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Chaotic attractor with hysteresis in laser-driven molecules
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Period-doubling bifurcations into a chaotic state are found in a quantum statistical model of multiphoton
excitation of a molecule when the laser field is modulated sinusoidally. This chaotic state characterizes a
strange attractor coexisting with a periodic one. Interesting dynamical behavior associated with these at-
tractors is described and practical implications of this molecular property discussed.

Chaotic behavior associated with a strange attractor of
dynamical systems' has been the subject of great recent in-
terest, not only as an unsolved problem in mathematics, but
also because of its numerous applications to many fields.

Since molecular vibrational motion is known to be highly
nonlinear, we would expect to find dynamical instability at
the molecular level if some dissipative mechanisms, such as
collisions, interaction with externa1 field, energy flow to a
reservoir, can effectively couple with the molecular motion.
The evidence of the existence of such instability has been
found' in a model of ir multiphoton vibrational excitation of
a molecule derived from the quantum Liouville equation by
Narducci, Mitra, Shatas, and Coulter. 8 It was shown that
the steady-state surface formed by plotting the average vi-
brational excitation (zo) as a function of frequency detuning
(5) (between the laser frequency and the fundamental fre-
quency of the pumped vibrational mode) and the Rabi rate
(Qtt) takes the shape of a cusp catastrophe as shown
schematically in Fig. 1(a). Linear stability analysis of the
steady states reveals that the upper and lower branches are
stable and the middle branch unstable. Thus this model
predicts that laser-driven molecules exhibit bistable and hys-
teretic properties. However, classical solutions of a driven
damped anharmonic oscillator, such as the Buffing oscilla-
tor, show not only bistable and hysteretic properties, but
also instability which leads to an infinite sequence of
period-doubling bifurcations into a chaotic state. Careful
search over the control-parameter space has not resulted in

any clue to such an instability region association with either
the upper or lower branch. '0 We report in this paper that, if
the amplitude of the driven field is harmonically modulated,
cascading bifurcations into a chaotic state do appear in the
Narducci model. The chaotic state coexists with a periodic
solution, and results in some interesting dynamical
behavior.

The model consists of a set of three first-order differential
equations given by
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where x and y are the real and imaginary parts of the expec-
tation value of the annihilation operator for the pumped
mode, that is, quantities proportional to the average coordi-
nate and momentum. z is the averaged vibrational excita-
tion, 0, is the scaled anharmonicity, and X is the ratio of the
longitudinal relaxation time to the transverse one. Modula-
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FIG. 1. (a) A schematic plot of the steady-state value of average
vibrational excitation (z) vs Rabi frequency (0z ) and detuning
(4). SS1 and SS2 denote regions of steady states 1 and 2, respec-
tively, MS denotes the multistable region. EFH marks a path in the
control plane which exhibits hysteresis when reversed. (b) Steady-
state z value plotted vs 0& for 0. =1, X=0.1, and 5=10. A, i 2

denotes turning points. For Qz &4.34 every trajectory converges
to a 1P orbit around the upper branch.
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TABLE I. Birfurcation thresholds and the geometrical factors.

1P-2P
2P-4P
4P-8P
8P-16P
16P-32P
Chaos with

perlodlc
windows
32P-16P
16P-8P
8P-4P
4P-2P
2P-1P

0.414 85
0.393 14
0.389 756
0.388 993 5

0.388 828 3

0.388 783-0.364 776 1

0.364 685 2
0.364 613 8
0.364 282
0.362 96
0.3590

6.4161
4.4359
4.6345

4.6471
3.9843
2.9955

'B«~, is obtained according to the formula S«~, = (cuk —ruk+t)/(cuk+ t
—cuk+2).

tion of the laser field is modeled by Qg(t) = Q~ cos (cat)
with a period of Ta=rr/t0 On.e way to convert the nonau-
tonomous Eqs. (1) into autonomous ones is to set
u = cos cut and v = sin2cot. The corresponding steady states,
which are equivalent to those obtained by taking the time
average of Eqs. (1), form again a surface of the shape of a
cusp catastrophe, but with the scale of the O~ axis
compressed by a factor of 2. We find it convenient to refer
to this set of steady states when we describe the dynamical
behavior. For clarity we shall focus on cases with parame-
ters set at o. =1, A. =0.1, and 6=10. The steady-state
values of z plotted versus O~ form an S-shaped curve as
shown in Fig. 1(b) with the two turning points located at
A, ~

= 1.41 and O, q
= 5.50. Numerical studies show no

points on the steady-state curve are stable and close to the
lower branch we find a set of 1P limit cycles (a periodic
solution with n loops in the phase portrait will be denoted
by nP) with the period equal to that of the modulation field.
This set of limit cycles does not really circle around the
lower branch of the S curve but around some larger-z
values, and their lower edges almost touch the lower branch
of the S curve. The corresponding basin of attraction exists
only up to 0& =4.34. Beyond O~ ——4.34 all phase-space
trajectories which originated from points around the lower
branch move up and eventually converge to limit cycles
around the upper branch.

From here on we start to lower the value A~ and in-
tegrate Eqs. (1) by using an initial point close to the attrac-
tor of the previous Q~ value (here a value close to the
upper branch), corresponding to the experimental situation
of varying the control parameter of a system adiabatically.
For Q~ between 1.4 and about 2.5 we have found a domain
in the mO~-control parameter space where trajectories ex-
hibit chaotic behavior characterized by a strange attractor,
The transition from periodic to chaotic behavior takes place
via a sequence of period-doubling bifurcations with a
geometrical factor in agreement with the universal constant
predicted by Feigenbaum's renormalization theory. " We
list, in Table I, the bifurcation thresholds and the calculated
geometrical factors obtained by lowering cu with A~ fixed at
1.7. These thresholds are computed by measuring the dis-
tances D between the bifurcating pairs on the Poincare sur-
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FIG. 2. Projection of a strange attractor at 0&
= 1.7 and

co =0.379 onto the y-z plane.

face of section, and then by using the critical power law, '

D&= C;!cu —tuk!'~', where C; is a constant for the ith pair
and cok is the threshold modulated frequency at which a lim-
it cycle of a period of 2 'Tp bifurcates to one of period
2 Tp

The geometrical factors approach the Feigenbaum's
universal constant 5=4.6692102 as the order of bifurca-
tion, k, increases. Chaotic trajectories characterizing a
strange attractor appear at and below co =0.388783, calcu-
lated from the formula co —cok~ 8 . An example of a
strange attractor at to =0.378 (Qg = 1.7) is shown in Fig. 2

projected onto the y-z plane. In addition to the fact that
chaotic trajectories occur in a domain following an infinite
sequence of period-doubling bifurcations, one other evi-
dence we have for the fact that Fig. 2 represents a strange
attractor comes from taking its power spectrum. The spec-
trum obtained from a fast Fourier-transform program shows
noisy broad-band peaks at the first subharmonics of the en-
trainment frequency and sharp peaks at the entrainment fre-
quency and its overtones. This is to be compared with the
sharply peaked spectra obtained for periodic orbits.

In order to reveal the detailed structures of a strange at-
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tractor, we have taken a sequence of Poincare surfaces of
section around the strange attractor. The clear bending
structure on the right-hand side of Fig. 2 is shown on the
Poincare surfaces of section to be inward in a right-handed
coordinate system. If we move clockwise from here around
the strange attractor, the ribbonlike structure folds and
"cuts" into itself such that a curve intersecting itself ap-
pears on the Poincare section. The crossing loop shrinks
and the ribbon folds in some new direction (up) as we
move across the most constricted region of the attractor as
seen in Fig. 2. A part of the "ribbon" shows finer-layer
structure when we expand the scale of the plot. Thus the
strange attractor obtained here looks like a loosely knitted
ribbon which stretches, twists, bends onto itself, and even
intersects itself. The first three features characterize the ex-
ponential divergence and irreversible mixing of trajectories
on a strange attractor as described by Shaw. ' Periodic win-
dows of 6P, 7P, 14P, and 21P have been found inside the
chaotic domain. Further reduction of the cu value leads to
inverse period-doubling bifurcations, listed also in Table I.

If Q~ is further lowered to a value below 1.4, we can no
longer find the proper initial conditions for any co which
would lead to an attractor around the upper branch. Instead
1P limit cycles around some small-z value close to the lower
branch have always been found. This is consistent with Fig.
1(b), where 0,~=1.41.

For Qgo & 2.8 and small co some trajectories we obtained
reveal that two basins of attraction are fused into one. An
example is shown in Fig. 3 for Q&=4.0 and co=0.01,
where the trajectory originated from the point x = 1, y = 0,
and z = 15 converges to a periodic orbit which goes between
the lower and the upper branch. Slight increase of Q~ may
then produce a trajectory which, when initiated at the lower
branch, moves up in z value ever so slowly and eventually
settles down into a limit cycle around the upper branch.

The above description of dynamical behavior implies that
there is a domain in the ~Qg-parameter space where two
attractors coexist. Thus similar to the case of constant-
amplitude laser field hysteresis is expected in some
molecules driven by a sinusoidally modulated laser field,
red-shifted from the fundamental frequency of the vibra-
tional mode. However, much richer dynamical behavior is
seen here around the upper branch. The bistable and hys-
teretic property of molecules, if verified experimentally, is
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FIG. 3. Phase portrait of 0&0 =4.0 and co=0.01 which converges
to a periodic orbit going around both the upper and lower branches.
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an important, fundamental property of molecules. From a
practical point of view it is potentially useful in fabricating
memory and amplifying devices at molecular level, with the
switching time of the order of molecular vibration. The
range of laser intensity at which we expect to observe
molecular bistability of SF6 is estimated to be about 20 to
400 MW/cm, if the laser frequency is detuned by about 35
cm ' to the red. SF6, however, may not be the best
molecule to study experimentally because this range of in-
tensity overlaps that required for ir multiphoton dissocia-
tion. To avoid competition with dissociation processes
smaller molecules like triatomic or tetratomic molecules
may be more appropriate for this purpose. Collisions may
serve as a dissipative mechanism, but so far it is not clear
whether its existence is necessary for the observation of the
bistable property. Finally we should mention that processes
involving electronic and vibrational transition may also exhi-
bit bistable properties. ' These are interesting processes to
study for the transition time involved can be of the order of
10 fsec and the range of frequency is such that tunable
sources are readily available.

On leave from Physic~ Department, Anhui University, Hofei,
Anhui, China.
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