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Field-induced barrier penetration in the quartic potential
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The problem of a particle trapped in a quartic double-well potential in the presence of a mono-

chromatic external field is studied. Renormalization-group techniques are used to determine at
what external field frequencies and amplitudes barrier penetration can occur for a particle initially

trapped at a given energy in one of the potential wells.

I. INTRODUCTION

A problem of great current interest concerns the mecha-
nism by which a dynamic external field might destabilize
systems by increasing the rate of transition over potential
barriers on the microscopic level. In this paper, we con-
sider the simplest possible model system which contains
the essential features of this problem —namely, that of a
particle trapped in a quartic (double-well) potential in the
presence of a monochromatic external force field. As we
shall show for this system, predictions can be made
analytically for the external field amplitude (at a given
frequency) necessary to open a pathway through the phase
space which will enable a particle of a given energy to es-

cape one of the potential wells.
As has been discussed elsewhere, ' a dynamic external

field induces a dense set of resonance zones in the phase
space of a conservative system. For weak external fields,
the overall behavior of these induced resonance zones is
largely determined by properties of the unperturbed sys-
tem and will be dominated by a set of principle resonance
zones. For very weak external fields, the principle reso-
nance zones remain isolated. A particle in the vicinity of
one principle resonance zone cannot travel through the
phase space to the vicinity of a neighboring principle
zone. However, as the amplitude increases, the KAM
(Kolmogorov-Arnol'd-Moser) invariants in the region be-
tween the two principle zones begin to be destroyed until a
pathway is finally opened between the two zones and the
phase space begins to appear chaotic (from now on we
shall call this process "breakdown").

A very simple criterion for determining when break-
down (often called "overlap" ) occurs has been described
by Chirikov. ' However, recently a more accurate
method was developed by Escande and Doveil using
renormalization-group techniques. We shall adapt the
renormalization-group techniques to the problem of bar-
rier penetration which we consider here.

We begin in Sec. II with a discussion of the properties
of a quartic double-well system in the absence of an exter-
nal field. These properties determine the location and size
of the induced principle resonance zones when the dynam-
ic external field is present. In Sec. III we describe the
behavior of the induced primary resonance zones when an
external field is present and in Sec. IV we introduce the

two-resonance approximation and write the Hamiltonian
in so-caBed "standard form" for application of the nor-
malization group. In Sec. V, we give predictions for
field-induced barrier penetration as a function of field fre-
quency and amplitude and we compare some of these pre-
dictions to the results of numerical simulation. Finally, in
Sec. VI we make some concluding remarks.

II. UNPERTURBED DOUBLE-WELL SYSTEM

We will first consider a particle of mass m =2 con-
strained to move along the x axis in a double-well poten-
tial

V(x)= —2x +x
The Hamiltonian for this system is

~——p 2g +/ —Eo

(2.1)

(2.2)

V(x)

FIG. 1. Plot of quartic potential V(x)= —2x +x,

where Eo is the total energy of the system and p and x are
the momentum and position, respectively, of the particle.
The potential V(x) is plotted in Fig. 1. When Eo & 0, the
particle is trapped in one of the wells. When Eo &0, the
particle is free to move across the barrier. The phase-
space trajectories for this system for five different energies
are plotted in Fig. 2. At energy Eo ———1 the system has
two stable fixed points (p =0 and x =+1) and at energy
Eo ——0 it has one unstable fixed point (p =0 and x =0).

We may perform a canonical transformation to new
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variables (J,P) such that P is cyclic. ' The canonical
transformation is

FIG. 2. Plot of phase-space trajectories for particle of mass
m =2 trapped in the quartic potential V(x)= —2x +x . Tra-
jectories are plotted for energies Eo———1, —0.52, 0.0, 0.56, and
1.43. The trajectory Eo ——0.0 is the separatrix and separates
trapped motion from untrapped motion.

H =J —I+VV'J+ 1 cos(cot)dn 2JA' (3.3)

Since the Jacobi elliptic functions are periodic, the Hamil-
tonian (3.3) may be expanded in a Fourier series. For
Ep ~ 0 it takes the form

where B and 3 are parameters which may be used to ad-
just the shape of the potential, e and co are the amplitude
and frequency, respectively, of the external field, p is the
momentum of the particle, x is its position, and t is the
time. %e can now rescale variables, i.e., let

H =AH/B, p=(2A/mB )'~p, x=(A/B)' x
and t =(2B/m)'~ t and write the Hamiltonian in the
form

H= —,'p —2x +x +ex cos(tpt), (3.2)

where F=e(A/B )' and tp=co(m/2B)'~ . Note that the
equation of motion for x is just the Duffing equation.

Hamiltonian (3.2) can be written in terms of canonical
variables (J,P) [cf. Eqs. (2.3) and (2.4)]. It then takes the
form

x =v'J+ 1 dn
2JA

and

p= —4J cn 2JA' 2JA',4 sn

(2.3)

(2.4)

H =J~—1+@ g g„(J)cos tpt, (3.4)—
2J E(4)

where

~
n

~

mE'(4)
V 2(2 —4 )' E(A) E(&)

and for Ep & 0 it takes the form

2J
J+1 (2.5)

Note that when Ep&0, k & 1 and Eqs. (2.3) and (2.4) can
also be written as

x=&J+I cn
1

2J'4 (2.6)

and

where dn, cn, and sn are Jacobi elliptic functions and the
modulus 4 is defined as (3.6)

where

(
~

n
~
+ —,

'
)m.E'(4)

h„(J)= sech
2kK(4) E(A)

(3.7)

In Eqs. (3.4)—(3.7), E(A) is the complete elliptic integral
of the first kind,

00 (n + —, )m.P
H =J —I+V g h„(J)cos cot—

2JE(4)

4J P 1 P 1

v~'S (2.7)

In terms of these new canonical variables, the Hamiltoni-
an becomes E'=E 1—

1/2
1

H=J —1=Ep . (2.8)

The canonical variables (J,P) are not action-angle vari-
ables.

III. PERTURBED DOUBLE-WELL SYSTEM

Let us consider next the motion of a particle of mass m
in a more general double-well potential and in the pres-
ence of an oscillatory force field. The Hamiltonian can be
written

tpKAv 2J
nm.

(3.8)

As can be seen from Eqs. (3.4) and (3.6), the external
field introduces an infinite number of primary resonance
zones into the phase space of this system. (See Ref. 1 for
a more extensive discussion for the case of the Toda sys-
tem. ) For small e, the primary resonances are located at
values of J—:J„' which satisfy the equations (for Ep & 0)
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(3.9)
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IV. TYPO-RESONANCE APPROXIMATION

We are interested in values of the external field am li-ie amp 1-

w 1c is 1111tlRlly trapped 111 ollc
o t e wells can be driven over the barrier. Th llc SIDR cst

e a which this can occur will vary with frequen-
cy ru of the external field. As we shall s
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Let us focus os on the region of phase space between reso-
nance zones no and no+1 for E 0. Th
can th ben e written as

0 0 Q . c Hamiltonian

The coordinates (J a
equations

and (po, xo) are related throu h thg C

P f dJg (2J ) A{J )E(J )

Bxo
curio

no&

where 4, =A(J„',) and E,=E(A, ), and

(4.3)

FIG. 4. A sketch of the basee p ase space in the two-resonance a-
proximation for a Hamiltonian in standard form.in s an ar orm. The zone of

o
—— o mo) in velocity space has s eedo= p speed vo=0 and

U /mo)'~ has speed vo ——l.

H =J I+Eg„,(J)co—s —cot
v Zan(S)

2Jl(EBF
g3J n OIT' (4 4)

(no+ 1)m.gI)

+eg„+1(J)cos cot—
2JAE(A)

This approximation vnl1 be good th0 in t e reg1on
~Jg J„+&

and e sma11.

It is now useful tto make a canonical transformation to
new coordinates ( x ) inpo,

xone

1Il such a %'Ry that talc point
po ——0 is located at J=J„' (we will shift th1 e origin oI coor-
dinates and rescale them). Furth~ u crmore, thc resonance
zone no wi be at rest in this new reference frame.
can be accom lishoinp ished by means of the generating functions

c raIDc. T Lis

, 2J')' 'A(J')E(J')
0 —egg . (4.2)

tg no&

If we Taylor expand Eq. (4.3) b J„',a out ~ Rnd rcv crt thc
scricsg wc find

Pl OKPo

(2J' )'"S,E,

Pl 07T Eg
2 2

S(J' )'S'E'
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o t esecondkind.

e complete Jacobi elliptic integr Ia

If we now make u
R11d 1f wc lct {J)~
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1.0—

0
0

dinate frame in which resonance zone no+ 1 has unit velo-
city while the zone no remains at rest. This can be accom-
plished by means of the canonical transformation
to bu——ot, po ———pro/duo, xo ——xo, and Ho ——H/(duo) .
We then find

[1—(J„' ) ]
Ho(po~xo~to) =

2 + —Uo cosxo(x)

2m,

FIG. 6. Plot of breakdown criterion as function of X/F and
X+Y' for ko ——2. The dotted line is Chirikov; the solid line is
thc rcnormahzatlon group.

obtain

H(gTo, xo, t) =H+

~g„,(&„', )
U(x)

(b,uo)

Uo costa(xo t—)], (4.10)

(4.11)

—2

=(J„' )2—1 —— +eg„(J„' )cosxo
0 no no

U(y)
(&uo)'

(4.12)

+eg~ + i(Jri + i )cos[ko(xo —quot)] . (4.6)

(4.8)

and the velocity of the resonance zone no+1,

Pl 0 —I 67.
no+1

As a final step we will make a transformation to a coor-

The replacement g„(J)~g„(J„') is necessary to best
represent the relative sizes of the two resonance zones. In
Eq. (4.6) we have introduced an effective mass,

mo= (4.7)
norr [E,/(1 —J„' ) E,]—

A sketch of the system described by Hamiltonian (4.10) is
given in Fig. 4. It consists of two resonance zones: one
(no) with velocity uo ——0 and the other (no+ 1) with veloci-
ty uo ——1. The half-width of zone no in velocity space is
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FIG, 7. Field amplitude at which breakdown occurs between

primary zones no ——1 and no ——2 as a function of frequency. The
dotted linc is thc Chirikov prediction. The solid linc is thc
renormalization-group prediction. The squares give the result of
nunlcrical siI1lulation.

FIG. 8. Field amplitude at which breakdown occurs between
primary zones no ——2 and no ——3 as a function of frequency. The
dotted line is the Chirikov prediction. The solid line is the
renormalization-group prediction. The squares give the result of
numerical simulations. The point at @=10only shows the order
of magnitude of breakdown.
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U(x)
0

Xo —2
Nl 0

(4.13)

and the half-width of zone no+ 1 in velocity space is

U(y)

Fo 2 s (4.14)
foal 0

The Hamiltonian (4.10) is now in standard form and is
ready for application of the renormalization-group
transformation.

The details of the renormalization-group transforma-
tion as applied to conservative dynamical systems has
been discussed elsewhere. %c will apply the results
of that method to the present problem. The
renormalization-group analysis of the region between two
given resonance zones gives a criterion for estimating the
field amplitude at which breakdown (or overlap) occurs.
Thc rcnorma11zation-group estimate improves cons1dcr-
ably on the simpler Chirikov criterion as we shall see.
The key results of Escande and Doveil are reproduced in
Fig. 5. The dotted line gives the Chirikov criterion

(Xo+Fo——1) for breakdown. The solid lines give the
fcnoITQalization-group Icsults 1n thc two-rcsonancc ap-
proximation. That is, breakdown occurs when the sum

Xo+ Fo is equal to its value on one of the sohd lines in
Fig. 5. [Note that the particular curve that must be used
depends on the value of ko Eq. (4.8)].

We will now obtain estimates for the amplitude e' at
which breakdown occurs between primary I'esonance
zones no —1 and no ——2 as a function of frequency co and
we shall compare some of these estimates to numerical re-
sults. As we shall see, breakdown between zones no&2
occurs at smaller amplitudes (for a given frequency) than
that between zones no ——1 and no ——2. Thus, when break-
do%'n between zones Pfo= 1 and ISO=2 occuls tllcrc 1s a
finite probability for particles with energy within the re-

gion of influence of zones no ~ 1 to cross the barrier.
First, we note that the resonance zone no ——I only exists

for values of frequency co&2 (cf. Fig. 3), and that for
no ——1 we have ko ——2 [cf. Eq. (4.8)]. In Fig. 6 we have
plotted the renormalization-group criterion for breakdown
(solid curve) when ko ——2 as a function of the ratio X/1' vs
X+K For a given ratio X/F, breakdown (or overlap)
will occur when X+F equals 1ts URluc on thc curve 1n

Fig. 6. This information can be obtained from Fig. 5.
Values of Xo and Fo as a function of e and co are given by
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FIG. 9. (a) Strobe plot of p and x for B=1.92 and V=0.01.
(1) Variation in energy of particle for co=1.92 and K=0.01.

FIG. 10. (a) Strobe plot of p and x for @=1.92 and m=0. 10.
(b) Variation in energy of pa, rticle for 6=1.92 and F=O. 10.
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2n 0(no+I) em g„,(J„',)[E, E—, /(1 —J„',)]
0

r0 J„' A,E,

2no(no+1) en g„,+i(J„'+'i)[K, E, /—{1—JN )]
0 J' 4 ICno c c

(S.2)

where/, =2J„',/{1+7„'), E, =E(A, ), and E,=K(/, ).
In Fig. 7 we give both the Chirikov and

renormalization-group predictions for the external field
amplitude e as a function of frequency co, at which break-
down occurs between zones no ——1 and no ——2. %'e also
give values of e observed in numerical simulation. We see
that in all cases the renormalization-group estimates give
better predictions than does the Chirikov estimate. %C
believe that the fairly large discrepancy between the exper-
imental result and the prediction of the renormalization

group to frequencies co=1.81 and 1.91 may be due to a
distortion in the no= 1 zone caused by the nonresonant
zone n =—1. As no 1 moves to——larger values of J, this
distortion effect should decrease.

In Fig. 8 we give the predictions for breakdown between

tlo ——2 and tlo ——3. Aga1n wc scc thcrc is lIYlprcsslvc aglcc-
ment between the predictions of the renormalization
group and the observed values.

In Figs. 9—14, we give the results of numerical simula-
tion for amplitudes a=0.01, 0.10, 0.18, 0.20, 0.25, and
0.40 at frequency 1.92. At this frequency, Ji ——0.452 and

Jz——0.997. Thus, the region of influence of resonance
zone no 1——is centered at Eo —0——.796 and the region of
influence of resonance zone n 0 ——2 is centered at
Eo —0——.006. In Figs. 9(a)—14(a) we give strobe plots of
the momentum p and position x of the particle trapped in
thc blstablc potcntlal. That ls p Rnd x Rrc plotted each
time the external field goes through one period of oscilla-
tion. In all cases, the particle starts with a momentum

p =0 and position x=0.24 or with energy Eo ———0.112.
Thus, the particle always starts with energy between the
region of influence of resonance zones no ——1 and no ——2.

In Fig. 9 (a =0.01) the external field has only a slight ef-
fect on the particle. We see that the particle energy oscil-
lates between Eo ———0.114 and Eo ———0.101 and the par-
ticle never escapes the well. This also means that no par-
ticle with energy Eog —0.114 can escape the well. In
Fig. 10 (e=0.10) we are starting to see the effect of the
stochastic layer along the separatrix. All zones no&2
have "broken down" and the region of phase space occu-
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FIG. 11. (a) Strobe plot of p and x for 6=1.92 and a=0. 18.
(b) Variation in energy of particle for 6=1.92 and F=O. 18.

FIG. 12. (a) Strobe plot of p and x for r) =1.92 and K=0.20.
(b) Variation in energy of particle for 8= 1.92 and @=0.20.
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FIG. 13. (a) Strobe plot for p and x for co = 1.92 and @=0.2S.

(b) Variation in energy of particle for 6=1.92 and @=0.2S.
FIG. 14. (a) Strobe plot of p and x for co=1.92 and @=0.40.

(b) Variation in energy of particle for co = 1.92 and @=0.40.

pied by them has gone chaotic. At this value of c all par-
ticles with energy Eo ~ —0. 13 can escape the barrier. The
energy of the particles oscillates between E= 0.13 and-
E=+0.35. Overlap between no= 1 and no=2 has not
occurred.

In Fig. 11 (@=0.18) our particle becomes trapped in a
quasiperiodic orbit which lies partly above the barrier and
partly below it. In Fig. 12 (V=0.20) we begin to see break-
down between no ——1 and no ——2. The particle not only
can escape the barrier but it can also descend to energies
Eo- —0.9 and, therefore, the particle has made contact
with resonance zone no 1. Conversely, there ——is a finite
chance that any particle with energy Eo& —0.9 can es-
cape the barrier. A pathway has been opened in the phase
space for very low-energy particles to escape the barrier.
In Figs. 13 (@=0.25) and 14 (a=0.40) we see the increas-
ingly chaotic behavior and growing energy range sampled
by the particle in the presence of the external field.

VI. CONCLUDING REMARKS

In this paper, we have presented a theory which enables
us to predict the region of phase space in which trapped
particles may be destabilized by a dynamic external field
in the sense that a pathway will be opened in the phase
space through which a fraction of the particles can zni-

grate over the top of the potential barrier. We have stud-
ied here only those frequency domains near the low-energy
natural frequencies of the unperturbed system. In all
cases there is a critical field amplitude necessary to desta-
bilize the system. We have found that the largest effect
occurs near the frequency of the harmonic limit. [The
harmonic limit of V(x) is found by expanding V(x) about
the stable fixed points (x =+1). The harmonic frequency
ls CO=2.]

A problem of equal interest is the effect of very low-
frequency fields (far below the harmonic limit) on this
system. Because of the convergence of all resonance zones
at very low frequencies, the potential exists for some ef-
fect at low frequencies. We shall discuss this problem in a
subsequent paper.
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