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We calculate the energy loss of charged particles in nondegenerate plasmas using classical and
quantum-mechanical approximations. First we consider classical binary collisions between the test
particle and the particles in the plasma, and obtain the energy transferred as a function of the rela-
tive velocity. This is integrated over the thermal distribution of plasma-particle velocities using sim-
ple analytical approximations. Then we use the quantum-mechanical analysis of the scattering of
partial waves to find the transport cross section for a screened potential, and introduce analytical
approximations to calculate the phase shifts. The thermal average is also calculated analytically.
The study yields simple expressions for the energy loss in terms of the velocity and charge of the
particle and of the density and temperature of the plasma. In particular, we retrieve various results
of previous authors, which apply as limiting cases in the classical or quantum-mechanical regimes.
The transition between these cases is described by analytical expressions of excellent accuracy. The
calculation is finally compared with experimental results from laboratory plasmas in the classical
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domain.

I. INTRODUCTION

The problem of energy loss of fast particles in plasmas
has been studied by many authors using a variety of ap-
proximations, and applications have been considered over
wide ranges of plasma densities and temperatures, which
include the various conditions of interest for astrophysics
(stellar and interstellar media), solid-state plasmas, cold
and hot laboratory plasmas, and, in particular, the ex-
treme conditions of interest for current studies of inertial
and magnetic confinement of plasmas.”? In terms of clas-
sical mechanics, the rate of energy relaxation of a charged
particle in a plasma was given by Spitzer,’ based on earlier
results of Chandrasekhar, who studied the analogous
problem of the energy relaxation of a star moving in the
presence of the gravitational perturbations from a cluster
of stars. Further descriptions along similar lines were
given by Gryzinski’ and Butler and Buckingham® by con-
sidering binary collisions of the charged particle with the
electrons and ions in the plasma.

On the other hand, a dielectric formulation of the
energy-loss rate was studied by Pines and Bohm,’
Akhiezer and Sitenko,® and other workers for the case of
dilute plasmas, and by Lindhard® and Ritchie'® for degen-
erate plasmas. More recently, Skupsky,!! Arista and
Brandt,? and Maynard and Deutsch!? have considered the
calculation of the energy loss and straggling in a
quantum-mechanical plasma of arbitrary degeneracy.
These calculations contain a description of short-range in-
teractions in terms of quantum plane waves for the scat-

tered electrons. )
Other descriptions of the energy-loss rate in dilute plas-

mas, incorporating both short-range collisions and collec-

29

tive phenomena, were given in a series of papers by
Kihara, Aono, Itikawa, and Honda'*~!¢ and by May.!”
They were based on Hubbard’s observation'® that there is
a broad overlapping region between the dielectric and the
binary-collision treatments of the problem, leading to a
unified description of the energy loss in terms of a
velocity-dependent Coulomb logarithm (InA). Further
developments were made by Hamada ez al.,'* 2! who gave
the energy loss to plasma electrons in terms of tabulated
functions, for the whole range of nonrelativistic velocities
and incorporating quantum diffraction effects on close
collisions. This contributes to filling the gap between pre-
vious classical and quantum-mechanical approximations
to the Coulomb logarithm.

It is the purpose of this paper to provide complete
analytical results that apply to all these conditions of in-
terest and, hence, permit rapid evaluations of energy-loss
rates, ranges, stopping times, and related quantities over
wide ranges of ion velocities and plasma densities and
temperatures.

To illustrate the different conditions of interest and the
corresponding physical parameters, let us consider a test
ion of charge Z e and velocity v, in an electron plasma of
density n and temperature T, and let v, =(2kzT /m)'/?
represent the thermal velocities of the electrons (v, gives
the most probable velocity for the Maxwell-Boltzmann
distribution). If the velocity of the ion exceeds the
thermal velocity v,, the energy loss per unit distance (plas-
ma stopping power) is given by

4rnZie*
—%f-=—mv2—llnA(v), VS>>0, (1)
and in the opposite case
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where kjp is the Boltzmann constant. Simple expressions
for the velocity-dependent collision logarithm InA can be
given in each case by using either classical or quantum-
mechanical (plane-wave) approximations. In particular, in
an impact-parameter description the result becomes of the

form
InA=In(b,/b,), (3)

where the values of the maximum and minimum impact
parameters for each case are as follows.

(a) v >>v,, classical approximation:

Z] 92 v
by=b.= 2’ bZE)‘adz— (4a)
mv wp
(b) v <<v,, classical approximation:
b Zlez Zle2 kBT 12 U,
T w2 T 2k T TP amme? | T,
(4b)
(c) v >>v,, quantum-mechanical approximation:
#
bymA=—"—, bymAy=—o. (4c)
mv wp
(d) v <<v,, quantum-mechanical approximation:
172
kgT v,
bi=do=—, by=dp= |2 | =2 4a)
muv, 47Tne wp

Here Ap=(kyT /4mne?)'/? is the Debye screening length
and

w, =(4mne?/m)!/?

is the plasma frequency; namely, the frequency of long-
wavelength collective electron oscillations.

From Egs. (4) we notice that the distinction between
classical and quantum-mechanical results arises solely
through the minimum impact parameter b,, since it is
only in the short-range domain where one should consider
possible quantum diffraction effects on the electron trajec-
tories. This is, in fact, the origin of the well-known
discrepancy between the Bohr??> and Bethe?* formulas for
the energy loss of fast charged particles. As in the solu-
tion given by Bloch,?#2° the important parameter here be-
comes

(5

where v, denotes a mean relative velocity between the ion
and the electrons (in particular v, =v if v >>v,, and v, =v,
if v <<v,), CL represents the classical approximation, and
QM represents the quantum-mechanical approximation.
The value =1 separates the domains of applicability of
the previously mentioned classical (7 >>1) and quantum-
mechanical (7 << 1) approximations.
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For large velocities, v >>v,, 1=Ze*/#v depends only
on the parameters of the ion; in this case the quantum-
mechanical result applies for v>Ze?/%=2Zv,
(vo=e%/#=Bohr velocity). On the other hand, for slow
ions, v << v,,

Z 1€ 2 Z 1€ 2
"=, T

172
m

2kzT

(6)

n

b

and hence the quantum-mechanical result applies at high
plasma temperatures,

2kpT >>2Z2me*/H=Z3E, ,

where Eg=me*/#*=1 au.=27.2 eV. For protons this
corresponds to electron temperatures larger than 10° K
(cf. Fig. 1 of Ref. 2). Moreover, as the charge of the ion
increases, the transition between the classical and
quantum-mechanical regimes appears at increasingly
higher plasma temperatures, reaching the regions of in-
terest for fusion reactors when Z; > 10.

Another point of interest in Eqs. (4a)—(4d) is the transi-
tion between static and dynamical screening effects. This
becomes apparent through the value of b,. At low veloci-
ties, v <v,, the Coulomb field of the ion is adiabatically
screened by the electrons over a distance given by the De-

bye length
Ap=(kgT/4mne?)!/?

With increasing ion velocities the screening becomes less
effective and, for v > v,, it gives rise to a wake of dynami-
cal polarization in the plasma’; in these conditions the
field of the ion becomes effective over increasing distances
as given by the adiabatic length®®?” A,,=v/w,. In fact,
for distances p > A,4 away from the ion trajectory, the per-
turbation acts over a time Ar~p/v that exceeds the
response time of the plasma ~w, ! leading again to an
adiabatic response of the medium that shields the external
field. The transition between these two cases can be stud-
ied in detail only through numerical examples due to the
many-body character of the problem.

In summary, the expressions for InA in Egs. (1) and (2),
with the values given in Egs. (4a)—(4d), can be written as
follows.

(i) Classical results (p=2Ze/#v, >>1):

3
In 123_2’_"_”_ , s>, (7a)
Ze‘w,
InA= e T 1
n Ziwym 12 ==, V<<V, (7b)
(ii) Quantum-mechanical results (y=2Ze%/#v, << 1):
2
In [va ], v >>U, (8a)
fiw,
InA=
kpT 1
In tio, tg 0 V<L (8b)




29 CLASSICAL AND QUANTUM-MECHANICAL TREATMENTS OF . ..

Correction terms of numerical interest have been included
so0 as to cast these results in the more exact forms given in
Refs. 8, 13, 9, and 2, respectively.

In this paper we develop approximations that comprise
these various results. In Sec. II the energy loss of an ion
moving in a plasma is described in terms of a relative-
velocity-dependent transport cross section. The problem
is then studied using classical mechanics, Sec. III, and us-
ing the quantum phase-shifts method, Sec. IV. In both
cases we introduce approximations that lead to final
analytical expressions for the energy loss per unit distance.
These results are analyzed in Sec. V, where we also re-
trieve the particular cases studied by previous authors and
we compare with experimental results. Finally, in Sec. VI
we summarize our results and conclusions.

II. TRANSPORT CROSS SECTION
AND ENERGY LOSS

In this section we obtain a general expression for the
energy-loss rate of a charged particle in a plasma as an in-
tegral over a thermal distribution of plasma particles (elec-
trons or ions) and in terms of a relative-velocity dependent
transport cross section. Let us consider the collision be-
tween a test particle of charge Z e, mass m, and velocity
V1, with a plasma particle of charge Z,e, mass m,, and
velocity V,, as shown in Fig. 1. The kinetic energy
“gained” by particle 1 in the collision is

1 2 2 |
AE= ~ —_ = — .
2 1(Pl 1) ) 1(P1+P1)AP1, 9)

where primes are used to denote the values after the col-
lision, Ap;=P | —P, is the change in the momentum of
particle 1. By introducing the relative velocity V, and the
center-of-mass (c.m.) velocity V., ,

V,=V,—Vi=u,7, (10)
Vem =(mVi+myVy)/(mi+m;), (11)
we obtain

(12)

Z\'ml v1

FIG. 1. Illustration of the variables in the text. Incident par-
ticle with charge Z e, mass m, and velocity v;. Plasma particle
with charge Z,e, mass m,, and velocity v,, moving with angle
6,. The relative velocity v, and the center-of-mass velocity ve.m.
are also indicated.
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where 7 is a unit vector in the direction of V, (see Fig. 1)
and u=mm,/(m;+m,) is the reduced mass.
Using these values in Eq. (9) we get

AE=,U,U,(I?—Y/I\I)'VC.m.=A§l'vc.m. . (13)

Let us now calculate AP; in the c.m. frame. It is con-
venient here to consider many plasma particles incident
with the same velocity V, but with different impact pa-
rameters. By symmetry the sum of AP, for all these par-
ticles will be in the direction of #; we then simplify the
problem by calculating only this component, namely,

Ap,=AB 1 A=pv,(1—7-7")=pv,(1—cos@) , (14

where 6 is the angle of scattering in the c.m. system.

We can now relate Ap;, to the transport cross section
o«(v,), or momentum-transfer cross section, by integrat-
ing over impact parameters,

Ap1n=pv, [ (1—cos®)2mb db=pv,0,(v,) , (15)

where o, (v,)= f(l—cosG)da.

Taking into account the flux of plasma particles in-
cident with angle 6, and within a time interval At, we ob-
tain the momentum transfer corresponding to those parti-
cles:

Af)’gz = Ap lnszv,Atr’f . (16)

By Eq. (13) we obtain the energy transfer in the laboratory
system corresponding also to those particles:

AE62=A362.Vc.m.=(ﬁ'vc.m.)Ap1ndN2vrAt ’ a7

where dN, denotes the fraction of particles incident with
angles around 0,,p,. For an isotropic distribution of plas-
ma particles in the laboratory system, and integrating over
the angle @,, we can set

dN2=ﬁ §in6,d0,d @y = L sin,d6, . (18)

Using Eqgs. (10) and (11) we obtain
v3—vi

U,2 m;+m,

A = vr
(A Vem)=—7"

2

m;—m;

) (19)

and integrating Eq. (17) over the angle of incidence 6, we
get the energy-loss rate as follows:

2 2
AE | p7 . my—m; Vj—U;
———=+ | dB,sind
At v [, d0:in0, my+m, v?
Xuviou(v,) . (20)

It is convenient to transform this into an integral over rel-
ative velocities v,,

lvi—va | <V, <v1+0; .
From Fig. 1, we can write
vi=v?+v3 +2v,v,c080,

and then
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sin02d02 = —l)rdU, /UIUZ ,

which yields

v +U2 4
— ldv,v,crtr(v,)

dt 41)1 Uy

my—mj U%—U%

m1+m2 l)r2

(21)

To write this in a more familiar way we can now advance
a result from the next two sections, namely,

2 ZIZZCZ
o (v,)=4mwb InA(v,) =47 3 InA(v,), (22)
vy
and from Eq. (21) we obtain
(Z,Z,e?)?
_dE_ 1 dE_ L S TORS (23)
dx v, dt Qo
with
1 mp;—mj vi—v3
G(vl,v2)=zl;fdv, S — v InAy(v,) .
(24)

Finally, we calculate the mean energy loss per unit dis-
tance S—i.e., the stopping power—as the average over the
thermal distribution of plasma-particle velocities, viz.,

(Z,Z,e?)?
E_<—‘i€>=4ﬂ——2——nzc(ul> (25)
dx poi
where
G(v1)=<G(v1,vz))=fowdva(Uz)G(vhUz) ,  (26)
and
372 2
N(v,)dv, = | —22 2 | 2y 27)
2U T N omky, T 2kpT 2752

in terms of the temperature T and of the density n, of the

particles in the plasma.
1 |M—rs V2s
G[rsl=—{——=— |ar
[7,s] [ 3 l ctanll_sz

—arctan
—7

M +rs
+ V2

In s24+V2s +1
(1+S4)1/2

rs

|7 |

1 41
+ 2(r‘+Ms)ln(1+s ) > [

where

=

(1+r4)1/2

]_lnlrz—i—\/i r|4+1

+M|r|
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III. CLASSICAL THEORY

We now consider the classical problem of scattering of
a plasma particle of charge Z,e, reduced mass p, and
velocity v, on a center of charge Ze. For close collisions,
the angle of deflection 6 in the c.m. system is related to
the impact parameter b by the Rutherford relation

cos@=(b —b,)2/(b?+b}) , (28)
where
b,=Z,Ze*/uv} . 29)
This yields a transport cross section, by Eq. (15),
b
Utr (Ur)——477'b2 o ;T;?db . (30)

The logarithmic divergence of this integral, for b— o,
can be avoided with the use of a more realistic potential in
the plasma, taking into account the effect of the screening
in reducing the range of the fields to a finite distance A,.
In general, for a moving ion, this can only be done in an
approximate way. With these limitations in mind we re-
strict the integration of Eq. (30) to impact parameters
smaller than b, ~A;, whose value—to be discussed
later—depends on the ion velocity v, but not on the rela-
tive velocity v,; this is a consequence of the collective
response of the plasma. Thus, Eq. (30) yields

o (v,)=2mbAn(1+a%;) 31)
with
a=pbm./Z1Z,e* (32)

Using the value + In(1+a®;) for the collision loga-
rithm in Egs. (22) and (24) we obtain

v+ m;—m vi—v}
G'(vl,v2)=L b ! 2 ! 5 2
8v, ¥ lvi—v,| mi+m, vy
XIn(1+a?}) . (33)

This integral can be calculated analytically, as it was first
done by Gryzinsky,’ with the following result:

In(14-r*)—2M (s — |7 | )} (34)
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m;—m;
=—, r=d(l—w), s=d(1+w),
my+m;

(35)
d=a"%,, w=v,/v,.

Two useful approximations for the cases v, >>v, and
V| <<V, can now be obtained by expanding the integral of
Eq. (33), which yields

G (v >vy)= ey In(1+a??), (36a)
5 [v 2 (v, ]
G(v) <<vy)=—— L In(14a3)+= L (36b)
4 Uy 3 Uy
with
d=2m,/(m;+my)=2u/m, . (37

These approximations are compared to the exact result of
Eq. (34) in Fig. 2, for the typical cases of ions in an elec-
tron plasma, m,/m;=0, and for equal masses,
my / m= 1.

Let us now calculate the thermal average of G (v{,v;).
Eq. (26), to find the average loss S in Eq. (25). We can
approximate this integral analytically by separating the re-
gions 0<v, <v; and v; <V, < o, and then using the ap-
proximations of Egs. (36a) and (36b) on each of these
ranges of integration, viz.,

G(v))= fOIG(v1>>v2)N(v2)dvz

+ [, 601 <<vs)N (3)dv; . (38)
For av?, av} >> 1, these two integrals give
Gl(vl)=(1——8/2)[¢(x)—x¢’(x)]ln(av%) , (39a)

ox

% [E,(x2)+e*In(aw?)]
T

4 2
GZ(UI)ZWEI()C )—

(39b)

Vi /Yy

FIG. 2. Comparison between the exact and the approximate
results for G (vy,v,) for my/m;=0 and 1, and for a=10°. The
exact results, from Eq. (34), are shown with solid lines. The ap-
proximations for v; >>v,, Eq. (36a), and for v, <<v,, Eq. (36b),
are shown with dashed lines.
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and we finally obtain
G(v)=[(1—8/2)p(x)—x¢'(x)]In(aw?)
4x3 8x
il v Ei(x?), (40)

in terms of the error function ¢(x) and the exponential in-
tegral E,(y) defined as?®

——2 [Tge-?
plx)= 172 fodte ’

0 o—t
El(y)=fy it”“dt ,

and with

x =v;/v5, v;=(2kpT/m,)""?, (41)

where s refers to a given species of plasma particles (e.g.,
electrons or ions).

It is of interest to show now that the result of Butler
and Buckingham® can, in particular, be obtained from Eq.
(33) with the approximation In(1+a?,))=2InA =const.
This approximation is equivalent to taking a minimum
angle of scattering 6,,,<<1 in such a way that
bax =2b. /Omin, and InA=In(2/6,,;,), where O, is in-
dependent of v,. This leads to

(1-86/2)InA , vy>v,

G (vy,0,) = v “42)
v ——1-8—11nA, V1 <V,
2 Uy

and yields for the thermal average the well-known result®

G =[(1-58/2)p(x)—x¢'(x)]InA . (43)

This approximation neglects an important contribution
to the energy loss—the second term of Eq. (40)-—due to
plasma particles with velocities v, >v;. This is particular-
ly obvious in the case of an electron plasma, §=0, where
Eq. (42) gives G (vy,v,)=0 for v; <v,, and the thermal
average yields G (v)=F(x)InA, with F(x)=¢(x)—x¢'(x)
giving the fraction of electrons with velocities smaller
than v,.

For some practical purposes, however, one could still
use Eq. (43) to describe the energy loss, provided that one
considers InA as an averaged quantity whose value is cal-
culated a posteriori.

In Fig. 3 we compare the analytical solution, Eq. (40),
with the exact result obtained by numerical integration of
Eq. (26) using the expression for G (vy,v,;) given in Eq.
(34). The agreement is quite satisfactory for the case
a=10% shown in the figure; with increasing a values, the
function G (v,v,) in Fig. 2 assumes a more pronounced
steplike behavior at v,/v,=1 which leads to an even
better agreement between the curves for G (v) shown in
Fig. 3 (the range of a values of interest goes from a~ 10°
to 10° for a range of plasma densities n ~10' to 10"
cm™> and plasma temperatures T ~10° to 10® K). The
curves for m,=m, show that G(v;) <0 when x < 1; this
corresponds to test particles with subthermal velocities
who gain energy from the plasma. Thermal equilibrium is
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Glvy)

Xz V,/Ve

FIG. 3. Comparison of exact and approximate results for the
thermal averaged function G (v,) vs the velocity ratio x =v, /v;,
where v, =(2kgT /m;)'"?, for m,/m,=0 and 1, and for a=10.
The solid lines show the results of the numerical integration of
Eq. (26) using the exact classical expression for G (vy,v,) given
by Eq. (34). The dashed lines represent the analytical approxi-
mation of Eq. (40). The negative values of the function G (v,)
correspond to subthermal test particles gaining energy from the
plasma until they thermalize.

reached at x =1, when G (v{)=0.
One can further simplify the result in the cases x <<1
and x >>1. For low velocities, x << 1, we can use the fol-

lowing limits:
d(x)=2x /m'?,

b(x)—x¢'(x)=4x3/37'/% (44)
E(x)=In(1/Tx),
with I'=e?=1.78 (y =0.577), which yields
Gon=—L (x'_sxln |2 1. @)
)= _—p (57 =8x)ln | = |, x <.

The logarithmic dependence on v; of the first term of Eq.
(40) has been cancelled out by a similar dependence of
E(x). For the case of a test ion in an electron plasma,
m, <<my, 8 << 1, the thermalization of the ion according
to Eq. (45) occurs at a value of x << 1, namely, x2=%8,
which complies with mv? =3k, T as expected.

On the other hand, for large velocities, x >>1, we can
use the limits

#(x)=1, ¢'(x)—0, E(x?)—0 (46)
and obtain
G(v))=(1—-8/2)In(av})=(u/m,)In(av?), x>>1. (47)

The forefactor u/m, leads to the right m, dependence of
the energy loss of fast particles, namely,
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(Z,Z,e%)?
S§41T——1—2f2—)—
myv

nin(av?), x>>1. (48)

In particular, this agrees with the classical result of
Bohr?? for the energy loss of fast particles in matter, pro-
vided that we set b,,,, =(2/T")v; /w, to obtain

av?=1.123uw3}/Z,Z,e%0, ,

where w is the frequency of the atomic oscillators in the
medium (in our case @ is replaced by the plasma frequen-
cy ). Using Bohr’s arguments,’ this corresponds to an
adiabatic distance ~v,/w,, as the range of “resonant” ex-
citation of atoms. The high-velocity result becomes in-
dependent of the plasma temperature. The classical re-
sults of this section will be further analyzed in Sec. V.

IV. QUANTUM-MECHANICAL THEORY

In this section we describe the quantum-mechanical cal-
culation of the transport cross section oy, for the case of
an electron plasma, and we develop simple approxima-
tions which are useful to obtain analytical results for the
energy loss. The results apply to the classical or
quantum-mechanical domains discussed in Sec. I (hereaf-
ter m, =m is the electron mass and we set m,/m; =0).

We start by considering the scattering of plasma elec-
trons on a slow test ion, taking into account screening ef-
fects by assuming a potential of the form

Vin="L_, —r/Ap ,

(49)
where Ap is the Debye screening length. The transport
cross section can be calculated in terms of the quantum
phase shifts §; from the well-known expression

at,(k)=%I§lsin2(81—8,_1) , (50)

where kK =muv, /% is the wave vector of the electron in-
cident with velocity v, relative to the scattering center.

The basis for our calculation rests on the observation
that kAp is very large for nearly all cases of interest.”’
Therefore, we can introduce a value L such that
1 «<L <«<kAp. This corresponds to a distance R =L /k
such that A <<R <<Ap, where A=k ~!=#/mv,, and it al-
lows the use of different approximations for the short
range, I <L, and distant, / > L, terms of the scattering
problem.

(i) I <L. Since the value of R is taken as R <<Ap, the
potential for all those wave components with / < L can be
approximated by a Coulomb potential (as in a previous
calculation by De Witt3?),

Zle2
Vin={—"» T<R
0, r>R. 51

For r <R this agrees with the first term in the expansion
of Eq. (49); the next term is of order R /Ap << 1, and can

be neglected.
The phase shifts for this potential were calculated by
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Holdeman and Thaler®! who found

argl’(I +1+4in)—7In(2kR)+O(n /kR),

& =
! 0, I>L

where 7=2Ze2/#v, is the “Bloch parameter.” Here we as-
sume that 7/kR << 1; those cases where 7/kR ~ 1, i.e.,

b.=Ze?/mv}~R ,

will be discussed later. From this expression for §; we cal-
culate

8, —8;_=argl’(I +1+in)—argl'(l +in)
=arctan(y/I) , (53)
sin®(8; —8;_)=n*/(n*+1?), (54)
and the cross section o, Eq. (50), becomes

2 L
1y__ 4my ) 217'11
R

1
I—in

l+tn
(55)

where the sum can be wntten in terms of the digamma
function 1(z) as follows®
L 1 L-1 1
1 =2 j
+in ;o 9+1+in

=y(L +1+in)—y(1+in),

and we obtain
4n? .
a{,"=—ZZI—[InL—Re¢(117)] , (56)

where we used the properties
P(z*)=[P(2)]* , Rey(l+in)=Redlin),

and ¥(z)~Inz for z— .

(ii) I>L. The contribution from large / values can be
calculated using the semiclassical approximation® for §;,
which for the screened potential of Eq. (49) yields

V(r)dr
(l+%)2/r2]1/2
mZie’ cw o—0%gx
T Rk fl (x2—1)172°

where ro=(++)/k and 0=(I++)/kAp.
gives the Bessel function K(8) and we get
mZ,e? I4+5
7k kip
For I >>1 we can use the property
dKy(x)/dx =—K,(x) ,

81——-?.[’0 [k2__

(57)

The integral

& =— (58)

and approximate

| <«<L
(52)
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2
, ds
sin®(8; —8;_1)=(8;,—8,_,)*= [d—l’] , (59)
with
da, mZ e I++ 60
thZAD kAp o

The sum of Eq. (50), for / >> 1, can be transformed into an
integral

4r [ mZie? | 5

(2)__ am t ®© 2

o) =— K1 ldi, (61)
Tk | Bk L. klp

and since / + 5 =, the integral becomes

(kAp)? [, s, 7K (x)dx=—(K1 S, - (62

Using the limits of the Bessel functions for x <<1 (.e.,
L <<kAp), we obtain (with ¥ =0.577)

2kAp
L

lee 2
#k

1

2)_ 4w
=77 —Y—=

Oy =
k2

Finally, from Egs. (56) and (63) we find for the transport
cross section (with kK =mu, /#):

(63)

1 2
Utr(k)——a'gr)‘*'o{r)

Zle

mv?

2

=47

2

Zle
X |In(2kAp)—Rey |i

independently of the value of L.

It is now interesting to consider the classical
(Z,e*/#v, >>1) and quantum-mechanical (Z,e?/#v, <<1)
limits of this expression.

A. Classical limit (CL), Z,e?/#v, >>1

Using the asymptotic behavior of the digamma function
Rey(in)~Inn, 7 >>1, we obtain

Zlez

my}

2mvAp
Zle

ot=4r¢ —y—3 (65)

in exact agreement with the result of a fully classical cal-
culation.*®

B. Quantum-mechanical (plane-wave) limit
(QM or QMPW), Ze?/#v, << 1

In this case we approximate ¢(in)=—y for 7—0 to
obtain
2 12
oM=4r [In(2kAp)—+1, (66)
Uy

which is the result obtained using the Born approximation
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in the limit kA p >> 1, consistent with our case.

Thus, the result for the cross section, Eq. (64), is a gen-
eral quantum-mechanical solution for the scattering of
electrons in the screened potential of Eq. (49). In particu-
lar, it permits to interpolate between the classical (CL) and
quantum-mechanical (QMPW) limits, much in the same
way as the Bloch formula?*? for the energy loss of fast
particles unified different results, that were previously ob-
tained with classical’? and quantum-mechanical® approxi-
mations.

However, in order for us to get the energy loss using the
previous result for o (k), we must still integrate over all
the relative velocities v, =#k /m between the moving test
particle and the electrons in the plasma. Here we find two
additional difficulties. The first one is that our approxi-
mation for §;, Eq. (52), can be applied only when
1n/kR <<1 (or b, << R <<Ap), which is not satisfied when
k—0. In addition, we want to obtain an analytical ap-
proximation for the energy loss, which is not possible us-
ing Eq. (64).

A way out of this trouble is to propose a simplified for-
mula for the transport cross section, by introducing in the
classical expression, Eq. (30), a minimum impact parame-
ter b, to take into account the quantum-mechanical
corrections; this immediately yields the result

o =2mb[In(1+4b2,, /bH)—In(1+b2,, /b2 .  (67)

The values of b,,, and b, in this formula can now be
chosen so as to reproduce very closely the results of Egs.
(64)—(66). First, Eq. (64) corresponds to the limit
bmax >>b, of Eq. (67), namely,

Ot =2mb2[210(b oy /b, ) —In(1+ b2, /b2)]
=27b2[210(b gy /bmin) —In(1+52 /6201,

where b5y /b min ~kAp, and b, /b in ~ Z 102 /#iv,, as it will
be shown below. Furthermore, Egs. (65) and (66) corre-
spond to the b, >>b;, and b, << b, limits of Eq. (68),
viz.,

(68)

477'bc21n(bmax /b.) , b, >>bnin
47Tbt:21n(bmax/bmin) ’ bc <<bmin .

(69a)
(69b)

’

By comparing this result with Egs. (65) and (66) we obtain
the desired values

bmax =2e _(7+1/2))\,D 20.68}\.1) ’
bmin=e""/k=0.56A, A=Fi/mv, .

With these values, Eq. (67) can now be applied to all the
previous cases.

It is interesting to notice that the same result, Eq. (67),
could have also been obtained from the quantum-
mechanical expression, Eq. (55), by transforming the sum
into an integral in the form

4mp? 47r77
w="2 % 12+n = fl1 12 2

and then replacing [ =kb;,, I» =kbmax. This explains
why our formula is so useful to incorporate both classical

(70)

(71)
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and quantum-mechanical effects.

As a further test of this approximation, we compare in
Fig. 4 the results of the derived expression, Eq. (64), and
of the proposed formula, Eq. (67). The agreement is re-
markably good with the only exception of the region of
small v, values, where Eq. (64) gives spurious negative re-
sults (this corresponds to the range mentioned before,
where 7/kAp > 1 or b, > Ap), while the approximate for-
mula, Eq. (67), has the proper behavior. Thus, Eq. (67)
not only simplifies the forthcoming integrations, but it
also describes the case where Eq. (64) fails.

Hence, our new formula for the transport cross section,
Eq. (67), has the form

CL

0{,=atr —AcM | (72)

where o§" is the classical result of Sec. III, Eq. (31) and
the quantum-mechanical correction is given by

b2,
Ao™M=—27b2n [1+ bm"' }:-27Tbc21n(l+ﬁv,2) , (73)
c
with
B=(fie " /Z e*)*=(#/TZe*?, (74)
and F'=e¥=1.78.
The calculation of the energy loss S=—<(dE /dx),

through Egs. (22)—(26), proceeds now as in Sec. III. Ac-
cording to Egs. (24) and (72) the integral over the angles
of incidence will consist of two terms,

G(Ul,vz)=GCL(U1,U2)*AGQM(1)1,U2) s (75)

where GM(v,,v,) (33) and (34) for

m,/m, =0, while AGM

is given by Eqgs.

2_ .2
vi—v
Ur ll—i——lvTiJ
r

X1n(1+Bv?)

becomes
AGQM(UI,UZ)'—* _8_1___ v +v,

[v—v, |

(76)

2
<

Gy /2T b

0 05 1.0
Vy (a.u)

FIG. 4. Results for the transport cross section o, vs the rela-
tive velocity v, (in atomic units), as given by Eq. (64) (solid
lines), and by Eq. (67) (dashed lines), with the values of
bmax and by, given by Eq. (70), for Ap =200 a.u. Equation (67)
has the expected behavior for v,—0 where Eq. (64) fails. See
the text for discussion.
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and by integration we obtain

AGQM(vl,v2)=§—i— [2u2[ln(1+a2)iln(1+b2)]—4
2

a9 bt

with a =B"%(v, 4v,), b =B"*(v; —v,). This yields the
quantum-mechanical correction to the classical results for
G (v1,v,), Eq. (34), obtained by Gryzinski.

As in Sec. III, we now calculate the limits for v; >>v,
and v; <<v,—but with no further approximations on the
terms containing Bv% and Bv?; this is important since we
want to span the whole range of B values relative to v,
and v,. Thus, we obtain

AGM(y, >>v2)z%ln(l+ﬁv%) , (78a)
Bvi [ 1
AGM(v; «<vy)=— . (78b)
1 <<V, 31)2 1+BU§

To integrate over the thermal distributions, we split the
range of integration as in Eq. (38) and make use of the
previous approximations, Eqs. (78a) and (78b), in each of
those parts. Thus, we get

AGM(p))=+1In(1+Bv?)[d(x)—x¢'(x)]

3
+ 2LEl(t)exp R (79)

3,n_1/2 2

Ue
where ¢t =(1+8v?)/Bvl, x =v,/v,, and vV2=2kpT/m. In
Fig. 5 we compare this result with the numerical integra-
tion of Eq. (26) using the exact expression, Eq. (77), and
again find a very good agreement.

Our final result for an electron plasma, using Eq. (40)
for the classical part (with §=0, i.e., m, <<m,) and Eq.

2. T T T T T T T T T

15

I W W W O\ T |

26 (vy)

0.5

T 1717 1 1 1 1 11117 171 T 1 T T

U SRS NN VRN WY S DU S B |

o
]
3

X=V,/ Ve
FIG. 5. Quantum-mechanical correction to the value of the
function G(v,), denoted by AG™(v,), vs x =v,/v,, where
ve =(2kg T /m)'/?, for incident particles with charges Z;=1 and
2, as indicated, and for v,=1 (T =13.6 eV). The solid lines
show the results of numerical integrations while the dashed lines
correspond to the approximate analytical expressions of Eq. (79).

Uy
V1

[arctan(a)—arctan( | b | )]
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[for V>0, a”

for vy <v,

T
(79) for the quantum-mechanical correction, then becomes

w? ,
G(vy)=In (—l_——i-W [¢p(x)—x¢'(x)]
3
+£31_/7 E (x?)— T E()exp le)f H , (80)

where a=mb,,,/Ze* and B=(#/T'Z e?)>.

To obtain a complete solution for the energy loss S, that
can be applied to all values of x =v, /v,, we must still in-
dicate the value of b,,. The value in Eq. (70) was found
for the case v, <<v,, where the screening of the ion is well
represented in terms of the Debye length Ap. As dis-
cussed in Sec. I, when v; ~v, we can no longer use a static
picture due to the appearance of dynamical many-body ef-
fects, and for v, >>v, the field of the ion extends over
longer distances, of the order of the adiabatic length
}‘Iad =V / @Dp.

Since a good description of these effects cannot be given
in simple terms, we will consider b,, as an effective
velocity-dependent parameter, representing the variable
range of the ion field in the plasma, in a way that repro-
duces all known results for low and high ion velocities. In
particular, the obvious interpolation

172 172

Ay vl
T Ty
e ap

2p

- r

1 20}
—+—
e ve

(81)

satisfies this requirement and permits accurate calcula-
tions, as illustrated in Sec. V. It is also of interest to no-
tice that we could obtain a similar approximation just by
adding the short-range (a) and collective (b) contributions
to the energy loss of a fast ion using, for instance, the re-
sults of Pines and Bohm’:

dE@ 4mnZ3e*
T = o In 702
1 1€

and

®)  27nZ%e* 202
_G4E” _ € n i _21_
<U2>

ot

dx —  mv}

This renders the total energy loss in approximate agree-
ment with the use of Eq. (81) for A;=2A,/I"'. We must
notice, however, that Eq. (81) gives an oversimplified
description of collective losses.
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V. COMPARISON WITH PREVIOUS WORK
AND DISCUSSION

A. Analysis of the results

The main result of this work is summarized by Eq. (80),
which for convenience and further analysis can be cast in
a form that resembles the Butler-Buckingham result®

G(vy)=F(x)InA(vy) , (82)
with
F(x)=¢(x)—x¢'(x), (83)

and x =v,;/v,. Thus, F(x) gives the fraction of plasma
electrons with velocities v, smaller than the particle ve-
locity v;. In this way, we define the velocity-dependent
collision logarithm given by the expression

lnA(U1 )=In ——‘(“ZUITI/—Z—

(14Bv7)

4x3 [Ei(x?)—5E ()exp(1/Bv})]
3712 é(x)—x¢'(x)

,  (84)

which condenses a wealth of information on the energy-
loss problem depending on the parameters of the plasma,
electron density n, and temperature 7, and on the ion
velocity v and charge Z e.

By Eq. (25), the stopping power of the plasma becomes

dx 2

477 2%*
SE_<d_E>= T L F(x)nA(v,) . (85)
muj

We now analyze some particular cases of interest.

1. Low velocities, v; <<V,
For x =v, /v, << 1 we can approximate
F(x)=4x3/37'2, E;(x*)=In(1/T'x?)

and obtain for the stopping power

167172 nZje*v, m 32
= InA,, 86
S=73 m | 2kgT | ®6)
with
2
av
InA,=In r"’ ’—%El(t)e’
4kpT)3"? L .
= m —2y—5—7E|(t)e’, (87)
where
2 m)\,D ¢ 1 FZ1e2 2 (88)
T Tel2 Ze? T put | i, ’

Ab=kg T/mwz, and co§=447ne2/m [in Eq. (84) the limit
Bv?—0 has been taken]. In Eq. (88) the factor e!/? corre-
sponds to exp(+) (not to be confused with the electric

charge).
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Equations (86) and (87) show a universal feature of
low-velocity stopping powers, namely, the linear depen-
dence on v;; the density and temperature dependences are
more complicated, although the dominant dependence is
of the form n /T3/2. The distinction between classical and
quantum-mechanical (QMPW) domains appears only in
the logarithmic term, through the parameter ¢ that gives a
measure of the scaled Bohr velocity, Z e2/4, relative to
the thermal electron velocity v, =(2kz T /m)'/%. The tran-
sition between these domains can be described by chang-
ing the temperature of the plasma. In particular, we ob-
tain the following.

a. Low temperatures, Z;e’/#v, >>1. This corresponds
to

kgT < +Z me*/#=13.6Z2
in eV, or T<10°Z} K. Here we can take the limit ¢ >> 1
of Eq. (87), with E,(t)~e ~'/t—0, and obtain the classical
result

av?

r

4( kB T)3/2

2 1/2
Zie‘'m 7 w,

InAcy=In =In —2y—5 . (89)

This agrees exactly with the result of Kihara and Aono."

b. High temperatures, Ze*/#v, << 1. This corresponds
to ksT > 13.6Z2 €V, or T> 10°Z° K. In this case t << 1
and E(#)=—y —Int; then from Eq. (87) we find the
quantum-mechanical result for low velocities:

av

lnAQMl =In ,Bl_/iz‘ — %’y

kyT
ﬁa)P

1

+3In2—+y—+ . (90)

=In

This is in exact agreement with the result obtained by Ha-

mada®® and by Arista and Brandt,? using the quantum-

mechanical dielectric function formalism for the case of

dilute plasmas [in the last reference the numerical terms

of Eq. (90) have been approximated by +In2—+y—+
1

~ —
=71

2. High velocities, v; >>v,

For x =v{ /v, >>1 we approximate F(x)=1, and find

_ |dE\ 4mwnZie*
=_<dx>: s, o1)
where
InA,=In[av? /(14 Bv?)17?]
3
2 mvj . fiv,
=Iln | = —=>In |l
T Ze’w, 2 [+ rzleZH
| 2mv? ol I'Z,e? 2 ©2)
M, | TN T, ’
with
2 mu;
== —— B=(#/TZe??*. 93
@ I‘Zlezwp p=l 1e?) ©3)
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It is interesting to compare the last expression of InA,
with the Bloch formula?42>3*

2

(94)

V1

This provides an accurate analytical approximation for
Rey(in) as shown in the Appendix.

Hence, Eq. (92) can be used to describe the transition
between classical and quantum-mechanical results for fast
ions in a plasma. In particular, we obtain two well-known
results in the following cases.

a. Case Z;e’/#v; >>1. From Eq. (92) we obtain the
classical result for fast ions?%%;

2 mvi

P— (95)
I Ze%0,

InAcr,=In(av?)=In

b. Case Z,e’/#iv; <<1. This leads to the quantum-
mechanical expression

2mv %
fiop

avy

BI/Z

which is the result obtained by Lindhard® for fast ions in a
degenerate electron plasma (the degeneracy of the plasma
plays no role for high ion velocities). This also corre-
sponds to the result of Bethe? for the stopping power of
atoms, by replacing the mean excitation potential of the
Bethe theory I, with the plasmon energy #iw,.

In Figs. 6(a) and 6(b) we illustrate these various approx-
imations. They show the transition from the classical
(CL1, CL2) to the quantum-mechanical (QM1, QM2) ap-
proximations, with increasing relative velocities between
the ion and the electrons in the plasma. At low velocities
vy <<V, Fig. 6(a), this is illustrated by plotting InA,, given
by Eq. (87), versus the plasma temperature T <v?. For
high velocities v; >>v, similar results are obtained in
terms of InA,, Eq. (92), with increasing v; as shown in
Fig. 6(b).

We can obtain further useful expressions from Eq. (84)
by taking the limits in a different order. Thus, we can
consider the limits S—0 and 8— oo, which yield, respec-
tively, the classical and quantum-mechanical (QMPW) re-
sults, namely,

lnAQMZ = ln = ln , (96)

2 4x3 E](.xz)

InAcy=In(av1)+ 3.7 Fl) (97)
avy 2x3 El(xz)

A =In | 57 | ¥ 307 F i) o8

These expressions apply now through the whole range of x
values. In particular, we retrieve the previous results,
namely, ACLE ACLI! AQMEAQMI for x << 1, and
AcL=AcL2;, Agm=Aqgm: for x >>1, as given in Egs. (89),
(90), (95), and (96). Hence, Eqs. (97) and (98) describe the
transition between low-velocity and high-velocity collision
logarithms. This is illustrated in Fig. 7, where we show
InA¢r, and InAgy as a function of x =v;/v,. For x <1
we obtain the low-velocity results, independent of v,
while for x >>1 the v; dependence becomes of the form
In(av3) and In(bv %), respectively.
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FIG. 6. The transition between the classical limit (CL) and
the quantum-mechanical (plane-wave) limit (QM), as it occurs
with increasing relative velocity between the test particle (with
Z,=1) and the electrons 'in the plasma (with density
n=10" cm~3. This is illustrated in (a) for low velocities
v; <<V, where the transition is obtained by increasing the tem-
perature of the plasma. (b) shows the analogous case of high ve-
locities, v, >>v,, and where the velocity of the test particle is in-
creased. The solid lines are the results for InA; and InA, ob-
tained from Egs. (87) and (92). The lines of dashes for Acyy,
Aqgmi, Acrz, and Agme correspond to Egs. (89), (90), (95), and
(96).

B. Comparison with previous results

As shown before, all known analytical expressions can
be retrieved as limiting cases of Eq. (84). That is already a
check of the agreement with previous work. We can ex-
tend this study by comparing our results with the analysis
given in a series of papers by Hamada et al.'*=2! They
have given a complete solution to the energy-loss calcula-
tion which was expressed in terms of auxiliary tabulated
functions. This provides a useful framework to ascertain
the accuracy of the analytical approximations given in
this paper.

First we consider the result for InA,, Eq. (87), for
vy <<V, and define
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X2V, /Ve

FIG. 7. Classical (left scale) and quantum-mechanical (right
scale) expressions for InAcy and InAqum, vs reduced velocity
x =v,/v,. The solid lines correspond to the expressions of Egs.
(97) and (98). The low- and high-velocity limits, CL1,QM1 and
CL2,QM2, are shown with dashed lines. Calculations corre-
spond to electron density n =10" cm™> and plasma tempera-
tures T=10° K (for the classical case) and T=10" K
(quantum-mechanical case).

AL 1 =1nA1 —IHAQMI ’ (99)

where InAgy; is the quantum-mechanical limit given by
Eq. (90). This gives for AL,

AL,=—+E(t)e'— 5y —+Int , (100)
where now
2
I'Z,e?
f=t—_m |22 (101)
Bve ZkBT ﬁ

The function — AL, is shown in Fig. 8(a) (solid line) as a
function of the parameter n=2Z,e?/fiv,—i.e., t =(I'n)%
This corresponds to the transition between the quantum-
mechanical (QM1) and the classical (CL1) expressions for
n <<1 and 1 >>1, respectively. It is compared with the
result of George, Okamoto, Nakamura, and Hamada,?!
—ALFONH —y 4 ACONH() (dashed line) in terms of the
tabulated function ACONH(7) (from Table 2 of Ref. 21;
our parameter 7) corresponds to the parameter v of this
reference). The figure illustrates the accuracy of the
analytical approximation.

A similar analysis is made for InA,, Eq. (92) for vy >>v,
in terms of

AL2 =lnA2 —_ lnAQM2 )

with Agum; given by the Bethe-Lindhard formula, Eq. (96).
This gives

(102)

AL,=—In(1+41¢;)'"? (103)
with

1 rz;e? |’ 104

1= ﬁvf - ﬁvl ( )

LEONARDO de FERRARIIS AND NESTOR R. ARISTA 29

-ALy
Ll

-AL,

0.01 01 1 10
-7e2
N=Zp /6y,

FIG. 8. Comparison between analytical and numerical results
for the corrections to the quantum-mechanical collision loga-
rithm (plane-wave approximation) due to classical effects arising
for large values of 1. Our results, from Egs. (100) and (103), are
shown with solid lines. In case (a), for v;<<v,,
n=2Ze%/tw,=Ze’m'? /#(2kz T)""% the line of dashes gives
the results tabulated in Ref. 21. In case (b), for v;>>v,,
n=2Z,e%/#v,, the dashed line corresponds to Ref. 19.

In Fig. 8(b) we compare —AL, with the result of George
and Hamada!® (which is also in agreement with Bloch),

namely,
—AL$% =y +Rey(in) ,

as a function of the parameter n=2Z e’/#v;—hence,
t;=(I'n)’. The agreement is again excellent, as we could
expect owing to the approximation

Rey(ix)=In(14+T2%x2)2_y ,

obtained in the Appendix.
To complete the comparison we consider now the re-

sults for InA¢, and InAgy. We define

AL =IlnAc(vy)—1InAgy, ,
ALom=InAqm(v;)—InAgu ,

(105)
(106)
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where Acp; and Agm; are given by Egs. (89) and (90). In
Fig. 9 we show the results for AL and AL gy obtained
using our approximations, Eqs. (97) and (98) (solid lines),
and using the expressions of Hamada,?® namely,

. iy T2
InAcL=In | —— ;7 [+AiI(x)+Axx)+1.116,
1€ copm
(107)
H 4kp T ) .
lnAQM=ln +A1(x)+_2'A2(X)+7 ’ (108)
P

where A;(x) and A,(x) are the functions tabulated by
May'7; these results are shown in dashed lines. The agree-
ment is here less satisfactory at intermediate velocities,
x ~ 1, where our approximations overestimate the value of
InA. Since in most cases of interest InA >> 1, the accuracy
obtained for intermediate velocities, of order (InA)~1, will
still be good.

We finally notice that using in Egs. (107) and (108) the
limits of the functions calculated by May, for x—0
[Ay=—%, Ay=—(14+y+In2)] and for
(Aj=Inx ++1n2, A;=2Inx —1—In2), we find an exact
agreement with the results obtained here—Egs. (89), (90),
(95), and (96).

X —> o0

C. Comparison with experimental results

In a series of experiments Brown et al.>® have been able
to obtain results for the energy loss in an ionized plasma,
which for the first time cover the whole range of x values
of interest, throughout the maximum of the dE /dx curve.
In Fig. 10 we show the results for hydrogen ions in a sing-
ly ionized cesium plasma at temperature 7' =2100 K and
electron density n =10"! electrons/cm?. This is a good ex-
ample of the classical case, Eq. (97), both because of the
ion velocity, vy <<Ze?/#, and the plasma temperature,
T << 10° K. Moreover, in these conditions, the residual

0.1 1 10
Xz V, / Ve
FIG. 9. Velocity-dependent part of the collision logarithm in
the classical and quantum-mechanical approximations from
Egs. (105) and (106), vs x =v, /v,, with v, =(2kzT/m)'/%. The
dashed lines give the numerical results of Ref. 20.
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FIG. 10. Experimental results of Ref. 35 for the energy loss
of hydrogen ions in a cesium plasma of density n =10'" cm™3
and temperature 7 =2100 K. The solid line gives the result of
this paper, Egs. (84) and (85).

contribution to the stopping power due to the core of the
Cs™ ions can be estimated to be negligible. Hence, these
experiments serve as a good check of our results in the
classical limit, and for the relevant range of x values.

It would be important to extend this comparison to the
quantum-mechanical case, particularly for light ions in
hot fusion plasmas, where no similar data have so far been
produced.

VI. SUMMARY AND CONCLUSIONS

We have calculated the rate of energy loss of ions in di-
lute plasmas using classical and quantum-mechanical
treatments. The analysis is carried over by introducing
several analytical approximations, based on physical
grounds, and preserving at each step the accuracy of the
calculation.

This procedure leads to a final analytical result, Egs.
(84) and (85), which embodies all the cases of interest for
the energy loss of heavy ions in nondegenerate electron
plasmas. This includes the cases of low and high veloci-
ties (v <<V,, v1>>V,) as well as the classical and
quantum-mechanical limits  (Z,e?/%v, >>1, Z1e*/#iv,

<< 1, where v, represents a relative velocity).

The forefactor F(x) in Eq. (85) contains the more obvi-
ous velocity and temperature dependences; it leads to
Soan%v£/T3/2 at low velocities, Eq. (86), and to S
onZ?/v? at high velocities, Eq. (91). This explains also
the maximum of the energy-loss function in simple terms.
On the other hand, the velocity dependent collision loga-
rithm, as defined in Eq. (84), incorporates quantum-
mechanical corrections and the residual velocity depen-
dence that arises from close and distant collisions. Hence,
it is a more complex function of vy, Zy, nand T.

In Fig. 11 we give a summary of the various cases
comprised in our description. Here CL1 and CL2
represent conditions of applicability of the classical ap-
proximations of Egs. (89) and (95), whereas QM1 and
QM2 indicate the cases where the quantum-mechanical
approximations of Egs. (90) and (96) apply. The arrows
represent the directions of increasing ion velocity v, or in-
creasing plasma temperature 7. Also indicated on each
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FIG. 11. Summary of the cases included in our analysis of
the energy loss of ions in an electron plasma. CL1, CL2, QM1,
and QM2 correspond to the limiting cases of Egs. (89), (95), (90),
and (96). The directions of increasing ion velocity v; or plasma
temperature T are indicated. The transitions between these vari-
ous limits are described by A;, A;, Acr, and Aqgum, according to
Egs. (87), (92), (97), and (98). All these approximations are con-
tained in the analytical result for the collision logarithm, Eq.
(84), as a function of the ion charge Z,e and velocity v;, and of
the plasma density n and temperature T = %mvf/kg. Here

vo=e?/# is Bohr velocity.

side is the approximation for the collision logarithm that
describes the transition between the corresponding cases.
Thus, for instance, by increasing the temperature, with a
fixed ion velocity v, <<v,, we go from the classical low-
temperature case, CL1, to the quantum-mechanical high-
temperature limit, QM1. This transition is described by
the approximation denoted as InA; and given in Eq. (87).
In a similar way, the expression for A;, Acr, and Agy,
Egs. (92), (97), and (98), connect the other limiting cases.
These are all approximations of the general result of Eq.
(84).

The agreement with experimental results is satisfactory,
but it only covers a limited domain of the analysis given
here. One of the basic problems described in this paper is
the transition between classical and quantum-mechanical
approximations. This is particularly important to describe
the effects due to the penetration of light and heavy ion
beams in fusion plasmas. In this sense it would be of
much interest to test the theoretical predictions with
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FIG. 12. Results for the real part of the digamma function of

imaginary argument y(i7) as obtained from Eq. (A1) (dashed
line) and exact values obtained from tables (Ref. 28) (solid line).

energy-loss experiments in ionized plasmas, under the ex-
treme conditions of high temperatures required for ther-
monuclear research.
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APPENDIX

The comparison of our result for v; >>v,, Eq. (92), with
the corresponding limit given by the Bloch formula of Eq.
(94) provides an approximating expression for Rew(in),
namely,

Reyl(in)=—y+5In(14+T%y?) , (A1)

with I'=expy =1.781.

In Fig. 12 we compare this approximation (dashed line)
with the exact values of Rey(in) (solid line). Owing to the
wide range of applicability of the Bloch solution we con-
sider this result of considerable practical value.
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