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Intermittent diffusion: A chaotic scenario in unbounded systems
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In unbounded systems with discrete translational symmetry the Pomeau-Manneville scenario turns into a
scenario involving intermittent diffusion. The velocity autocorrelation function, its power spectrum S (w),
and the mean-square displacements o2(¢) are calculated. We find excess noise (S ~ »~2) at low frequen-
cies and anomalous diffusion (o2~ ¢2) of transient duration. We explain that the phenomenon can easily

be observed in driven Josephson junctions.

In studies of chaotic systems, particular efforts are made
to classify the transitions by which the chaotic state is ap-
proached when an external parameter is varied. The more
likely roads to chaos have been classified as scenarios.! A
prominent example is the Pomeau-Mannerville scenario,
which has been studied extensively for iterative maps of a
finite interval.>* When in this scenario stable periodic or-
bits arise through a saddle-node (or tangent) bifurcation
they are preceded by intermittent chaos. The latter is
characterized by seemingly periodic episoides which are in-
terrupted by short chaotic bursts. As the control parameter
is varied this phenomenon emerges infinitely often,
governed by bifurcation rates which tend to a universal con-
stant.® This scenario has now been identified in chemical
reactions,® Rayleigh-Bénard convection,” and other distinct
physical systems.®

In the above cases the chaotic motions are restricted to a
finite interval or to some other bounded region of phase
space. In the present paper we study unbounded systems
with discrete translational symmetry, in which the dynamics
may extend to an entire axis [e.g., a particle in a periodic
potential ¥ (x), —oo <x < oo]. Here the Pomeau-Manne-
ville scenario turns into a scenario involving intermittent
diffusion: Periodic motions can, in general, include a steady
drift. When drifting periodic orbits arise through a saddle-
node bifuracation they typically can be preceded by a dif-
fusive chaotic motion. This diffusion is a deterministic
“random’> walk like the one we found in a previous
work.> 10 However, associated with intermittent characteris-
tics it exhibits strongly correlated jumps.!! We calculate the
velocity autocorrelation function C(t), its power spectrum
S (w), and the mean-square displacements o2(¢). We find
that the scenario manifests itself by excess noise at low fre-
quencies [S(w)~w~2] and by anomalous diffusion
[a2(¢) ~ #?] of transient duration. Both phenomena do not
arise in the conventional Pomeau-Manneville scenario. We
argue that this situation typically occurs abundantly in non-
linear systems with discrete translational symmetry and dis-
cuss how it can be detected in driven Josephson junctions, a
prominent example.

The dynamics of strongly dissipative systems can in most
cases be reduced to iterative one-dimensional (1D) maps via
Poincaré section

Xr+1=Fu(Xx) , 1)
where X is a physical variable in a 1D phase space, ¢ is a
discrete time, and the map F, depends on an external con-

trol parameter w.'"'> We consider situations where the
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physical problem is invariant under translations
(X — X +1) and reflections (X — — X ), whence

Fu(X+n)=F,(X)+n Fu(—=X)=—F,.(X) . @

We may thus think in terms of unit cells of length 1 cen-
tered at the integers X =0, +1, 2, ... . We assume F, to
be analytic, with F, (X) =0 only at one maximum and one
minimum per cell. A paradigmatic example is

Xiv1=X,—psin(2wX,) . 3)

We have previously shown that these systems exhibit a
deterministic diffusion with universal critical behavior at its
onset.> 10

With increasing nonlinearity as the parameter w is varied
drifting periodic orbits arise through tangent bifurcations.
We illustrate this in a case studied by Schell, Fraser, and
Kapral.!! Because of the existence of unit cells, it is con-
venient to identify all cells (mod 1) thereby constructing a
reduced map.!? Transforming to x = X (mod 1) and restrict-
ing x to the zeroth cell ——;$x s—; defines the reduced

map
Xe+1= F,(x) (mod 1)=:£,(x) . )

As shown in Fig. 1 all parts of F,(X,) lapping into neigh-
boring cells are transferred back into the zeroth cell
[—%,%]. Working with the reduced map one must there-

fore declare, in addition, that whenever X, is in the transfer
regions J; or J, a transfer occurs to the equivalent X, . in a
neighboring cell. It is evident from Fig. 1 that the reduced
map may become tangent to the bisector in the transfer re-
gions. Fixed points are thus created which imply consecu-
tive transfers into neighboring cells (‘“jumps’) in every
iteration. For Eq. (3) and w=1 these drifting orbits are
simply X, = —:— —tand X,= — +t Before the tangent bifur-
cation one finds intemittency in the transfer regions as
shown in Fig. 1. An orbit injected into J; sojourns in the
transfer region thus performing consecutive jumps before
being reejected from J,. In this way intermittency implies
correlated jumps which, in turn, imply diffusion.

Tangent bifurcations are abundant.® Since here they gen-
erally create drifting periodic orbits, we expect intermittent
diffusion to be abundant as well. This in now analyzed in
more detail. Depending on the external parameter u the
p-fold iterate F% (X;) =X+, can map into a cell a distance ¢
apart. A tangent bifurcation then creates drifting orbits
X;+p=X, £q with drift velocity (V)= tq/p. For circle
maps (V) is known as rotation number. The preceding in-
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FIG. 1. Reduced map Eq. (4) for Eq. (3) with x=0.97. In the
transfer regions J; and J, the overlap into neighboring cells was
transferred back to the cell [——;,—;]. A visit of a transfer region
thus implies a jump to a neighboring cell. Near tangency this hap-
pens successively as indicated.

termittent diffusion will be studied in detail for the case
p=1: Here the reduced map Eq. (4) generally has two in-
termittent transfer regions analogous to J; and J, in Fig. 1.
Whenever the orbit sojourns in a transfer region it has velo-
city V= +q and ¥V =0 otherwise. The dynamics can thus
be represented approximately by sequences with constant
velocity V' = #q of different duration T shortly interrupted
by ¥ =0. T is simply the laminar time?* arising in the re-
duced map Eq. (4) and can become arbitrarily long at the
approach of tangency. A random switching between these
sequences can arise. It is analogous to the random switch-
ing between laminar episodes and chaotic bursts in normal
intermittency,?~* which is well understood. Here it implies a
random walk. The following theory is carried out for p =1,
but may also be considered a coarse-grained approximation
for periods p # 1. In this case V = * ¢ must be replaced by
the coarse-grained velocities V' = +g4/p for the above se-
quences. Instead of F(x) one must consider its p-fold
iterate FP(x) in Eq. (4), which means a scaling #p of time.
In general, the occurrence of intermittent diffusion requires
that the orbits can switch between positive and negative
velocities. Note that this is not always fulfilled. Another
possibility consists in drifting intermittent orbits.

As outlined above we calculate some statistical quantities
in continuous-time approximations* for the long-time limit.
Details will be published elsewhere.!> Expansion of the re-
duced map Eq. (4) around a contact point x, leads to *

Vieri=etytayt+ o, )

with y,=x;—x,. The parameters ¢ and a are the only
relevant parameters and depend on the details of the map
F,(X). For Eq. 3), x.= i-i—, e=q—up,and a =27w%. A
continuum approximation yields the laminar time 7 and its
distribution ¥ (T') as in Ref. 4:

Y(T)=(e/2y0) cos 2(a—2aT/Ty) (T<T,) ©)
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and ¥(T)=0 for T > T,. Here T,,=2a(ea) "? is the
maximum laminar time, a=arctanlyo(a/e)?], and y, is
the width of the laminar region.* Let wq, denote the proba-
bility that at time 0 the system is in a laminar sequence with
velocity + g which persists at least to time 7. Assuming ran-
dom switching and applying renewal theory!"'* this proba-
bility can be expressed as

w0,1=<T)_lj; V(T)(T—1)(T—1)dT . M
From Eq. (7) we have computed the velocity autocorrela-
tion function C(¢)=(V(0)V(¢)). Fort<T,

C(t)=q*(1—t/Tm+ (apoTn) ™"

x [Incosa —Incos (o — 2t/ Ty) 1} , ®
whereas for t > T,,, C(t)=0. For small frequencies the

velocity power spectrum S (w) is obtainied from C(z) by a
(continuous) Fourier transform

442 sin(w T, /2)

S =
(@) Tm w?
2¢%In(2cosa) sin(w7Ty) +AS ©)
ayoTp, ®

AS is a small remainder, which can be expressed as an in-
finite sum.’> The mean-square displacements o2(¢)
= (AX?%(t)) were obtained as usually from a convolution
integral of C(¢):

N +06/Tw)2= 3T,) 7' t<T,) ,

0'2(2‘)=q
(T+26)t—T2/3—bTw (t>Tn) ,

(10)

where b= (In2 cosa )/ ayy, and a small remainder in terms of
an infinite sum!? was dropped.

We now discuss these results and compare with numerical
data obtained for Eq. (3) with u < 1. The power spectrum
(Fig. 2) exhibits oscillations due to the almost triangular
shape of the correlation function C(t). The spacing of
these oscillations 27/T,, depends on the maximum laminar
time T, and may become arbitrarily small. Similar spectra
have been reported for driven Josephson junctions!®
although in a somewhat different context. The spectrum in-
creases towards small frequencies. This so-called excess
noise behaves like w ~? as is seen from the maxima of Eq.
(8). For still smaller frequencies w < 7/T,, it saturates at a
finite value. The w~? regime may extend to an arbitrary
number of decades as 7/T,,— 0 at the approach of tangen-
cy. The high-frequency regime is not expected to be repro-
duced accurately due to the continuous-time approximations
used. The mean-square displacements in Fig. 3 exhibit
transiefit anomalous diffusion. They grow like 2 in a time
domain depending on T7,. After the crossover time T,
however, they follow the normal linear growth. Asymptoti-
cally, anomalous diffusion (without a crossover) was ob-
served in a different intermittent situation and is reported
elsewhere.! Transient ¢?> growth was also observed in a
piecewise linear map.!” This behavior is accompanied by an
enhancement of the diffusion coefficient.!! More generally
it also arises in Brownian motion in the Kramers regime
(low friction limit).!?

At present, the most prominent physical examples show-
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FIG. 2. Velocity power spectrum S (w) for three parameters u
approaching tangency -at u=1 in Eq. (3). Top: numerical results;
bottom: theory [Eq. (9)]; parameters: 1—u=10"3 (slowest oscil-
lations), 3x10~%, 10~4. There is excess noise at small frequencies
falling off like » 2.

ing deterministic diffusion are rf-driven Josephson junc-
tions. Besides diffusion, drifting periodic orbits have been
observed abundantly which set in through saddle-node bi-
furcations.!>!® From general grounds? the dynamics of the
junctions is expected to reduce to a 1D map (at least for
strong dissipation), i.e., to the model Egs. (1) and (2) con-
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FIG. 3. Mean-square displacements (AX2(¢)) =o2(¢) for Eq.
(3) with 1—p=10"% Squares: numerical result; line: theory [Eq.
(10)]. The anomalous 2 growth crosses over to a linear growth at
t=T,. The anomalous regime becomes arbitrarily large for u— 1.

sidered here. Indeed, a 1D map has recently been extracted
from numerical simulations.?! In the particular example the
simulation exhibited intermittent diffusion previous to a
saddle-node bifurcation. An infinity of similar situations
must exist. In the present paper we have given analytical
expressions for the velocity autocorrelation function, power
spectrum, and the mean-square displacements. The power
spectrum is of particular importance, as spectral analysis is a
typical and very convenient experimental method applied to
Josephson junctions. It is also ideal for detecting and study-
ing a diffusive motion as we now discuss: Following from
the definition D =lim(AX?2(¢))/2¢, the diffusion coefficient
can generally be expressed as the integral over the velocity
correlation function, i.e., D = (%)S(w=0). For the junc-
tion, the diffusing variable is the phase difference ¢, and
according to Josephson its velocity ¢ = (2e/#) U is related to
the voltage U across the junction. Thus D = (2¢%/#2?)
xSyy(w=0), where Syy(w=0) is the low-frequency limit
of the spectrum of voltage fluctuations, which can be mea-
sured easily. By the same argument the excess noise report-
ed here for intermittent diffusion will directly show up in
the low-frequency regime of the voltage spectrum.
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