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%e present a phenomenological model for the phase transition between the monolayer (Sq ) and
1

the bilayer (S~ ) phases of smectic liquid crystals. This model contains all relevant symmetries and

Goldstone modes. We study the transition using the e expansion and find it to be in the same

universality class as the Ising model to first order in e. In three dimensions, the physical correlation
function, however, exhibits nonuniversal power-law behavior leading to a nonuniversal susceptibility

exponent y.

I. INTRODUCTION

In the smectic-A (Sq) phase of liquid crystals, ' oriented
barlike molecules of length l segregate into stacks of struc-
tureless two-dimensional planes. It is now clear that there
are several types of S~ phases characterized by the ra-
tio of the interplanar spacing d to l. Conceptually, the
simplest phase is the monolayer phase with d = l denoted
by Sz, and depicted schematically in Fig. 1(a). In systems

composed of polar molecules, a bilayer phase with d =21
and an incommensurate phase with d =sl with 1 &s &2
can occur as weH. These phases are depicted schematical-
ly in Figs. 1(b) and 1(c). Phase transitions between all
pairs of the above phases have been observed, indicating
that they are indeed distinct phases.

In this paper, we will be concerned with the Sz -Sz

transition. The x-ray diffusion pattern for these two
phases is shown in Fig. 2. In the Sq, phase, there is a

quasi-Bragg peak at wave .number q =2qo ——2~/l and a
diffuse spot at wave number qo

——2m. /21. In the S~, phase,

there are quasi-Bragg peaks at both qo and 2qo. The order
parameter for these two phases can be constructed by ex-
panding the center-of-mass density p in a Fourier series

P = Po + g(lt'„e + c.c. ) . (1.1)

The order parameter of the S~ phase is P2, the complex

pltud fth -d nsty t2q . Th S ph
has an additional order parameter pl, the complex ampli-
tude of the Inass-density wave at qo. Thus to study the

Sq, -S~ transition, we need to study the fluctuations of P&

in the presence of a nonvanishing (P2).
It is clear that there is no symmetry argument that

would indicate that the S~ -Sz transition has to be first

older, and Gill primary collccrll will be to ldcntIfy thc
universality class of this transition when it is second or-
der. Since llr2 is a complex order parameter, a naive argu-
ment would predict the universality class of the xy model.
This, however, neglects the important coupling between pl
and QI. There is a preferred relative phase of the two or-
der parameters so that only the amplitude of g& is critical
once p1 has ordered, indicating as pointed out by Prost "

that the universality class should be that of the Ising
model. This argument is again incomplete because it
neglects the coupling between 1lrl and the hydrodynamic
phase mode (Goldstone boson) associated with the nonzero

g2 of the S„phase. In this paper, we will develop a

model which takes into account all of these couplings.
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FIG. 1. Schematic representation of the three types of
smectic-A phases: (a) the monolayer S& phase, (b) the bilayer

Sg phase and (c) the Sg phase with layer spacing intermediate

between one and two molecular lengths.
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2q

qll

qual

g„e . Thus, II must be invariant under gi~g&e'~,
1tiz~pze '&. The simplest Hamiltonian incorporating this
invariance is

q

SA, 2 d

H =Hp+H;„, ,

where

~o = J d"&
z Iri

I fi I' + rz
I 42 I

(2.1)

FIG. 2. X-ray diffraction patterns for the three smectic-A
phases: (a) the Sz phase with a quasi-Bragg peak at 2qo and a

diffuse spot at qo, (b) the S& phase with quasi-Bragg peaks at

both qo and 2qo, and (c) the S& phase with a quasi-Bragg peak
d

at a wave number between qo and 2qo and a diffuse spot in the
vicinity of 2qo.

+
I v@, I'+ I vA I'3 (2.2)

is the noninteracting part and

HiIIt + 1 + 2 + 1 2

——,
'

w Re(1(igz) (2.3)

Our conclusion is that the Sq -Sz transition is in the Is-
1 2

ing universality class (at least near four dimensions) with
isotropic correlation length critical exponents in agree-
ment with the simple argument of Prost. The physical
correlation function G(x,O) does not, however, behave
simply as the spin correlation function in the Ising model.
Interactions between the order parameter and the director
lead to nonuniversal power-law behavior in G (x,O) at the
critical point and a resulting nonuniversal susceptibility
exponent y. This nonuniversality is simply a reflection of
the well-known lack of long-range order in gz in the Sq,
phase.

The outline of this paper is as follows. In Sec. II, we
formulate an isotropic model for the Sq -Sq transition

1 2

that neglects fluctuations of the Frank director, and we
discuss its symmetries and associated Ward identities. In
Sec. III, we develop momentum-shell recursion relations
and study this model using the e expansion. In Sec. IV,
we formulate the full model for the Sz -Sz transition in-

1 2

eluding anisotropy and couplings to the director and show
that it is in the same universality class as the isotropic
model of Sec. II. We then discuss the physical correlation
function and derive its nonuniversal power-law behavior.
Finally, there are two appendices presenting a derivation
of the fundamental Ward identity and calculations of ver-
tex functions to one-loop order in perturbation theory.

H =Hp+H;„, ,

where

(2 4)

In the above, r&-(T —T&) and rz-(T —Tz) where T is
the temperature and T~ and Tq are, respectively, the
mean-field N Sz an-d N-Sq transition temperatures.

1 2

Couplings of g& and Pz to the Frank director n and spa-
tial anisotropies are not included in this equation. They
will be treated in Sec. IV. The phases of 1(i and 1(z have
been chosen so that the potential w is real and a relative
phase of zero is favored.

The Hamiltonian Eq. (2.1) has been used to study the
N-Sz, N-S„and S„-Sz transitions in mean-field

1 2

theory. ' ' A renormalized perturbation theory and
renormalization-group analysis can be applied directly to
this model to study the Sq -.Sz transition. Such an

1 2

analysis is complicated, however, by the requirement that
the equation of state for (Pz) be calculated consistently at
each order in perturbation theory. Near the Sz -Sq tran-

1 2

sition, fluctuations in the amplitude of 1t z are unimportant
compared to those of the phase of gz. We, therefore, re-
place fz by

I Pz I
e '~ and treat

I gz I
as a constant to ob-

tain the modified model

II. ISOTROPIC MODEL and
(2 5)

The simplest model Hamiltonian H capable of describ-
ing the nematic (N), S~, , and S„phases is a functional of
the fields g& and Pz only. In general, of course, all P„are
needed, but they can be expressed as functions of f& and

The Hamiltonian must be invariant under uniform
translations of the system. As can be seen from Eq. (1.1), a
uniform translation by z along the z axis changes f„ to

I

H;„,= "x —
~

——Re e (2.6)

r = ri+zilz I lz I'~6 & =
I gz I' and

= w
I fz I

. In what follows, we will find it convenient to
express H in terms of the variables f„=Re1(& and

1(y
——Imps.

T

H= J d & —,r(y +q )+ , &(&y) + , (Vy„) +—,'(ziti —) w[sin—y1(„1( +——,'cosy(ig —tp )]+—,(fp„'+1i/i')z (2.7)

The phase translational invariance of Eq. (2.1) now takes the form of an invariance of Eq. (2.7) with respect to the
transformations
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cos8 —sin8
/~/+28,

This invariance leads to a series of Ward identities for the vertex functions

r'"' x x 6I

where I is the Legendre-transformed free energy and a;(x) can be P„(x), g»(x), or P(x). The general form for these
Ward identities is derived in Appendix A. Of particular interest in what follows are the relations, valid in the Sz phase,

1

lim rpp( q ) =0,
q —+0

lim [I' '(q) —I»»'(q) ] = lim 2I p„y(q, q, 0),
q —+0 q~O

hm I pp„„(q, q, 0,0)= hm —2ry„»(q, q, 0),
q~O q~O

(2.9a)

(2.9b)

(2.9c)

where it is understood that x and y stand for P„and P». Equation (2.9a) states the obvious that P is a hydrodynamical
variable ln thc Sg phase.

In order to develop a systematic loop expansion and renormalization-group recursion relations for functions arising
from Eq. (2.7), it is convenient to expand in a power series in P and to introduce a more general space of potentials. We„
therefore, write

a= f d x 2r„p„+—,'g»~—,'c~(VQ„)—+—,'c»(V'1(») + ,'K(V'p) +——u„Q„+ ,', u»—g~g»+ u»g»—
0

« 2 2 2 4& 4 2 4y 4 2~i0Px4»+ ~34 Wx4»+ 4 ~2xk Px ~2»0 P»
— 0 0m+ 0 0» (2.10)

To make Eq. (2.10) equivalent to Eq. (2.7), we must have
I'~ = I" —N~ P'y = P' +N~ M1 = M3 = LU2~ = l82y = LU,

~ =t-"y = «p and &~ = +y = Q~y = Q. In this case thc
Wa« id~~titi~~ of Eq. (2.9) are easily seen to be valid to
lowest order in a loop expansion where I'„'(0)=r„,
I»»'(0)=r», I ~„~(0,0,0)=w&, r~~ „=—w2„. We will use
the Hamiltonian of Eq. (2.10) in subsequent sections, al-
ways remembering the relations among the bar'e potentials
imposed by Eq. (2.9).

III. e EXPANSION

The momentum-shell recursion relations of the e expan-
sion Inap the original Hamiltonian H with a spherical
Brillouin zone of unit radius onto a Hamiltoniana' = Ra by first removing degrees of freedom with
wave number q between b ' and «and rescaling the
fields: g„~g„P„, g» +g~f», and P +—g~P. Vertex a—nd
correlation functions can be expressed in terms of 0 or
H'. For example,

r~,'(q, a) =b 'g', r,",'(q ys, a')-,

(3.1)

r'"(q,a)=b 'g„' r"'(q ib,a') .-
Thc Hard ldcntltlcs discussed ln thc pl'cvlous scctlon aI'c
satisfied by vertex functions of the original Hamiltonian;
they are not, however, satisfied. by those of the rescaled
Hamiltonian H . This is because II' is not invar'iant with
respect to the simple transformations of Eq. (2.8) but rath-
er to more general transformations involving rescahng of
the fields. The Ward identity Eq. (2.9a) is, however, valid

1 «—
2 N2y

P'y +Cyg
(3.2)

As just discussed, limk 01 &&(k)=0 for all Hamiltonians
along the RG trajectory.

To de.ve the momentum-shell recursion relations, we
note that g„ is critical whereas 1(» is non-critical. UsuallyI sltuatlons 11ke this, thc non-crltlcal flcld ls simply I'@-

moved to produce a new effective Hamiltonian that is a
function of the critical fields only. We will discuss this
approach at the end of the sec'.ion. Since 1(» plays an

in all rescalcd Harniltonians 8 "H along the
renormahzatlon-group trajectory 1Ilcludlng any f&xed-

point Hamiltonian a*. This provides a valuable check of
the validity of our recursion relations.

Thc important vcrtcx functions foI' this problem arc
evaluated in Appendix 8 to one-loop order for arbitrary
potentials of Eq. (2.10) using the diagrams of Fig. 3. They
satisfy the %ard identities as required. In this section, we
will need to consider the vertex function I ~~ carefully.
To one-loop order, it satisfies

r~~(k) =Kk —u,(2) 2 « «

q rx+cxq ry +c» (k+ q)

1 «+ 22x 2
q "x +&x9'
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(2)
For 1 ~~

{a)

{b)

For I"„„
(2)

r
/

{c)

(~)
For I"~„

(d)

g2 bd+2 —g

(3.3)

du~

l
=au„——,K~u„—2 Kd m2„

+6Kdgm2„. —6Kdg

dl82~ =ew2» —2Kdgu» +4Kdgw2»

2
2 KduxN2~ —2Kd N2~

(3.4)

=eg+ 3Kdg —2Kd m2„g,
dg 2

2 d
g» ——b

where g and il~ are chosen to keep the coefficients c„and
K constant and equal to unity. With this choice of rescal-
ing, all potentials involving g» except wi and r» are ir-
relevant. Furthermore, the potentials r~ and w~ always
occur in the combination g = w i /r» since c» is irrelevant.
The differential recursion relations for b = e ' to first or-
der in e for the potentials of interest are therefore

(4)
For I „„pp

(e)

dr»
& &

u„=2r„+ , Kd w 2»+—,Kz —Kqg, —
1+r„

where Kd ——Qq/(2m) where Qd is the solid angle subtend-
ed by the unit sphere in d-dimension. g~ and q are zero to
first order in e. The general fixed point structure of these
equations is quite complex. We know, however, from Eq.
(3.2) that at the fixed point g = g* = wi /r» = w2„/2
in order to ensure that I ~~(q)-q at small q because the
potentials w» and c» are zero. Equations (3.4) have a
stable fixed point satisfying these conditions with

3 1

Kdu =
~ g, Kdg =

2
E', KdN~ —6' (3.5)

alld

(3.6)

FIG. 3. Diagrams for some vertex functions. The unbroken
lines represent G, the broken lines G~, and the wavy lines G~~.
(a), (b), (c), (d), and (e), respectively, show diagrams for I ~~, I „„',

(2) (3) (4)I~, I p y, and I ~

essential role in maintaining Ward identities, we find it
convenient, for the moment, not to remove it. We will,
however, rescale l(„and f» differently. We set

It is clear that this is a fixed point with Ising symmetry
since the equations for u„and r„decouple completely
from those for g and w2„ if g = w2„/2. In other words,
the fixed-point Hamiltonian consists of two disjoint parts
for the critical fields g„and P: the Ising Hamiltonian for
the field fan»d a non-interacting Gaussian spin-wave
Hamiltonian for the field P.

Another way of seeing this result is to consider the ef-
fective Hamiltonian for f„and P with the non-critical
field P» removed. We find

H,rr= f d x[ , r»g„+ ,
'

(Vg») —+u»P»]+—fd"x P + 2K(VP)—

—f d x f d x'u~„(x,x')p(x)f„(x)p(x')f„(x'), (3.7)

where

p„u( , x)x=1/4[w2„5(x —x') —2wiG»»(x, x')]
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and r~ ————,ipz»G» (x, x) where G»»(x, x') = (f»(x}P»(x')}. To one-loop order, the contribution from u~„cancels the

r~ term keeping I ~~(q =0) = 0 as required. At the fixed point, u~„——0 and r~ ——0. It seems likely to us that the
decoupling of f„and P remains true to higher order in e. We have, however, not found a general symmetry argument
leading to this result nor have we carried out the rather tedious calculations needed to verify this to second order in e.

IV. GENERAL MODEL

The model presented in Sec. II is incomplete in two respects: it does not include anisotropy and coupling of the order
parameters 1(i and fz to the Frank director n. The invariance of the Hamiltonian with respect to simultaneous rotations
of the director and the smectic planes leads to a gaugelike coupling between 5n = n —np (where np is the uniform
equilibrium director) and both fi and fz to quadratic order in 5n. The non-interacting Hamiltonian of Eq. (2.2) is thus
replaced by

H. = f d"x ,'[~-i
I li I'+~z

I @z I'+
I V~~@i I'+c~~

I V~~A I'+ I(Vi —iqp5»fiI'+ci I(Vi —2iqp5»A I'] (4 1}

where we have chosen length scales so that the coefficients of
I V~ ~@i I

and
I Vi@i I

are unity. The full Hamiltonian is

H =H, +K;„,+KF, (4 2)

(4.3)

and

where H;„, is given in Eq. (2.3) and HF is the usual Frank Hamiltonian

H, = f d x—, [Ei(V n) +Ez(n VXn) +Ez[n&&(V)&n)] j .

This Hamiltonian leaves out non-linear terms needed to ensure global rotational invariance. Though these terms do af-
fect the elastic properties of the smectic phases, we do not believe they have an important effect on the Sz -Sz transi-

1 2

tion, and we will ignore them.
Equation (4.2) is the analog of Eq. (2.1). To obtain the analog of Eq. (2.4), we set fz ——e'& as before to obtain

Hp = f d'x
z [»

I Oi I

'+
I Vi)fi I

'+
I
(Vi —iqp5n)Wi

I
'+E))(V))y'}'+E.(V.y' —2qp5n)'] (4.4)

H =Ho+ Hint+ HF (4.5)

where Hi„, is expressed in Eq. (2.6). The simplest way to study the effects of couplings to the director is to perform a
change of variables to decouple p' from 5n. This change of variables has the appearance of gauge transformation s'9

5n =A+ VL, ,

P'=$+2qpL,
iqoL,

e

(4.6)

After this transformation, H;„, is unchanged,

Hp= f d'x
~ [& I 0 I'+

I (V~~
—iqp~~~)P I

'+1(Vi iqpAi)W I

'—
+E~~(V~~4 —2q&~~)'+Ei(Vi4' —2qpAi}']

and HJ; becomes a function of both L and A. To decouple A and P, we choose

(4.7)

Ell %Iles II +L~ V~ A~ 0 (4.8)

When E~~ = Ei, this is the usual transverse constraint of the "SC"gauge. ' Equation (4.8} determines L in terms of 5n
via Eq. (4.6a) and allows 5n and thus H~ to be expressed in terms of A only. Defining A, to be the component of A in

the np-q plane and A, the component of A in the space perpendicular to the np-q plane, we obtain

H =Ho'+8;„,+a~,
where

Hp'= f d'x
z [r I 0 I'+ I(V —iqpAW'I']+ f d'x

z [E~~(V~~4)'+Ei(Vi4}']

and

(4.9)

(4.10)

21, 2
Hg —— — 4q IIX'+ E3+E) 2 E qq2, . qll

E(q) 2 2 2
z z z z A, +(4q E p+Eiq z+Eiq~~)zA,

Ellqll +Ejqj
(4.11)

where
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K(q) =K((q ~(+Kiq)

We are now in a position to analyze the effect of aniso-
tropy and couplings to 5n on the Sz -Sz transition. The

1 2

first thing to note is that A is not a hydrodynamic vari-
able: its independent components have masses" deter-
mined by K~~ and Kj and the constraint, Eq. (4.8). Thus
A can be removed to produce an effective Hamiltonian
that is identical in form to that of Eq. (2.2) except for the
anisotropy imposed by K))&K) . At the Ising fixed point
discussed in the previous sections, the critical fields f„
and P decouple completely. Since anisotropy has no effect
on the critical exponents of the Ising fixed point associat-
ed with an independent g„or the Gaussian fixed point as-
sociated with an independent P, it is clear that introduc-
tion of anisotropy in the original Hamiltonian will have
no effect on critical exponents. This has been explicitly
verified to first order in e using recursion relations ap-
propriate to the anisotropic system.

Though the S~ -Sq transition is in the same universali-
1 2

ty class as the Ising model, the coupling of 1[ to 5n leads
to anomalous behavior for the physical correlation func-
tion G(x, x')=(&fr, (x)P*,(x')). The correlation function
in the "SC"gauge is, apart from dependence on irrelevant
variables, identical to the spin-correlation functions of the
Ising model. Correlations in the physical field g) can be
related to correlations in gsc via

where

qok~ T
8qr+K) 8 (4.18)

G( 0) C( )
~ ~

(d —+v)y— (4.19)

where we have inserted the isotropic scaling form for
Gsc(x, O) near the critical point. This form implies that
G(x, O) has anisotropic power-law behavior with critical
exponents varying continuously along the Sz -Sq critical

1 2

line:

Note that C(x ) dies off algebraically rather than exponen-
tially as it does in the nematic phase and at the nematic to
smectic-A critical point. ' To complete the calculation
of G(x, O), we need to consider Gsc( x,O) which can be ex-
panded in a power series' in qo. Low-order diagrams in
this expansion are shown in Fig. 4. The first term is pre-
cisely Gsc( x,0) which has Ising critical behavior.
Higher-order diagrams [Figs. 4(b) and 4(c)j involve both
Gsc( x, 0) and DLq, ( x, x') = (L ( x )A; ( x') ) which die off,
respectively, with characteristic lengths g —t ' and
A, =(K)I8)'~ where t is the reduced temperature. It is
tedious but straightforward to verify that there are no in-
frared singularities in these diagrams' so that they die off
with a length l-min(A, ,g). 1, is not a critical function of
temperature in the S~, phase as the S~ line is approached
so that l-i, as t~O Thus .Gsc(x, O)-Gsc(x, O) as t~O
and

where

—=Gsc(x, O) C(x), (4.12)

G(x, O)

—(d —2+„+„,)
xi~ xg ——0

—(d —2+q+2q, )

x)(
——0

(4.20)

and

SC —iq&&[L ( x ) —L (0)]
~(e

—iq&&[L( x )—L(0)]
~

(4.13)

(4.14)

Equations (4.18) and (4.19) imply that the susceptibility X
satisfies

The large-
~

x
~

behavior ' of C(x) is dominated by the
cumulant ([I.(x)—1.(0)j ) which can be calculated us-
ing

(a) X

where

K q
(4.15)

Dl(q) = «lel + ~e()~el) ', (4.16)

'9

x~~ x, =o
C(x) = —21kx, ' x~~=0

(4.17)

where 8 is the usual compression modulus for smectics.
In the present model, 8 =4q0Kj to lowest order in pertur-
bation theory. Using Eqs. (4.14) and (4.15), it is easy to
verify that at large

I
x

~

C(x) is identical to the function
calculated by Caille:

{c)
FIG. 4. Diagrams contributing to Gs&(x, x'). The unbroken

line represents Gsc(x, x') and the broken line Dr.q . The circles
t

in (b) and (c) represent vertex functions. (a) is simply Gsc and is
the dominant contribution to Gsc near t =O. The DL& propaga-

l

tors in (b) and (c) cause these diagrams to decay to zero for
i
x —x'i )A, .
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so that

dxG x,0— (4.21) APPENDIX A

y=(2 —q —2g, )v (4.22)
To derive the %'ard identities discussed in the text, we

consider the partition function

is not universal but depends on the values of 8 and E~ at
the critical point. g, can be calculated using Eq. (4.18).
Using qo ——0.222)& 10 cm ', K~ ——10 dynes,
8 =10 dynes/cm, and T =360 K, we obtain g, -0.1.
Thus we predict that y is of order 0. 1 to 0.2 less than the
Ising value of 1.242 (Ref. 11) that is presumed to be ap-
propriate for the SC gauge in three dimensions.
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Z(h hy hp)= f DP Dg»DPe (A 1)

where H is given by Eqs. (2.4) to (2.6) and

H,„,= —f d~x[h„(x)g„(x)+hy(x)gy(x)+h~P(x)] .

(A2)

The invariance of H under the transformations of Eq.
(2.8) implies that

T

Z(h», hy, h~) =exp f d"x2h~(x)8 Z(h„cos8 + h»sin8, —h„sin8 + h»cos8, h~)

or that

(A3)

= f dex [2hy(x)+(q„(x))hy(x) —(1I'jy(x))h (x)], (A4)

where (g»(x)) and (f»(x)) are the averages of P»(x) and Py(x) with respect at H+H, „,. Introducing the I.egendre-
transformed free energy

r((1t„),(y„)) = —i~+ f d'x [h„(x)(y„(x))+h, (x)(1(„(x))+h, (x)(y(x) )],
Eq. (A3) can be reexpressed as

'~ 2I~("~+ „& r,("x —,~ I„")~ =0,
where these vertex functions are defined as

(n) (
np

(A6)

(A7)

where a; can be g», f», or P with the convention that x and y rather than P„and g» be used as subscripts on the left-
hand side of the equation. Successive differentiation of Eq. (A5) yields the Ward identities of Eqs. (2.9) where

I,'s'(q) = f d x e 'q'" I,'b'(x, O)

I,'"'. . . , (k~, . . . , k„)5' '(k~+ . +k„)= f d xj . d x„e ' ' e " "I'"',
, . . . , (x&, . . . , x„) . (A9)

APPENDIX 8

(82)

Perturbation expressions for the vertex functions are easily derived from the general Hamiltonian of Eq. (2.10). One-
loop diagrams for some vertex functions are shown in Fig. 3. From these, we obtain the following one-loop expressions

(2) (2) (3) (4)for I xx I yy ~ I yxy~ and ~yyxx'

I' '(q=O)=r„+ —,'w2„ f Gyp(q)+ —,'u„ f G~(q)+ —,'u„y f Gyy(q) —wt f Gp~(q)G»y(q), (81)
q q

Iyy' r ——,'w2 f Gyp(q)+ —,'u——„f Gyy(q)+ ,'u„y f G (q—)—w) f Gyp(q)G (q),
q q

I pe = W] p W3 Gyp q +W]W2y Gyp q Gyy q W]Wz& Gyp q G~
q q

+w~ f G~~(q)G~(q)G»y(q) —3u»yw~ f G (q)G»»(q), (83)
q q
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~4~ =u,„—,'—w4„fG~q(q) —2w2„ f G&~(q)G (q)+wiw3 f G~~(q)Gy, (q)+ ,
'
-u„sw, s f Gyy(q)

q q q

2 tJ2&Q& G~ q —w 1 /82y Gpp q Gyy q + 3 w 1Qxy Gxx 'q Gyy q
q

+4w2„w| f G~~(q)G (q)G~&(q)+wctu„ f G (q)G&(q) —2wf f G~~(q)G (q)G~&(q) . (84)
q q q

Qne can easily see that the Ward identities of Eqs (2.9) are satisfied when w| ——w2„——wq„——w3 ——w4„——w4y and

Q~ =Qy =Q~y ~
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