
2V V

I

X(~0+-,'~ 3) (150)

the last step, once again, made use of the recurrence rela-
tion (57). Then, after realizing that the change in Wn is

[~ ——(4n —2)W ]5(V V)2,

The count of the number of electrons is now given by

N= f (dr)n

=f (dr)
I
2VV

I
(P 2

——,'P &)
2m

2 n

+g —,'Q, + g 2n' (155)

+f (dr) +
I
2V V

I

'"(~,——,'w, )
t 2 77

J

or, using the definition of the Q [Eq. (140)], in terms of
the energy (133),

&=f (dr) I2VVI(W, —6a, )2'

+ —,n, (n, +1)(2n, +1) . (156)

where a partial integration produces the latter form.
When we add to these variational contributions that of

(135),
Now, according to (84) and (132), this number should also
be

5E, =f (dr)5V(r)2
nt(n ),

I, m

=ajtj= g 2Egg +E, —
j=l

(157)

n

=f (dr)5V(r) g 2n
n=1

Indeed it is, for on using the fact that, with respect to the
integrand of (133), an infinitesimal change of V is
equivalent to an equal change of every g, or

=f (d r )5V(r )p, (r),

we arrive at the density

(151)

we get [Eq. (145)]

a a

ag, +a(, (158)

2

ag j, '2 —.Eg = f (dr) I2VVI(~2 ——,'~, )+ + I2V VI'"(~,——,'~, )
ag, ag, 4~

(159)

and [Eq. (135)]

E, =jV, =—,n, (n, +1)(2n, + 1) . (160)

l 2 Z
V V—V,„+—=n,

4m. '" r
(161)

DIFFERENTIAL EQUATION

The differential equation that will enable us to find the
potential for given Z and X is, of course, the Poisson
equation (123),

where n is now expressed in terms of V and its derivatives
in (152)—(154), and the exchange potential is related to the
density through [Eq. (101)]

a a a a
n =m. aVn; (162)
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the last equality is an implication of (158).
Before continuing the discussion of these equations,

with their plethora of Airy functions, we need to make
contact with the differential equations of Ref. 8 [Eqs. (14)
and (20) there], which represents an extrapolation of the
first quantum correction and the exchange effect toward
the outer reaches of the atom. Accordingly, we introduce

I

the classical limits, with leading quantum corrections,
where significant, of the various quantities appearing
here. Let us note first what supplements the classical lim-
it given for F„(y) in (65). Returning to (55), we recognize
that the first quantum correction will be obtained by writ-
ing the initial terms of an expansion:

( 2)I
F, (y)=, ( —y)" i +——1 ~ —jy2 1 1 d

( y)ll —/

(n ——,')! 2' 3I 2 d( —y)
for —y «1 (163)

which employs the Airy average (x ) =2.
Inasmuch as the equation to be contacted is initially

based on the state of affairs in the dense interior of the
atom, we do not include the corrections for strongly
bound electrons —which is to replace the M „ in (154) by
F„(y), and to discard n„„„s[Eq. (153)],so that

1 V. VV [2( —V —g)]-'i'
6m. 2~

which, with the observation that

(167)

[2( —V —g)]' '+ (VV)'[2( —V —g)] ' '
3' 24ir

n -=i 2V V
I [F2(y) ——,'F i(y)]

277

V.
I V V

~

2V V
i

' '[Fo(y)+ —,F 3(y)]I

(164)
and

V. I V V[2( —V —g)] 'i2I = —V'[2( —V —g)]'i'

(168)

is now the density —and we regard quantum and exchange
effects as small, requiring the omission of corrections to
corrections. Thus, for the exchange potential we are con-
tent with the simple version of (104)

(VV) [2(—V —g)]

= V V. V [2( —V —g) ]

= —V [2(—V —g)]+'i —V V[2( —V —g)]
V,„=———[2(—V —g)]' (165) (169)

and in the density (164) we retain only the leading terms
of the expansion (163). That expansion refers to non-
negative values of the integer n only, and therefore we
employ the recurrence relation (57) to express F i(y) and
F 3 (y) in terms of FO,Fi,Fi . This leads us to

12V V
I yFi(y)

3m

V {VVi 2V V
~

'i [4yF2(y)+ —',y2F, (y)
6m

is turned into

n = [2(—V —g)]3i= 1

1 V'V [2(—V —g)]-'i'
4m

+,V'[2( —V —g)]+'"
24m

(170)

+ —,'Fo(y)] I .

Upon utilizing (163) we get [y =2( V+/)
i
2V V

~

i ]

The last term supplements the exchange potential (165) by
one-sixth, if we bring it over to the other side of the Pois-
son equation.

At this stage we have

1 V' V+ [2( —V —g)]'"+—

, [2( —V —g)]'i' 1+1

1 2 ZV+-
4m r

[2( —V —0)] '"
[2( —V —0)l'"

3~2

(171)

The inclusion of Z/r into the Laplacian on the right-hand side does not change anything because the resulting delta
function is multiplied by an expression that vanishes at the origin. And, with this form, we are invited to introduce the
TF evaluation

V' V+ —=, [2( —V —g)]'",
4w r (172)
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—V' V+ [2(—V —g)]I"+—= -[2(—V —g)]'" 1+- [2(—V —g)]-'"
6~ e 3m 6m

[2(—V —g)]I"+
'3

Now, if we change the variable V to V, in accordance
with

( V+/)+ [2(—V —g)]'"

(174)

"2 1/2

[2(—V —g)]'r'= —2V+
9m

(175)
7

' 2 ]./2
4 — 11 11—2 V+ +

3m 9m 9m.

3

which, indeed, is the desired differential equation of Ref.
8. Although Eq. (176) has proved to describe the outer
region of weakly bound electrons in a significantly better

way than the TF model, it suffers from the major defI-
ciency of ascribing a sharp edge to ions and atoms. It was
with an eye on the boundary condition for V at that edge,
that we chose the additive constant in (174) or, equivalent-
ly, in (176). (For more detail, one should consult Ref. 8.)
This drawback is removed in the new theory, where the
Airy function effects a smooth transition through the
edge of the atom.

After these remarks we return to Eqs. (161) and (162).
To construct the differential equation for V, one first has
'to dlffcrcIltlRtc tllc dcllslty, according to (162), 111 ol'dcr 'to

obtain an explicit expression for the exchange potential in
terms of V and its derivatives. Then the Laplacian of V,„
is needed in Poisson's equation (161). It is clear that this
will result in a differential equation of higher order for V,
unless simplifications are introduced which are based
upon the knowledge of the limits of validity of such rela-
tions as (162}. All this leads to a second-order differential
equation for V, which, under the circumstance of spheri-
cal symmetry, as is the situation for an isolated atom,
reads

4Irn„,.„s+ ~

2V V
~
(2a,+a I

——,'a 4}

~2%V
~

-'"(—,~,+—„~,)—,~2%V [+I"(W,+ —,'~, + —,', ~,) . (177)
I"

r2= —f (dr)r n(r), (178)

for which experimental data are supplied by the measu~e-
IIlcIlts of 11101RI' dlRII1Rgllctlc susccptlbthtlcs,

X„a+=4.752 ' 10-'I, (179)1
Pal gg

1 37/9

Since the detailed derivation of (177) Is rath« lengthy
and technical, we prefer to present it in a separate paper,
wh1ch also coIlta1Ils an cxhaust1vc d1scuss1on of nuIncr1cal
results. Here we confine ourselves to a graphical compar-
ison of mean-squared distances, N =18 1.0

1.0-

Z=N+t Z=N+P.

where, expressed in atomic units,

I= , I (dr }r~n (r ) =——r

6

Figure 4 shows nine histograms, one each for the r

i iI ~
FIG. 4. Histograms comparing statistical, experimental, and

HF data for the mean-squared distance, see text.
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values belonging to the noble-gas atoms with
X=Z=18,36,54 and to the related ions with Z=N+1,
iV+2. The blackened center columns represent the exper-
imental data' while the left ones indicate the results of
the new statistical calculation. To the right of the experi-
mental columns stand those belonging to Hartree-Fock
calculations. ' The surprisingly poor performance of HF
is obvious: all HF predictions exceed the experimental
numbers, by up to 24%. With the single exception of the
argon atom (N=Z=18), the statistically calculated r
values reproduce the experimental ones better —frequently
much better —than the HF numbers do. And, even for ar-
gon the relative "failure" of the new statistical theory can
possibly be blamed on deficiencies in computational pro-
cedure; for details see Ref. 12.

FINAL REMARKS

The new statistical theory of atoms presented above
turned out to be superior to the HF approach at larger
distances. This is the domain of chemistry, and there is
where we see the immediate application of the new
methods. Not only can one expect better results than a

HF calculation would produce, but the statistical treat-
ment should also enable one to attack problems that can-
not be handled by HF because of their complexity; a large
molecule illustrates such a situation. Of course, the new
methods of dealing with quantum corrections, strongly
bound electrons, and the exchange interaction should im-
prove matters wherever TF ideas have been applied be-
fore, e.g. , in solid-state and nuclear physics.

We think that there may be also a lesson for the
"mean-field approximations" of high-energy physics
(which lack "quality control" ) although making the con-
nection probably requires a reformulation in terms of
many-particle Green's functions. We intend to return to
this topic elsewhere.
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