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Second-order perturbative calculation of hydrogenic Zeeman leve[s
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The degenerate perturbative treatment of the hydrogenic Zeeman problem is put on a more rigorous
basis and is extended to higher levels belonging to the manifolds of M=n —Iml ~4 basis states. The 16
n =4 levels are calculated and the large-n behavior of the basis states is discussed.

Degenerate perturbation theory has been applied to the
calculation of 14 low-lying energy levels to the second order
of the hydrogen atom in a homogeneous magnetic field. '

We now generalize and extend the treatment to higher lev-
els. Instead of the parabolic states, we use in the present
work the definite-parity states, which are even and odd
combinations of pairs of parabolic states, defined by Clark'
as the basis states. The unperturbed hydrogenic states are,
in fact, linear combinations of the Clark states. It will be
seen that the zeroth-order states which diagonalize the
first-order perturbation matrix are also their linear combina-
tions. For a given principal quantum number
n=nt+n2+lml+1, there are M=n —lml Clark states.
When M is odd, the Clark states for ni = n2 are simply the
parabolic states themselves. The first-order perturbation
matrix is an M xMmatrix consisting of two tridiagonal ma-
trices of dimensions —M && —,M if M is even or

2
(M+1) &&

2
(M+1) and

2
(M —1) &&

2 (M —1) if M is

odd. This feature facilitates considerably the calculation of
the first-order eigenvalues. The results for M=2, 3, 4 are
given below.

(a) M=2 (m =n —2, nt —n2 ——1). The parabolic states
relevant to this case are

I 1) = I01m) and I2) =110m).
Consequently, we have the following two Clark states:

The matrix elements with respect to the Clark states can be
obtained from the matrix elements Mi(~. In the present
case, the 2x2 first-order perturbation matrix in the Clark
basis is diagonal. Consequently, the first-order eigenvalues
are the diagonal matrix elements M]']" +F2 and they are

Zti" =8n(n +5) (n —1)

) ('l =Sn(n'-1),
corresponding to the eigenstates

(12)

(13)

(14)

The second-order eigenvalues are then found to be

~t = 2n( —217n —2060n +780n +1808n —312)/3, (15)

=2n( 215n——148n +340n +144n —120)/3. (16)

(b) M=3 (m = n —3, nt —n2=0, 2). There are three
parabolic states: I 1) = I02m), I2) = I20m), and

I3) =
I 1 1 m), and the resulting Clark states are

(17)

let) =2 'i (Il) +I2))

l&2) =2 '"(I1)—I2)) . (2)
Using Eqs. (3) and (5), we obtain

The matrix elements M„"~ of the pth order with respect to
the parabolic states i and j can be obtained from the follow-
ing expressions:4

Mtit" ——Sn(n +5)(n —2)

M3'3" ——Sn(n +4)(n —1) (21)
M~t'l =4n(3n +1 —m —3q ), q =nt —n2

MJ' =4n(n —m ) q =1

M;;2' = ( —1106n —1316n3 —234n +1692n q

—586nq +388nq +132m nq'+796m n'

+356m'n —122m'n)/3, q = nt —n2

M t i = ( —572 n 320 n +—662 m n

+320m'n —92m'n ) /3, q = 1

Substituting the values of m = n —2 and q = 1, we obtain

(3)

(4)

(5)

(6)

Mttt i =16n( —9n —69n +144n +164n —208), (22)

M33 = 16n ( —9n —69n —8n +230n —144) . (23)

M,(,') =0,
Mt3t =16n [2(n —2) (n —1)]' 2

Mt2l = —576n(n —2)(n —1) (26)

Mt32 =16( —41n3 —40n +57n +6) [2(n —2) (n —1)]'

Using the nonvanishing matrix elements of the perturbation
in I, we also find that5

M ' =Sn(n+3)(n —1)

Mt2t =16n(n —1)

Mtt =16n( —27n —138n +70n +122n —27)/3

Mt2 =2n( —n —956n +220n2+832n —96)/3

(7)
The first-order eigenvalues are found to be

(8)

(10) =Sn(n +5)(n —2)

4, tI =Sn(n +3n —7) +SnR, R = (16n~ —48n +41)' 2

(27)

t

(28)

(29)
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Xrrr, rv=Sn(n +2n —11) +16nT, T=(4n2 —22n +34)'/2 l

(55)
II) = ail ci) +a21C2)

III) = a21 Ci) —ail C2)

and the corresponding eigenstates are

II) = bil ci) +b21 c,&,
III& = b21 c]) bil C2)

I m &
= d, I c3) + d31 c4)

IIv) = d21 C3) —di I C4),

(31) (56)

Im) =
I C3&,

where

(32) (57)

(58)
ai 4(n2 3 n +2) r/2/(2g2 +6+) r/2

a2 —(3++)/(2+3+6+) /

(33)

(34)
where

and the corresponding eigenstates that diagonalize the first-
order perturbation matrix are6

The second-order eigenvalues are therefore

=arA +a38+2(2) aia2C

= a3A +ar B —2(2) aia2C(2) 2 2 I/2

(2) (2) (2)
~III ~11 ~12

(35)

(36)

(37)

b2=(n +1+S)/[2S +2(n +1)S]' ' (61)

di = [3(n2 4n +3—)]' /[2T —2(n —5) T]' (62)

d2=( —n +5+ T)/[2T2 —2(n —5) T]'2 (63)

bi = [3(n2 4n +—3)]' /[2S +2(n +1)S]i (60)

where

A =MII +MI2(2) (2)

8 =M33(2)

(38)

(39)

(c) M=4 (m =n —4, ni —n3=1,3). The four parabolic
states for this case are 11) =103m ), 12) =130m ),
13) =112m), and 14) = 121m), and the Clark states are

The second-order eigenvalues are given by

——b P+b g +2(2) / brb2D

= b3P + br g —2(2) '/ bi b2D

Air~i =dr P+d2g+2(2)' drd3D

XIv =d2P+di g —2(2)' did2D

(65)

(66)

(67)

I ci) =2 ' '(ll) +12))

I C3) =2 '"(13& +14))

I C3) =2 '/'(ll) —12))

I«&=2 '"(13& —14&) .

(40)

(41)

(42)

(43)

8=MII +MI2(2) (2)

g =M33 +M34(2) (2)

D =MI3 +MI4(2) (2)

(68)

(69)

(70)

Equations (3)- (5) give in this case

Mii =Sn(n +4n —21)(1)

M33 =Sn(n +4n —9)

M34 =32n(n —2)

(44)

(45)

(46)

Using the matrix elements given in the Appendix of I, we
obtain the remaining matrix elements as follows:

Mi3 = 16n [3(n —3) ( n —1) ] r/3

Mr i = 16n ( 27 n 276 n3 + —1030n3—+ 1180n —3171)/3

(47)

M33 = 16n( —27n —276n +118n +1708n —1491)/3

Mr4 = —576n(n —2)[3(n —3)(n —1)]'

M34 —1 28n ( n —2) (30n +46 n —73 )/3

The first-order eigenvalues are

(52)

(53)

lri, rI =Sn(n +6n —19) +16nS, S =(4n —ion +10)'
(54)

MI2 =0 (So

Mi3 =Sn( —285n3 —368n +192)[3(n —3) (n —1)]' /3

(51)

The above results are valid for all values of n. We have
used these results to calculate the i6 n =4 levels. The nu-
merical results are given in Table I. The 4e( +3) levels are
nondegenerate. Their eigenvalues A. ~ can be obtained
directly from Eqs. (3) and (5) with q =0. In order to assign
the eigenvalues and to identify hydrogenic levels, the hydro-
genic states are expressed in terms of the corresponding
eigenstates II), III), etc. For example, for n =4 and m =0,
we have, by using Eqs. (40) —(43) and (56)-(64), the fol-
lowing:

14s) = 0.870211) +o.4927111 &,
14d(0) ) = —0.49271I) +0.87021II)

14p(0) ) =0.95451III) +0.29821Iv),

14e(0) ) = —0 2982IIII) +0.95451IV)

Accordingly, we have the assignments Xr to 4s, lr» to 4d(0),
Arri to 4p(0), and Xrv to 4e(0).

Since the matrix elements MI3 were not included in the
calculation of the three levels 3s, 3p(0), and 3d(0) in I, we
have recalculated the energy of these three levels. Noting
that

13s) =0 9156II) +0 4021111)

13d(0) ) = —0.40211I) +0.91561II)

13p(o) ) = Im),
we have the assignments err to 3s, Xrr to 3d(0), and lriir to
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TABLE I. Eigenvalues, coefficients, and energy levels. The Rayleigh-Schrodinger coefficients E~ and the energy E are calculated with the
use of formulas given in Sec. III of Ref. 1. In Eq. (7) of Ref. I, the coefficient hi~ is now Xti'i and the quantity in the bracket should be
corrected to read B2X4/32.

ni I m
I E& E2 m~0

8 =0.1
m &0 m~0

8 =1.0
m &0

433
422
432
411
431
421
400
420
410
430
300
320
310

640
894
480
999.9
344.1

576
1045.2
298.8
618.4
213.6
417.6
110.3
192

—263 640
—449 688
—157 933
—549701
—70675

—240 128
—627 797
—83 662

—584 103
—127 363
—140056
—13 646
—45 120

320
447
240
500
172
288
523
149
309
107
157
41
72

—4340480
—6 396 290
—2 751 232
—7 592 422
—1 077 562
—4366 336
—9 165 072
—1 784 305

-14 867 105
—3 619374

—537 083
—65 061

—225 990

—0.15987
—0.09 816
—0.10874
—0.04998
—0.056 89
—0.063 21
—0.002 75
—0.01952
—0.024 92
—0.028 17
—0.018 54
—0.038 10
—0.037 28

+1.411 03
+0.10 184
+0.09 126
+0.05002
+0.043 11
+0.036 79

—1,507 67
—0.999 994
—1.01 030
—0.498 35
—0.503 81
—0.512 26
—0.001 46
—0.018 75
—0.024 82
—0.028 10
—0.01001
—0.029 35
—0.032 68

+ 1.492 33
+ 1.000 006
+0.98 970
+0.501 65
+0.496 19
+0.487 74

3p(0). The results in Table I show that the two levels 3s
and 3d(0) do not cross. 7 The results also show that the
levels 3p(0) and 3d(0) cross at B =0.1245.'

High Rydberg states of an atom in a magnetic field have
been of recent interest. Results obtained by first-order

classical perturbation theory for magnetic fields up to 6 T
have been verified by exact numerical calculations. Our
results show that, as n tends to infinity, the M states ~I),
~II), . . . , within the manifold tend to be hydrogenic. For
example, it can be shown for M=4

In, n —4, n —4& =2 ' '(AtlCt) +A2IC2&) —,
'

ICi& +(3'~'/2)IC2)

(n, n —3, n —4) =2 ' (A3[C3) +A4(C4)) —(3 /2) IC3) + —,
'

IC4& —IIII)

In, n —2, n —4) =2 '"(A2ICi& —AtlC») ——(3'"/2) ICt& ——,
'

IC2& —Ill&

fn, n —1, n —4) =2 ' (A4(C3) —A3fC4)) 2 JCs) —(3' )/2[C4) —IIV)

where'o

Ai = (n —1)' 2/(2n —5)' 2, A2=3' 2(n —3)' 2/(2n —5)' '

A3=3' (n —1)' /(2n —3)', A'4=(n —3)'2/(2n —3)'2

Clearly, our method is useful for the calculation of energy levels for all the states within the manifold M and for the
study of level crossings.
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