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Statistical atom: Handling the strongly bound electrons
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We show how the corrections for strongly bound electrons are incorporated into the Thomas-
Fermi energy functional, and derive for the density the analog of what is known as Scott s correc-
tion to the energy. The scaling properties of this energy functional supply a new, consistent deriva-

tion of the Scott term.

INTRODUCTION

The failure of the Thomas-Fermi (TF) model in the vi-

cinity of the nucleus, where it predicts an enormous elec-
tron density, has, of course, been well known since the
very first papers on the subject by Thomas and Fermi. '

Surprisingly, it took a quarter of a century until Scott
suggested that TF can be significantly improved by a
better treatment of the strongly bound electrons. Some 28
years later, one of us gave a clearer derivation of the Scott
term. It is the purpose of the present paper, now only
three years later, to take the next step —to incorporate the
corrections for strongly bound electrons into the energy
functional, in such a way that their effect on the density
can also be studied.

ENERGY FUNCTIONAL

One starting point of TF theory, and a useful one here,
is the following stationary energy functional of the
single-particle potential V (atomic units: e =m =A'= 1.):
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where g is Heaviside's step function and g, the Lagrang-
ian multiplier of the total number N of electrons, is the
negative of the largest single-electron energy. The phase-
space integral that sums the contributions of all electrons
with energy less than —g exhibits V+( as an effective
single-particle potential. In the spirit of Ref. 3 we modify
ETF by subtracting the contributions of the strongly
bound electrons, those with energy less than —g„where
Z «g, «Z [more about g, later, see Eq. (32)], while
adding the correct quantum-mechanical energy of these
electrons. This gives the energy
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which treats the difference between —Zlr and V+( for
the strongly bound electrons as small. Here, n, is the
number of closed shells of electrons in the Coulombic
field of the nucleus, and the g„t are the corresponding
wave functions. They enter (2) as the sum
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(3)
where

n (&n, ),
l, m

which is the density of the specially treated strongly
bound electrons.

Of course, g, and n, are related by the fact that —g,
means an energy in between the single-electron energies of
the n, th and the (n, + I )-th shell:

(V+ — = J (dr ) V(r )+—i/„i (r ) i'. (5)
n, , l, m I'

For a spherically symmetric potential V= V(r), as is the
situation for an isolated atom, there is no m dependence
in (5), and little l dependence is expected. We shall there-
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fore use averages over shells

V+——:
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X ig„l (r)i' (6) We then write the total density in Eq. (3) as

for the limits in (4), p, (r) = g 2n
i @„i,„= 4, (Zr), (12)
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so that now

V+ — =f (dr ) V(r)+—
r n, r

where
i g„ i,„ is only a function of r. In (8) we intro-

duced the radial density functions P„(Zr) which are nor-
S

malized according to

f dxx $„(x)=1 . (10)

They are displayed here for the first few n, :

The spherical symmetry of each closed l subshell enables
us to do the angular average of the density,

4,(Zr)= g 2n P„(Zr),
n=1

(13)

which upon integration gives the total number of specially
treated strongly bound electrons,

n

X,=f (dr )p, = g 2n = ,'(n,—+—,
'
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'
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(14)

E ——'(E~ +E~ ) (15)

where gl ((2) is the upper (lower) bound for g, in (7).
If we now evaluate the momentum integral in (2), we

obtain the new energy functional which includes correc-
tions for strongly bound electrons:

Equation (2) is all very well but it disregards the fact
that g, is not a uniquely determined quantity. We have to
average over all g, that obey the restriction (7), as well as
over a small range of n„ in principle. The fundamental
physical quantity is the energy, so it is natural to average
uniformly on the energy scale. Then the mean energy is
just half the sum of its extreme values,

E=f (dr ) —
2
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77 7T r

the first terms are the TF energy ETF, the remaining ones its modification. Here and in the sequel, square roots of nega-
tive numbers are understood to be zero.

Before going on, let us supply evidence in favor of the average (15) by checking that (16) correctly reproduces Scott's
correction when it is treated as a small perturbation. For that we use the TF potential VTF in ETF, and just V = Z/r-
in the correction terms referring to strongly bound electrons, so that

Z
~J 2' nl n ' n2 —n +1

272j
and [/=0, r =(Z/gl )x]

(17)

—Z 71
2

21 2ETF+Z l g n ETF+ 2 Z
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Indeed, there is Scott s term. This derivation, which is very close to that of Ref. 3, does not take into account the change
of ETF which is caused by the transition from the TF potential to the one that minimizes (16). We shall do better later,
but first we have to look at the implications of the stationary property of the new energy functional (16).

Arbitrary variations of V and g give rise to a change of E given by

5E=g' J(dr ) [—2(V+/)] ~ ——,g [—2(V+gJ)] +p, N—

+ r ~ l 2~+ 3/2 ~ l 2~+ 3/2+ II 2&+ i/2
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a basic test of consistency.

DENSITY

(2&)

According to

At large distances from the nucleus, all terms in the
density with explicit reference to the corrections vanish

and we are left with the first term of n, which is to say,
with the TF density

and (9) we have

g1 =—I (dr )5V
I gn. I,„.

The vanishing of 5E for arbitrary infinitesimal 5V and 5ts

supplies us therefore with

[—2(V+0)]'" .
3~2

l
nTF =

3~
(30)as r~O .

The extrapolation of nrp into the region of strongly
bound electrons (where V= Zl») predicts —an infinite
density at the nucleus,

3/2
2Z

3/2

3

[ —2(V+gj)]» +p, (23)
j 3

A look at the net density makes the improvement obvi-

ous, as we find a finite (and positive) value:

»1 =»lstrong(» =0)

+ 5 +(2Z) * 1 Q1 Qz

4& „1»t' 4n,' 4(»1, +1)'
(31)

~ =nstrong+~ ~

n= [—2(V+()] i
3~2

(g~ —g)[ —2( V+ g~
)]'~

(25)

(26)

(27)

There is no contribution from n —»+'~ at small ».

As an illustration, Fig. 1 shows a plot of both the TF
density and the new one for neutral mercury

(Z =N =80), n, =l. The two sharp edges are produced

by the last term in n, Eq. (27); thus they are artifacts of
the typical TF discontinuity associated with the square
root. An improved theory of the statistical atom —we

describe it in a companion paper —removes this insuffi-

c1cncy.
The value obtained for n (» =0) in (31) clearly depends

on thc choice wc I11ake for n, but thcrc 18 11ttlc room for
arbitrariness. Looking back to Eq. (2) we remark that g,
is physically restricted to be small on the scale of Bohrian
energies and large compared to TF energies, i.e.,

The combination of Eqs. (20), (23), and (25)—(27) tells us
that the total number of electrons is equal to the integrat-
ed density:

(32)

On the other hand, g, is bounded by g, and g2 for which
we have the estimates (17), so that
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with the known asymptotic form of V

Z —X for r large
r

(38)

D(rj

60

one integrates the differential equation inwards and com-
pares the evaluations of the integrals for g~, g2, and Q~, Q2
with the initial guesses, thereby obtaining improved values
of these parameters. Further, the test

ZV=———as r —+0
1"

(39)

30
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FIG. 1. Comparison of radial densities D =4' n for neutral
mercury, n, =1. Smooth curve, TF; curve with structure, new
theory. Abscissa is linear in the square root of r.

has to be made, and its outcome leads to an improved g.
Then one tries again with the new parameters. For a not
too bad initial guess, this scheme is rapidly converging.

For neutral atoms, N =Z, we know that g is zero, but
we have less knowledge about the asymptotic form of V.
For large r, which means outside the region of strongly
bound electrons, the density has the TF form (29) (with
/=0), and the potential now satisfies the TF equation

or

Z2 Z2

2n, 2(n, +1)
(33)

—V V= ( —2V) for r large.
3

(40)

Thus, asymptotically V has to be equal to a rescaled TF
potential

V(r) =a Vrp (ar ) for r large (41)

2(n, + —,
'

)

[Eq. (14)]. Insertion of (34) into (32) gives then

and

(34)

(35)

with a close to l. Again, for given parameters —now a,
g&, g2, Q&, and Q2—one integrates the differential equa-
tion for V inwards and by iteration improves their values.

SCALING

1 «Xs «Z-N (36)

The latter simply requires the number of specially treated
strongly bound electrons to be a small fraction of the total
number.

For realistic values of Z the upper bound for n, in (35)
is not much larger than unity [Z': 1—+5], indicating
that we cannot take (35) too literally, unless we wish to
turn our attention to enormous values of Z. This largely
forces us to choose n, =1, or at most n, =2, in practical
applications. Therefore there will usually be no call for
the, in principle necessary, average on n, . For n, =1, the
electron density at the nucleus is just

n(r =0)= (1+—,Q&+ „,Q2), n, = 1 . (37)
(2Z)'

4m.

INTEGRATION

The price for the more realistic density at small dis-
tances is paid in the form of complications in the differen-
tial equation that determines V. Now it is really a system
of equations because the right-hand side of Poisson's
equation (24) contains not only V but also the parameters

gj, QJ; and they themselves are given as integrals involv-
ing V.

For positive ions, X &Z, the numerical search for V
begins with a reasonable guess for g, g&, $2, Qt, and Q2.
Then starting at a sufficiently large distance (where n =0)

We mentioned the rescaling property of the TF equa-
tion (40), which is an invitation to examine scaling in the
new theory. This will do the two things for us: first, it
supplies reasonable guesses for g~, gz and Q~, Q2,

' second, a
more consistent derivation of Scott's term is achieved.

As it stands, the energy [Eq. (16)] implicitly contains
the restriction

(rV)
~ „0———Z (42)

because otherwise the integral on the squared gradient
does not converge. Therefore, scalings of the type

V(r)~A~V(Ar) (43)

have to be accompanied by a scaling of Z,

Z~X,P-'Z .

For convenience, we shall also scale g in order to preserve
the structure V+/; thus

(45)

Since the energy (16) is stationary under infinitesimal
variations of V and g, all first-order changes stem from
scaling Z,

(~ —Z) l, , =(P—l)Z
d BE d p, BE

az di, az
(46)

As a first example, we do the scaling for uncorrected TF,
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ETF =ETF +ETF P—'(I) (2) (47) constant 8, as defined by

P

E,"„'=f (d r ) — —[—2(V„+g)]'"
3%2 5

(48)
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then gives
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Z
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(49)

Z ET„=——Z ~,a a
BZ Q

which implies [Eqs. (55) and (56)]
The scaling properties of ET'F ' are simple; we get

E (A, )=A,'~'-'E'"+A, ' 'E' ' —A, gN

which inserted into (46) produces

( , p 3)E—TF—+(2p —1)ETF' AN =—(p 1)Z —Erp .

E,„(z,z)= ———z ' .73
7 a

The numerical value of 8 is

8 = I.588070. . . ,

(62)

, ETF +E—TF—gN =0,(&) (2) (52)

This has to hold for any value of p. So we get two in-
dependent relations among the energy quantities in (51);
e.g., for P= 1 and 4,

it can only be found by numerical integration of the TF
equation. For N =Z the additional lesson from (52) is

(64)

For ions, N ~ Z, there is less specific information in these
equations. A general statement,

7E,"„'+7E,"„' 4' =3Z— E„.
Z

(53) ETF(Z,N)= — Z i f—(N—/Z)„ f (1)=1
7 a

(65)

The latter combines with (47) and the relation

(54)

7ETF(Z,N)=3 Z +N ETF(Z,N) .
BX !

L

(55)

For neutral atoms, N =Z, there is a simple implication of
this equation. For, after recognizing that

follows simply from (55) and (62), but to know f (N/Z)
one has to solve the TF equation for the particular degree
of ionization.

Unfortunately, scaling is not quite so simple for the
coffcctcd tIlcofp. Wc cncountcf IDainlp two coIDplica-
tions: the gj do not scale like g, and there are additional
Z dependences hidden in the Coulombic densities ! g„!,„
and p, . We start with decomposing the energy (16) in a
way analogous to (47),

E =E'"+E"'+E"' gN+Z'—n, ,

Z +N ETF(,N)! ~ z ——Z— ETF(Z,Z),

(56)
E'"=—,

' g f (dr ) 3, —[—2(v+0)]'"

OI'

7ETF(Z,Z) =3Z ETF(Z,Z),

ETF(Z,Z) = —CZ (58)

+ —,
5 [—2(v+CJ. )]'"

+,(g, —g)[ —2(v+g, )]' '

The constant C is found from the knowledge of
"dETF/dN =0 fo—r N =Z, together with

Z ETF ——Z ETF —— (d r ) VrF+ — V—8 8 (2) Z 1 2Z
BZ BZ r 4m r

E"'=f (dr ) — i v+-
8m ' r

Z")= f V+ p, r .

(68)

Z= —Z VTF+-
r=O

(59)
In writing (66) we made use of

which is simply the potential energy of the nucleus in the
field of the electronic cloud. The introduction of Baker' s in the form [Eq. (12)]
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n

f (dr ) —p, (v)= g 2n — =2Z n, .
n=i n

Another implication of (70) is [Eq. (21)]

(71)
Similarly, we obtain

r

A~f (dr )[V(A, Pr)+g]p, (r)

( )
Ps

as r scales to k~ r. Consequently,

Ps

Before we can investigate the scaling behavior and Z
dependence of the various contributions to E in (66), we
have to prepare some tools. Looking back at (8) and (12),
we find that

l P„,„and p, scale according to [Eq. (44)]

n av n av

r (73)

=2(P—1)E' ' (P—2)g—N,

(—P 2—)f (dr ) (rv)p, , (76)

with N, as given in (14). Now concerning the Z depen-
dence of the Coulombic wave functions, we again consult
(8) and (12), and find

& V(r) }„=f (dr )V(r)[
l P„, l,„(r)]

f (dr )x~v(xr)x"~ "[-q„. l.'„(&~-'r)]

= f (dr )A~v(k ~r)[ q„, l
„(r)]

= &x~v() '-~r) }„,J

which we insert into (72) to produce

—[A, Pg (A, )]
dA,

(74)

BZ, Ps
=(3+r & )

with the consequences

Ps
(77)

Z2
, —

&
v(x'-~r) }„2' .

J

Z E' '=E' ' gN, —f (d—r ) (rv)p, . (79)

=(p—2) g, + [rV(r)))
8

Bl' n ~

J .
(75)

We are now ready for examining E'". In analogy to
the TF calculation we have

E"'(x)=x'~"-'-,' y f (d-) — '——'[—2(v+g)]'"+ ' —'
I
—2[v+x-'g, (&)]I'"

J 3~2 5 3. 5

+ —,[x-~g, (x)—g][ —2[v+x-~g, (x)]I'" (80)

where we meet ),'J in just the combination that is differentiated in (75). Accordingly, we get

BE'" d-~~E'"(~)
l
a=i=( ~P—3)E'"+g ~ ~~ [~ PJ(~)]

l ~=i
1 J

=i —*,p —3)p'" —ip —2) —,
' yg, g, +(,' irvI

with Qz as defined in (20). The Z dependence of E'" is revealed by

a „, aE'" ~, ' z'

For E' ' we just have to copy the previous results [Eqs. (51) and (59)],

E"'(X) l, , =(2P—1)E"'

and

Z E( ) Z y+az r=0

(81)

(82)

(83)
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Now we are prepared to use (46)—here in the form

[E~'&(X)+E"&(X)+E&'&(X)][, , —Pgz+2(P —1)Z'n, =(P—1)Z (E&»+E&»+.E&»)+2(P (85)

We insert what we found in Eqs. (76), (79), and (81)—(84) and arrive at

( —,'P—3)E'"+(2P—1)E' '+(P—1)E'"+J(dr ) (rv)p,
Bp'

B Z Z+ —, gQ. g + (VV) —(P—1) +/X, PgN=——(P—1)Z V+-
n 2'~j

(86)

Although this must, of course, hold for arbitrary P, only f3=4 is immediately useful, since for this P, E'" and E' ' are
both multiplied by the same factor, 7. We can then replace their sum with the aid of (66). At this stage we have

7@= SZ V~ — +4@"'—1(dr ( (rV(p—,' g—g, g, +( (rV() —3, gN, 3$—N+7Z—'~, .
r=o BI'

J
~I' n 2'~j

(87)

[cf. Eq. (60)], we can therefore evaluate E in terms of b in
an approximate way by neglecting the O(r ) contribution
to V. For the various terms in (87) these approximations

Z 2

Z 4/3
2n'

J
(89)

For neutral systems, X =Z, g is zero»d all terms» the
right-hand side of (87) ~efe~ t«h«egio»f s«ongiy
bound electrons. Upon introducing the counterpart of
Baker's constant by writing

V(r)= ——+—+Z / +O(r )

the shape of the potential is negligible. We derive a dif-
ferential equation for b (Z) by utilizing the identity

Z E(Z,Z)= Z +X E(Z,N) i~ z
d

BX

Z E(ZX)lx z,

which is based on BE/BN= —/=0 for N =Z. On the
left-hand side of (97) we use the energy found in (95). The
right-hand side is recognized to be also the right-hand side
of (85) [or (46)] without the factor P—1. If we use the ap-
proximations (89)—(93), we obtain

QJ =2 z
Z b zg//3

2

2' ~ Q

(99)

yP p ~ Z4/3+

(93)
implying

(100)

After inserting them into (87) we have

7E= —3—Z'"——Z'" gn' 3X, —
J

+Z —ng+ 2 g nJ
J

This looks like (61), but now it is only approximately true.
After evaluating the left-hand side of (97) with E from

(95), we get the differential equation

2ns+ 1 B(b/a) 4 b/a 1 11+ + (2n, +1)—

& Z2 ~+2' + I

7a 14 7 a

In order to make contact with the uncorrected TF ener-

gy of (62), we examine the Z dependence of b, about
which we already know

b(Z —woo)=8,

the solution of which, subject to the asymptotic condition
(96) is

II 2Pgg + I
1+

Z 1/3

because in this limit the influence of the corrections on The last step is to insert this result into (95), which yields
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TABLE I. Comparison of approximate predictions with actual values for Z =N =80, n, =1. In
parentheses are the corresponding deviations for Z =W =800, n, = 1.

Quantity Prediction

1.407
2652.0
252. 1

0.8288
2.521

18 560

Actual value

1.414
2788.0
443.6

0.8667
5.115

18 340

Percent
deviation

—0.47 ( —0.40)
—2.8 ( —0.26)

—43.0 ( —3.0)
—4.4 ( —0.86)

—51.0 ( —4.3)
+1.2 (+0.27)

7/3
2n, +1E= ———Z'" r+ —'

7 Q 3Z

2n, +1 (2n, +1)'
Z

4Z 28Z 2
(104)

= ———Z ~+—Z +O(Z ).7 3 l 2 4/3

7 Q 2

Indeed, it very nicely reproduces Scott's correction. This
is the derivation promised after Eq. (18).

On the way to (103) and (104) we received the approxi-
mations (89) and (90) for the parameters g~ and QJ. These
values, with b from (103), can very well be taken as the
necessary "reasonable initial guesses" that we mentioned
when describing how the numerical solution of the dif-
ferential equation for Vis achieved. As an illustration we
report in Table I how the predictions of Eqs. (103), (89),
(90), and (104) compare with the actual numbers obtained
by numerical integration. While the deviations for b, g,
Qt, and E are rather small, for $2 and Q2 the predictions

are significantly worse. This can be expected because the
integrations to be performed for (2 and Qz cover a much
larger range of r than the ones for g~ and Q~. In this
larger range, (88) is not as good an approximation as for
the very small r associated with gt and Q, . However, the
numbers in parentheses, referring to a Z ten times larger,
are, of course, much better.

We finally remark that the described corrections for
strongly bound electrons have to be supplemented by an
improved treatment of the outer region of the atom, a to-
pic that we are addressing in a companion paper where
we discuss a new approach to the statistical atom.

ACKNO%LEDGMENTS

We would like to thank Dean Harold Ticho and the Of-
fice of Academic Computing at the University of Califor-
nia at Los Angeles for making computer time available to
us. One of us (B.G.E.) gratefully acknowledges the gen-
erous support by the Alexander von Humboldt-Stiftung,
which granted a Feodor Lynen fellowship.

L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1926); E.
Fermi, Rend. Lincei (6) 6, 602 (1927).

J. Scott, Philos. Mag. 43, 859 (1952).
J. Schwinger, Phys. Rev. A 22, 1827 (1980).

4B.-G. Englert and J. Schwinger, following paper, Phys. Rev. A

29, 2339 (1984).
5E. Baker, Phys. Rev. 36, 630 (1930). This work was the first

attempt of an accurate calculation of 8. Baker's result
(8 =1.588 558) was only slightly too big—by 0.03%.


