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Doubly-excited-state basis (DESB) functions of Herrick and Sinanoglu are compared with the
large-scale configuration-interaction (CI) wave functions of Lipsky et al., and with the adiabatic
channel functions in hyperspherical coordinates. It is shown that DESB functions will represent
those states where the mean value of 6, is large. Owing to the absence of intershell correlations,
and a consequent underestimation of radial correlations, the DESB functions give excessive concen-
trations near 6;,=0 for other, less sharply correlated in angle, states.

I. INTRODUCTION

Since the identification of doubly excited states of He
(Ref. 1) in 1963, it has been recognized that understanding
these states requires careful examination of the correlation
of two excited electrons.? The independent-particle
model, which forms the basis for almost all areas of mi-
croscopic physics, no longer suffices as first-order descrip-
tion of these states. Because of the relative simplicity of
the two-electron Hamiltonian, many variational ap-
proaches have been proposed and applied to the study of
doubly excited states. The predictions of energies and
widths from these calculations often accord well with ex-
isting observations.) On the other hand, very few ap-
proaches addressed the problem of providing a first-order
description of doubly excited states.

In the past few years, two methods of addressing the
nature of correlations of two excited electrons emerged.
One approach represents the two-electron wave functions
in hyperspherical coordinates in the adiabatic approxima-
tion.* This method stresses the adiabatic evolution of
electron correlations as the hyperradius of the system
varies and relates the properties of doubly excited states to
the pattern of radial and angular correlations. In the first
two papers of this series,’ such correlation patterns have
been displayed graphically for 38 states of two-electron
systems. The systematics for other angular momentum
states was addressed in a recent paper.®

Another first-order approach which also addresses the
general characters of doubly excited states is the algebraic
method described by Herrick and Sinanoglu.” Two quan-
tum numbers K and T were introduced. In the (K,T)
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representation, it was shown that the Hamiltonian on the
(N,n) subspace, where N and n are the principal quantum
numbers of the inner and the outer electrons, respectively,
is nearly diagonal. The corresponding doubly excited
states in the (K,T) representation are called doubly-
excited-state basis (DESB) functions. These functions are
regarded as a first-order approximation for describing
doubly excited states. Such states are then labeled in
terms of quantum number K,T,N,n, together with the
usual L, S, and 7.

The two schemes above both address the classification
of doubly excited states. For first-order approximations
to doubly excited states, it is important to recognize the
degree to which major features of such states are ade-
quately incorporated. Thus, we compare the correlation
features of the simple first-order theory with those of
more accurate calculations. Such comparisons were made
in paper III of this series where the correlation patterns
calculated from the adiabatic approximation were found
to resemble closely those obtained from the
configuration-interaction (CI) method in regions where
charge densities are not small. We also established in that
paper that hyperspherical coordinates provide a natural
system for such a comparison.

In this paper we examine the correlation features built
into the DESB functions. In this connection we note that
DESB functions are equivalent to approximate CI func-
tions in that only intrashell correlations within a given
(N,n) subspace are included, while conventional CI in-
cludes intershell correlations between (N,n) subspaces.
The restriction emphasizes angular correlations and, as we
will show, underrepresents radial correlations.
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In Sec. II we present a brief description of the three ap-
proximation methods used for doubly excited states. The
comparisons are presented in Sec. III. In Sec. IV we dis-
cuss the general characteristics of DESB functions as a
first-order approximation to doubly excited states.

II. METHODS OF CALCULATIONS

In this paper we compare wave functions of doubly ex-
cited states calculated from the three approximations: (a)
the configuration-interaction results of Lipsky ez al.,® (b)
the DESB functions of Herrick and Sinanoglu,’” and (c)
the adiabatic approximation in hyperspherical coordi-
nates. In paper III, we compared (a) and (c) for 3§°
states of He. It was illustrated there that the comparison
is best achieved by comparing the wave functions in
hyperspherical coordinates.

The CI wave functions are given by

vy,= 3 Ci(T1,T2) , (1)
i
where
1//,'= |n111n212LS7TMLMS) (2)

is the properly symmetrized two-electron basis functions
constructed from the product of hydrogenic functions.
We rewrite (1) in hyperspherical coordinates in the form

¥, =F,(R)1®,(R;Q) 3)

where Q=(a,7|,7,) denotes the five angles and R is the
hyperradius. Requiring ®,(R;Q) to be normalized to
unity on the surface R (Q))=const serves to define F,(R)
uniquely.

The DESB functions are also written in the form of Eq.
(1) except that the summation includes only possible pairs
of (1,,1,) with n; and n, fixed. Thus in the DESB func-
tions, n; and n, are good quantum numbers, where
ny=N denotes the principal quantum number of the
inner electron and n,=n the principal quantum number
of the outer electron.

The angular momentum quantum numbers [/, and
I, are replaced by a pair of new quantum numbers
(K,T). The DESB states are labeled by vy
={n,N,K,T,L,S,m,M; ,Mg}. We say that DESB func-
tions include intrashell correlations. To see the degree of
correlations included in the DESB functions, we also
rewrite these functions in the form of Eq. (3).

The method of calculating doubly excited states in
hyperspherical coordinates in the adiabatic approximation
has been described previously.’ These functions are ex-
pressed as F,(R)®,(R;Q) where p is the channel index
and n denotes the quantum number of the radial function
F(R). With all the wave functions expressed in the form
F(R)®(R;Q) from the three approximations, it is possi-
ble to compare F(R) and ®(R;Q) separately from the
three approaches.

III. RESULTS
A. Radial functions

In Fig. 1 we show F(R) for the three functions of He
1p° states which were called 2s3p+2p3s, 2p3d states by
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FIG. 1. Radial wave function F(R) for (a) 23sp + 'P°, (b)
23sp — 'P° and (c) 23pd 'P° states of helium calculated from
the DESB functions of Herrick and Sinanoglu (Ref. 7), from the
configuration-interaction (CI) wave functions of Lipsky et al.
(Ref. 8).

Cooper et al.? These states were called (2,3a), (2,3b), and
(2,3¢) by Lipsky et al. and have (K,T)=(0,1), (1,0), and
(—1,0), respectively, according to Herrick and Sinanoglu.
From Fig. 1, we have the following observations:

(i) The 23sp + state has a node in F(R). It occurs at
R=4.5 according to DESB and at R=6.0 according to
the other two approaches. The DESB F(R) is more local-
ized at small R while the results from the two other ap-
proaches are more diffuse and agree with each other.

(ii) The 23sp — state is the lowest state of the “—”
channel (or the 25 channel of Lipsky et al.) and has no
node in F(R). It is not as diffuse and the DESB predic-
tion agrees well with both the CI and adiabatic approxi-
mations.

(iii) The 23pd state is the lowest state of the “pd” chan-
nel (or the 2¢ channel of Lipsky et al.) and has no node
in F(R). The state is very diffuse and deviates greatly
from the very localized DESB function.

In Fig. 2 we show the comparison of F(R) between CI
and DESB functions for the lowest state of each of the He
IS¢ channels that lie below the Het(N=3) thresholds.
These three states are designated as (3,3a), (3,35), (3,3¢)
by Lipsky et al. with (K,T)=(2,0), (0,0), and (—2,0),
respectively. The first two states are localized and CI and
DESB predictions agree. The (3,3¢) state is very diffuse
and the DESB prediction is quite inaccurate.

B. Radial and angular correlations

A more direct comparison of correlations included in
the three approaches is to show the surface charge-density
plots. For the adiabatic approximation in hyperspherical
coordinates, it was shown in I and II that these surface
charge-density plots vary smoothly with R. The major
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FIG. 2. Similar to Fig. 1 but for (a) (3,3a) 'S¢, (b) (3,3b) 'S¢,
and (c) (3,3¢) 'S¢ states of helium.

variation at large R is the decrease of charge density in
the neighborhood of a=45°. In paper III we compared
the corresponding plots from the CI calculations of Lip-
sky et al. In these works only '3S¢ states are compared.

For !3S¢ states, it is straightforward to express
|®,(R;Q)|* on (a,0;;) plane. For L0 states,
@,(R;Q) contains information describing the overall ro-
tation of the atom. We define surface charge densities for
these states by averaging over the rotations. Thus we de-
fine

p(R;a,01,)= [ dfidf;8(cosd,—costiy) | D(R;Q) |2 .
4)

In Fig. 3 we compare p’s for the 23sp + 'P° of He at
R=4, 10, and 14 from the three approaches. Both the
DESB and adiabatic functions show a distribution more
peaked near small 6;, than does the CI, although the
differences appear minor except for DESB functions at
R=4. Here the DESB distribution differs completely
from the adiabatic and CI distributions. At R=14 the CI
shows the least concentration near 6;,=0, the adiabatic
functions slightly more, and the DESB functions signifi-
cantly more.

In Fig. 4 we compare the p’s for the 23sp — 'P? state of
He at R=6 and 10. This state has a large charge concen-
tration for 6;,~m but there is little charge density for
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FIG. 3. Comparison of surface charge-density plots of
23sp + 'P° states of helium at R=4, 10, and 14. The three
theoretical approaches are: adiabatic approximation hyper-
spherical coordinates, large-scale CI, and DESB functions.
Note that DESB functions do not agree with the other two ap-
proaches very well at R=4. The orientation of each plot is
identical to the one labeled at the lower-left corner.

a~45°. This is a characteristic of “—” states. All three
approaches agree, as do the corresponding F(R)’s.

In Fig. 5 we compare the p’s for 23pd !P° state between
DESB and CI calculations. Because the radial functions
F(R) in the two approaches are quite different we display
p’s corresponding to different R values, i.e., at values of R
where F(R) is near the maximum and two other R values
on either side of the peak. Although the general 6,
dependence appears to be similar, there are important
differences in the a dependence. The CI calculations
show that p(a,6,,) is always small for @ ~45° for all the
values of R shown, consistent with the results from the
adiabatic approximation (not shown); the DESB func-
tions, on the other hand, predict pronounced charge densi-
ty for a ~45°. The limited basis set included in the DESB
functions thus describe the qualitative behavior of 6,, an-
gular correlations, but radial correlations are not ade-
quately described. Similar density plots for (3,3a) 'S and
(3,3b) 'S¢ states are shown in Figs. 6 and 7, respectively.
We notice that the agreement between DESB and CI re-
sults is quite good for (3,3a) 'S and not so good for
(3,3b) 1S, The discrepancies between the two approaches
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FIG. 4. Similar to Fig. 3 except for 23sp — 'P° at R=6 and
10.
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FIG. 5. Similar to Fig. 3 but for 23pd 'P°. Only DESB and
CI functions are shown. Note that the graphs are shown at dif-
ferent values of R.

are so large for (3,3¢) 1S° state that we do not present the
comparison.

IV. DISCUSSIONS AND CONCLUSIONS

In Sec. III we compared the wave functions of doubly
excited states calculated from three different approaches
in hyperspherical coordinates. The adiabatic approxima-
tion gives results quite close to those obtained in the
large-scale CI calculations, consistent with our conclusion
in paper III. The DESB functions of Herrick and
Sinanoglu,” from which quantum numbers (K, T) are de-
fined, are typically more compact than the CI functions.
In addition, some DESB functions are too concentrated
near 6;,=0. Most importantly, however, the correspond-
ing ®,’s do not vary slowly with R and thus do not corre-
spond to the adiabatic hyperspherical function ®,(R;Q).
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FIG. 6. Similar to Fig. 3 except for (3,3a) 1S* state.
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FIG. 7. Similar to Fig. 3 except for (3,3b) 'S° state.

This is particularly noticeable for the 23sp+ 'P°
23pd 'P°, (3,3b) 1S¢, and (3,3c) !S° states. Alternatively,
the 23sp — 'P and the (3,3a) 'S¢ DESB functions agree
well with both the adiabatic and CI functions (see Figs. 4
and 6). These two functions are concentrated near 6, =7
and thus minimize electron-electron repulsion. It appears
that the DESB prescription accurately represents those
states whose distributions minimize the electron-electron
repulsion, but are increasingly inaccurate for other states.
The degree of inaccuracy correlates with the tendency of
the angular distributions to peak away from the 0=
region.

It was argued in Ref. 7 that accurate doubly excited
states can be constructed as linear superpositions of states
with common (K, T) but varying n,

| nNKTLSTM Ms)= 3, a, |n,NKTLSTM; M) , (5)

ny

i.e., (N,K,T) can be treated as approximate good quantum
numbers. Such superpositions allow for screening and,
with the exception of the 23pd 'P and (3,3c) 'S series,
bring the calculated DESB energies into modest agree-
ment with the full CI results of Lipsky et al.® Such su-
perpositions may alter the a distributions, however, be-
cause K and T are chosen to diagonalize an operator
which describes the 6, correlations, the corresponding
distributions in 6;, should be largely unaltered by the su-
perposition of Eq. (5). Accordingly, some (K,T) mixing
is needed to bring the DESB functions into close accord
with the full CI functions.

Our comparisons show that the (K, T) mixing is small-
est for the 23sp — 'P and the (3,3a) 'S series, but is most
pronounced in the 23pd 'P and (3,3¢) 'S series. This
feature was already noticed by Herrick and Sinanoglu.’
We can understand the consequences of such mixing from
the F(R) curves for the 23pd 'P series. Note that the
wave function is kept out of the small-R region. This is
understood as the effect of the high generalized angular
momentum barrier for this series. Macek,’ in his investi-
gation of the doubly excited states noted that while the
2pnd series contained admixtures of the 2nsp + and
2nsp —, this mixture occurred with alternating signs so
that the wave functions canceled near the nucleus. This
effect is readily understood in the adiabatic approxima-
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tion but has no counterpart in the DESB classification.
Figure 2 shows that the effects of the generalized angular
momentum barrier are also absent from the DESB (3,3¢)
IS functions. Again, this is substantiated by the marked
disagreement between the quantum defects calculated by
Herrick and Sinanoglu’ (n* =4.304) and those of Lipsky'®
and co-workers (n* =3.786).

The DESB functions reproduce some of the features of
the full CI functions; in particular, they represent well
those states in which the two electrons are on opposite
sides of the nucleus. It is noteworthy that these are pre-
cisely the states which dominate at the threshold for dou-
ble electron escape. The DESB functions do not, howev-
er, incorporate the generalized angular momentum barrier

and appear to give excessive concentrations of many of
the eigenfunctions near 6;,=0.!" Since the DESB func-
tions diagonalize an operator which does not commute
with the Hamiltonian, it is unclear why they give accurate
representations for some series but not others. Varying
degrees of (K,T) mixing are needed to reproduce the
hyperspherical results, but the systematics of such mixing
can, at present, only be extracted with full CI calculations.
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