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Auroral kilometric radiation due to a new plasma instability
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In this paper we show that a high-frequency plasma instability can lead to auroral kilometric ra-

diation.

In the presence of low-frequency ion-cyclotron turbulence and a high-frequency

extraordinary-mode (X-mode) test wave, this instability occurs due to a nonlinear force which ori-
ginates from the resonant interaction between electrons and modulated electric fields. The growth
rate of the X-mode wave, in the form of auroral kilometric radiation, has been calculated and com-

pared with observations.

I. INTRODUCTION

Several theories have been proposed to explain the au-
roral kilometric radiation (AKR) in recent years.? Very
recently, two of the present authors have proposed® that
AKR is produced by the enhanced extraordinary-mode
(X-mode) radiation and occurs due to bremsstrahlung in-
teraction* between aurora beam electrons and electrostatic
ion-cyclotron turbulence or double layers. This mecha-
nism has been found to have several interesting features
including its large growth rate and the close correlation
between AKR and double layers. In this paper, we
present a slightly different method to explain AKR while
keeping essentially the general treatment of the previous
paper in Ref. 3. Specifically, it will be shown that the
high-frequency X-mode instability, producing AKR in
presence of ion-cyclotron turbulence or double-layer po-
tentials, occurs due to a high-frequency nonlinear force
which comes from the resonant interaction between elec-
trons and a modulated electric field. Thus electrons suffer
acceleration (or deceleration) due to the nonlinear force
and the accelerated electrons can radiate X-mode waves in
the form of auroral kilometric radiation.

In contrast to the parametric interaction process, where
a low-frequency wave becomes unstable in presence of a
pump wave which is a high-frequency wave, in our mech-
anism the high-frequency wave grows in the presence of
low-frequency wave turbulences.

The nonlinear force can be calculated within the frame-
work of the linear-response theory® and is obtained in Sec.
II. In Sec. III, with the help of the fluid equations, a new
high-frequency instability due to the nonlinear forces is
predicted and the growth rate of this instability is calcu-
lated in Sec. IV. Comparison with the linear theory' and
discussions are contained in Sec. V.

II. CALCULATION OF THE NONLINEAR FORCE

In order to calculate the nonlinear force, we need an ex-
pression for the modulated electric field and the electron
distribution function. For this purpose, we consider a
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homogeneous magnetized plasma in the presence of an
enhanced turbulence due to electrostatic ion-cyclotron
waves, with the external magnetic field ﬁo in the z direc-
tion. The basic equations governing the interaction of the
turbulent fields with an electron which leads to X-mode
radiation are the set of Vlasov-Maxwell equations

d g e |z IXB| 3 |, o0
at-{—vV E+ - 57 fe(T,¥,0)=0, (1)
> o 1 3B

VXE=——=", )
> = 103E 4r e

VXB--C % e n fv AT, V,t)dV . (3)

Since the ion-cyclotron wave turbulence which is as-
sumed to propagate almost perpendicular to the magnetic
field with propagation vector K=(k 1,0,k)) is already
present in our system (see Fig. 1), the various physical
quantities can be written as

fe=Ffoet+€f1e+€fr+8f , @)
E=€E,;+E, (5)
B=B,+6B, (6)

where fo. is the space- and time-averaged part, f;, and
[ are the low-frequency fluctuating parts of the electron
distribution function, El is the electrostatic ion-cyclotron
wave field which is assumed to be in the z and x direc-
tions, € is a small parameter, §f is the perturbed distribu-
tion function, 8E(T,) and 8B(T,t) are the perturbed elec-
tric and magnetic fields of the high-frequency X-mode test
wave which is introduced to our system a priori. The X-
mode wave is assumed to propagate perpendicular to the
magnetic field with propagation vector K=(K,0,0). Ac-
cording to the linear-response theory of a turbulent plas-
ma, we have

8f =p 8fy +nedfyy +ueAf , @

2171 ©1984 The American Physical Society



2172

S. BUJARBARUA, S. N. SARMA, AND MITSUHIRO NAMBU 29

where p is another small parameter (¢ <<€) and Sﬁlh, AE,
8§,;,, AB, § fm, and Af come from the mixed mode pertur-
bation. Linearizing the Vlasov equation we obtain, to the
order €,

0 -3 e= 0
— =—E;r—fo - 10
lat-i-VVfle m 1 g o (10)
FIG. 1. Geometry of model; K is the propagation vector of 10 order u,
the X-mode radiation, and K is the propagation vector for the
electrostatic ion-cyclotron waves or double layers. 3 47 3 e ¥ B, lsfh
dt ar mc v
SE=p 8E,, +pe8Ey, +ne*AE ®) o [ 1 L s
- - — - —— |8E, +—VX&8By |*—f(.=0. (11)
8B=p 8B, +u€ 8By, +ue’AB , 9) m ¢ v
]
To order pe,
N = - 3
—a——i—V'—a———e—-vXB(y—Ei—) aflh—iEl"ijh
ot ar mc ov ov
e |z 1 = d e |.= 1. o3 d
—— |8E,4+—VX8By |"—f1e—— |6Ep +—VX8By |'—f0.=0.
- 5h+cV>< h avfle o |OBm+ h anOe
(12)
And to order ue?,
d d e = 0 e [z 3 = | = d
= 4V 2 IxBy— |A ——<E ~——8fm+ |SEp +—VX8By, |*—f1.)=0, (13)
at+va? e 0 g . la_‘_;flh et w | oS
f
where ( ---) means the phase average over the low-  tegrating along the orbits of the particles in the unper-

frequency fluctuations. It should be noted here that the
phase of E; field is random while 8E, field is coherent.
Thus, it is necessary to average over the phase of E field
fluctuations. Equations (11) to (13) are the basic equa-
tions for the induced bremsstrahlung interaction which
comes from electron acceleration due to nonlinear forces.

For low-frequency electrostatic waves, the electron
motion along the magnetic field is important. The
Fourier component of the corresponding distribution
function f, is, from Eq. (10), given by

- 0
ﬁEIH(k,a))E)—foe
I (14)

(K,0)=— ;
e ilo—kjvy)
where K and o are, respectively, the wave vector and the
frequency of the electrostatic waves and || means parallel

to the magnetic field.

The Vlasov equations (11)—(13) are now solved by in-
J

turbed fields. In cylindrical coordinates, v, =v,cosd,
vy =v,sing, v, =v)|, the particle orbits 7'(7) are given by

vy =v,co8(@—Q,7), v, =vsin(¢—Q,7), v, =y,

vy . vy .

x'=x——sin(¢ —Q,7)+——sing ,
Q. Q.

v, v, (15)

y'=y+ Q, cos(¢—Qe¢)—~—Qe cos¢ ,

Z'=z4v71, T=t'—1.

Here, ,=eBy/mc is the electron cyclotron frequency
and the other symbols have their usual meaning.

From Eq. (13), retaining the most dominant nonlinear
term in the high-frequency perturbation, the high-
frequency nonlinear force ﬁN caused by the electron ac-
celeration through the modulation electric fields (SE”,)
can be written in the Fourier space as

Ev(K,Q)=en, [ 3 (aﬁ,,,(fc—E',n—m')-gajf,e(i",m')>v¢1v. (16
o A\

k' o

Substituting Egs. (A1) and (A2) for 8E;(K—K',Q—w')
and Eq. (14) for f,.(k’',@') we obtain, after a long but

T
straightforward calculation,

Fne(K,Q)=—id'B'Q,8E,, (K,Q) a7
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and
Fry(K,Q)=—A4'C'Q8E,,(K,Q), (18)
where
4ol enoQ g k;
Alzz le’e ;;’2 IEI“(kI)IZ [_‘;’_ [1+’22(4 )] _ll] ,
K Qe— m | kifve [k
B'= 2 121 2
MN[C k” —(Q—w') ]
o |14 22 !
Q2 —Q? H[cAK' 2 +ki})—(Q—a"?] |’
C'= L
HP[c(K?+ki})—(Q—0')?]
2 o2
®
X |1+ zpe ez 2 :21 2
Qe——ﬂ M[C k“ —(Q—w') ]
(19)
Here 2z(§) is the plasma dispersion function,

§=(o'—kjpo)/kjjv, and ve=(2T/m)'? is the electron
thermal velocity. In deriving Egs. (17) and (18), we have
taken the space- and time-averaged distribution function
to be

3/2
exp

2nT

_ m(v” -—-Uo)2 }e

Sfoe= T
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where vy is the electron drift velocity along z direction.

III. DISPERSION RELATION OF THE X MODE

To obtain the dispersion relation of the X mode, we fol-
low closely the method of Chen® and write the equation of
motion for the electrons with the nonlinear force term as

mn %%+(V-V)V =—en E+VXB +—15N. (20)
Maxwell’s equations are
FxE=_L19B
c ot
FxB=LOE 475 1)
c ot c
T=—env,

where the symbols have their usual meaning. Linearizing
and Fourier analyzing we get from Eqgs. (20) and (21)

. e |= = VXBy| iFy

= K , 22
V=—0 [BEH(K)+— l+mn0 (22)
O2Ey, (K)=4mien,Qu, , (23)
(02 —c?K?)SEy, (K) =4mienyQv, . (24)

Now, substituting the values of Fy from Egs. (19), we ob-
tain the values of v, and v, from Eq. (22) as

-1

ie - e A'C A'B | - Q;
= | — — — E, (K — (25
o, L (R) [m.Q. | 8B )] - )
and
-1

e Q = e 1 0l = Q;
B il L e p 1y B [1—== (26)

vy, mQ Q 5Ehx(K) l mQ mng 02 + mng SEhy( ) 92

Substituting Eq. (26) into Eq. (24) and noting that only the contribution of C’ is important, we get

— 4TTi€n0Q3 e ‘Q’e =
2 2p2 = K
(Q2—c2K?)8Ey, (K) @b {mﬂ o 8Em(K)
. 40%e (o | [14£2(6)] 1
—1 E kl) 2
| mat 2 maz_ay |m | F%) kifvd  HP[cAK™?+ki?)—(Q—a')]

cu;e .Qﬁ 1

1
201 (27)
kj) ] [ + (Q2—0%) M[c*i|}—(Q—0')]

X

]SE,,y(f{) ] .

Here we note that for the simple case of KC > ), considered in this problem, the coefficient of SEhx(I_i) is much smaller
than that in 8E;,y(K).7 Therefore, dropping the first term in the right-hand side of Eq. (27) and rearranging, we get the
dispersion relation for the X-mode wave given by
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02— |1 K| 2 . 4w;feo,2 e IE (2 LLHE2@)] 1 ki
¢ Q? T al-a? kifv!  HP[cXK?+kj})—(Q—a')?] | kj
92 1
X 1+ (28)
(Q2—0%) M[c*k|}—(Q—0')]
IV. GROWTH RATE OF THE X-MODE 1 ciK? 2(039 _ 29
RADIATION o2 T or_of (29)
ﬂ" Qf
For Q, > cK, Eq. (29) reduces to
The X-mode wave instability can be calculated by set- 2
ting =0, +iy in Eq. (28), where (, is the real frequen- Q—-0,=-* «q,, Ope <<, . (30)

cy and y is the growth rate. Now, neglecting the non-
linear frequency shift, the real frequency Q, of the X-
mode radiation can be calculated, by equating the real

Q,

e

Equating the imaginary terms in Eq. (28) we get the
growth rate for the X-mode radiation for cK <<}, given

1 Q;

E (k’) 2 (D6
y=m2 S AEIE Ope 1
v A4m T Q, k” v,

terms of Eq. (28) to zero, as
2
Vo

@pe

HP[cX K" +ki}

{

(31)

—(Q—0')] | Mk —(Q—a')]

In deriving Eq. (31), we have used-relation (30). Now, calculating the values of H, P, and M, we get the final expression

for growth rate of the X-mode radiation given by

1

o

’ 2 ’
1 a)lz,e 1E1||(k )|2 _‘Q_i kl

=(2m)w,
VT e £k (K, —2K) ]+ 200 cXkif

V. APPLICATION AND DISCUSSION

As an illustration, we apply the result of our investiga-
tion to AKR. Accordingly, we take the typical plasma pa-
rameters;? K=8.3%x10"% cm~! (A=7.5 km, A is the
wavelength of AKR), k| =2K, k| =10k|, no=10 cm >,
T=400 ev, Q,=10w,,, vo=0.5v,, ©'~; =140 Hz, and
0~0,=250 kHz. We use these parameters in Eq. (32),
then we get

—5::(27)1/2(08/cK)2(vo/ve)% (0% /2Q0" YW, (33)
here W=[|Ey (k') |2/4mnoT1(k2/ki? )k’ /k})) is the
normalized ion-cyclotron wave energy, k, is the electron
Debye wave number. According to the observations®
Ej =10 mV/m and W=1. 98X 1072, and then Eq. (33)
reduces to ¥ /Q,~10"" which is large enough to generate
AKR.

It is now clear that, in addition to the conventional
three-wave decay’ (the matching conditions are
K—K'=+k, Q—Q'=+w) and nonlinear scattering'® [the
condition is Q+w=(K *k)v], the third mechanism as dis-
cussed here originates from the induced bremsstrahlung of
X-mode waves and is caused by electrons which resonate
with the modulation waves (the condition is w=kv). The
readers should note that the linear resonance between the
ion-cyclotron wave and resonant electrons has nothing to
do with the new plasma instability pointed out by us. As
is shown in Sec. III, the high-frequency nonlinear forces
(Fy) are the origin of the induced bremsstrahlung insta-
bility.

—KY) 4200’

Q, kilzue2 4mn,T Ve | | @pe ki

(32)

[

The scenario in this paper is shown in Fig. 2. During a
magnetospheric substorm, the energetic electrons (~1
keV) are injected from the plasma sheet. The interaction
between the high-energy electrons and the low-energy (~1
eV) background electrons generates ion-cyclotron waves
(double layers). Next, the strong AKR occurs due to a
new maser effect (turbulent bremsstrahlung instability).

Here, we compare our theory with a linear theory.! It is
widely thought that AKR arises from a relativistic effect
(gyrotron'!). In Table I, we show the difference between
the linear theory and the turbulent bremsstrahlung insta-
bility. We think that these two classes of theory are com-
plementary to each other.

Next, we show a detailed comparison of the growth
rates of the two instability mechanisms. Since the ob-
served size of the auroral arcs is about 100 km, one might
estimate the size of the AKR source region to be about
100 km.! The effective growth length (L) of the AKR is

\\

DOUBLE
LAYER

AN

X-mode AKR
FIG. 2. Auroral region is schematically drawn. Double layer
is moving along the field line with the velocity of 10 km/s.

B

ELECTRON
BEAM
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TABLE 1. Shown below are the differences in the linear and nonlinear theories.

Linear theory (Ref. 1)

Nonlinear theory

Resonance condition
Type of instability Gyrotron
Phase bunching mechanism
change
Energy source
electron

K”v” —Q+Qe/‘}’=0

Relativistic electron mass

Loss cone+-relativistic

w—k Il v = 0

Turbulent bremsstrahlung
instability

Resonant electron

Low-frequency turbulence
(double layer)+-electron beam

given by L =v, /y, here v, and y are the group velocity of
the X mode and the growth rate, respectively. By using an
average group velocity v, of 8.45X 10? km/s and electron
gyrofrequency (Q,) of 250 kHz, the normalized growth
rate ¥ /Q, > 3X 1073 is necessary for the growth of AKR.
The maximum linear growth rate ¥/Q,~5X 102 is ob-
tained by Omidi and Gurnett for the S 3-3 electron distri-
bution function. The growth rate predicted by Wu et al.
is 5X1073<y/Q, <5X1073. On the other hand, the
growth rate obtained by the nonlinear theory is
y/Q,~10"1. This large growth rate is overestimated, be-
cause we have assumed only the hot component for the
electron distribution function. The inclusion of the cold
component in the nonlinear theory is left for future study.
However, judging from the result of this paper, we can say
that the nonlinear theory will be an important component
of the AKR production in various situations.

The fine structure of AKR emission spectra have been
reported by Gurnett et al.!> How these observation recon-
cile with our theory is a very important point. In Fig. 3,

BO'VO
>
S
]
]
>
‘u
c

P — %

S km

'l“IOSTC l <

50 km-~,

EARTH

FIG. 3. Path of X-mode radiation in density cavity region
(0pe <<, here wp,, and Q. are the electron plasma frequency
and electron gyrofrequency). Multiple reflections off density
cavity boundaries provide long paths for growth. The X mode
eventually reaches a weak field point (E) where it is accessible to
free space. Source point (S) and the escaping point (E) are as-
sumed to be situated at altitudes of one Earth radius and two
Earth radii, respectively. Source point (S) is assumed to move
downward at the velocity 10 km/s.

the thickness of X-mode trajectory is proportional to the
amplitude of the X mode. Note that if waves propagate in
directions down, coming toward the Earth from the
source (S), they will eventually reach the right-hand cut-
off frequency point and reflect back toward lower magnet-
ic field region. Thus, X-mode radiation also reaches the
escaping point (E). If the source point (S) moves at a
velocity about 10 km/s, then the dynamic spectrum would
show a drift pattern as is observed by Gurnett et al.!?

The turbulent bremsstrahlung instability predicts a par-
ticular phase relation between a pump field and the high-
frequency radiation. To clarify the physics, we take a
low-frequency pump field as an electrostatic wave without
external magnetic field. According to Chen,® we turn on a
coherent low-frequency electrostatic wave E;(x,t) and
consider the electron dynamics. The linearized fluid equa-
tion for the beam is

dav av
__L+u__L

” x |= —eEsin(kx —wt) , (34)

m

where u is the beam velocity. A possible solution for the
nonresonant electron is

eEy cos(kx —wt)

Unonres =~ 7 w—ku (33
The linearized continuity equation is

on, on, v,

7—{—“—&—:—”“_3—; , (36)

here n, is the beam density with velocity u. Substituting
Eq. (35) into Eq. (36) yields

eEk kx —ot
R yonres = — Ny m cc:ii_ku(;) . (37)

Equation (37) shows the number density perturbation for
the nonresonant electrons (w4ku ).

Next, we consider the fluid equation for resonant elec-
trons (w~ku). For resonant electrons, we must consider
the initial condition. Then we have, instead of Eq. (35),

_ €E; cos(kx —wt)—cos(kx —kut)

m w—ku (38)

VUies =

We must solve the equation of continuity for n; [Eq. (36)]
again subject to the initial condition n, =0 at #=0. Thus
we get for resonant electrons
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_e¢
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n
nonres

[
7

N

res

SEh Aa vnﬂv nVﬂUﬁvAv_

) o o —> kx-wt

FIG. 4. Phase relation of density for electrons in a low-
frequency electrostatic wave. E; and ¢; are the electric field and
the potential of the low-frequency wave. o and n.s show
the number density for the nonresonant electrons and resonant
electrons. 8Ej, is the high-frequency radiation field. High-
frequency radiation occurs at the particular phase due to the
turbulent bremsstrahlung instability.

eE,k 1
ny,——

Rpes= — m (o—ku )2

X[ cos(kx —wt)—cos(kx —kut)

—(w—ku )t sin(kx —kut)] . (39)
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We expand Eq. (39) around u ~w /k, then Eq. (39) reduces
to
n, eE;k
2
Figure 4 shows what Egs. (37) and (40) mean. The first
two curves show the electric field E; and the potential
—ed,; seen by the electrons. The third and fourth curves
are a plot of Egs. (37) and (40) for the nonresonant and
the resonant electron density perturbation due to a
coherent low-frequency wave (E;). We see easily that
resonant electrons are rich in density for the potential en-
ergy minimum. The resonant electrons are necessary to
transfer energy from a pump field to the radiation field.
Accordingly, the expected high-frequency bursts due to
the turbulent bremsstrahlung instability have a close
correlation in phase with that of resonant electrons num-
ber density. The bottom curve in Fig. 4 represents the
high-frequency radiation field versus phase (kx —wt). We
must note that the recent experiments'? also reported such
a phase relation between a low-frequency pump field and
the radiation field (8E;). In view of this discussion, we
suggest that experimentalists should carefully look for
such a phase relation between AKR and low-frequency
ion density fluctuations.

t2cos(kx —wt) . (40)

Ryies =~
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APPENDIX

After a long calculation, we can calculate 8/, from Egs. (11)—(13) and, finally, with the help of Maxwell’s equations.
The electric fields of the mixed mode perturbation are calculated to be

-

SEp (K—k',Q—0')
__ 4rie(Q—ow')
MN[c*kif —(Q—')?]

x [dvn— 3

g "l

Jiexpli(j—D¢]
i[1Q, —kjp)—(Q—0")]

>< {JIEI”(E’I')ith(K—E,—E’”)
aU”

+5

By (K= sf,(R—
aUl

E'—E"')—{—F'ﬁEkx(ﬁ—E'—E”') (Jl+1+J[__1)

- éF'aE,,,xfé— K'—K")Jyp1—Ti_1)

27T€(Q—CDI)A(J1+1——J1_1)

 H[AK+Ek)—(Q—0')]

Jmexplilm —n)d]

x [dvv, =
f Y m ) , Qe —kjp)—(Q—0")]

—
k IV’m,
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LE (K-8, R—F'—K)
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_ 4rrie(Q—o')
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Jiexp[i(j—1)¢]
X | dVv,—
Jave, kE L ile, k“v”—(Q —0')]
JIElH(k”,) th( I_EHI)
1 o m a o ) o
+5 Ell(k )_th(K-—-k -k
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+ F'8Ep (K—X'—X") |(J;1+J1_1)
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where J,, is the Bessel function,
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JiAJy 1 —J;_1)expli(j—1)¢]

2i[1Q, —kjp; —(Q—a")]
JA(J1+1+J,_1)exp[z(] —D¢]

)
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4re’(Q—w') -
H=1 d
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M= dv
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X fdv vym %
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Jexpli(j—1)
devvy jexpli(j—1)4]
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ATy 11—
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A |14 Kion |9 Kipy 3o
Q—o' avl (Q—a') aUH
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