
PHYSICAL REVIE% A

Classical and quantum-mechanical treatments of the energy loss
of charged particles in dilute plasmas

Leonardo de Ferrariis and Nestor R. Arista
Centro Atomico Barihoche and Instituto BaIseiro,

ComisiYin Xacional de Fnergia Atornica y Uniuersidad Xacional de Cuyo,
8400 Bariloche, Bio negro, Argentina

(Received 26 May 1983)

&e calculate the energy loss of charged particles in nondegenerate plasmas using classical and
quantum-mechanical approximations. First we consider classical binary collisions between the test
particle and the particles in the plasma, and obtain the energy transferred as a function of the rela-
tive velocity. This is integrated over the thermal distribution of plasma-particle velocities using sim-
ple analytical approximations. Then we use the quantum-mechanical analysis of the scattering of
partial waves to find the transport cross section for a screened potential, and introduce analytical
approximations to calculate the phase shifts. The thermal average is also calculated analytically.
Thc study yields simple cxprcssions for thc cnclgy loss in terms of the velocity and charge of thc
particle and of the density and temperature of the plasma. In particular, we retrieve various results
of' previous authors, which apply as limiting cases in the classical or quantum-mechanical regimes.
The transition between these cases is described by analytical expressions of excellent accuracy. The
calculation is finally compared with experimental results from laboratory plasmas in the classical
domaIn.

I. INTRODUCTION

The problem of energy loss of fast particles in plasmas
has been studied by many authors using a variety of ap-
proximations, and applications have been considered over.

wide ranges of plasma densities and temperatures, which
include the various conditions of interest for astrophysics
(stellar and interstellar media), solid-state plasmas, cold
and hot laboratory plasIDRS, Rnd, 1n partlcuj. l', thc ex-
treme conditions of interest for current studies of inertial
and magnetic confinement of plasmas. ' In terms of clas-
sical mechanics, the rate of energy relaxation of a charged
particle in a plasma was given by Spitzer, based on earlier
results of Chandrasekhar, who studied the analogous
problem of the energy relaxation of a star moving in the
presence of the gravitational perturbations from a cluster
of stars. Further descriptions along similar lines were
given by Gryzinski and Butler and Buckingham by con-
sidering binary collisions of the charged particle with the
electrons and ions in the plasma.

Qn the other hand, a dielectric formulation of the
energy-loss rate was studied by Pines and Bohm,
Akhiezer and Sitenko, and other workers for the case of
dilute plasmas, and by Lindhard and Ritchie' for degen-
erate plasmas. More recently, Skupsky, " Arista and
Brandt, and Maynard and Deutsch' have considered the
calculation of the cneI'gy loss and straggling in a
quantum-mechanical plasma of arbitrary degeneracy.
These calculations contain a description of short-range in-
teractions in terms of quantum plane waves for the scat-
tered electrons.

Other descriptions of the energy-loss rate in dilute plas-
mas~ 1Ilcorporatlng both shoIt"I'Rngc co111slons Rnd collcc-

tive phenomena, were given in a series of papers by
Kihara, Aono, Itikawa, and Honda' ' and by May. '

They were based on Hubbard's observation' that there is
a bIoad overlapping I'cg10Il bctwccn thc dielectric Rnd thc
binary-collision treatments of the problem, leading to a
unified description of the energy loss in terms of a
velocity-dependent Coulomb logarithm (lnA). Further
developments were made by Hamada et al. ,

' ' who gave
the energy loss to plasma electrons in terms of tabulated
functions, for the whole range of nonrelativistic velocities
and incorporating quantum diffraction effects on close
collisions. This contributes to filling the gap between pre-
vious classical and quantum-mechanical approximations
to the Coulomb logarithm.

It is the purpose of this paper to pmvide complete
analytical results that apply to all these conditions of in-
terest and, hence, permit rapid evaluations of energy-loss
rates, ranges, stopping times, and related quantities over
wide ranges of ion velocities and plasma densities and
temperatures.

To illustrate the differen". conditions of interest and the
corresponding physical parameters, let us consider a test
ion of charge Z~e and velocity U, in an electron plasma of
density n and temperature T, and let U, =(2k~Tlm)'~
represent the thermal velocities of the electrons (U, gives
the most probable velocity for the Maxwell-Boltzmann
distribution). If the velocity of the ion exceeds the
thermal velocity U„ the energy loss per unit distance (plas-
ma stopping power) is given by

dE
lnA(U), u ))U, (1)dx gyes U

and 1Il thc opposltc CRsc
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lnA(0), v «v,
(2k' T)'~' (2)

where kz is the Boltzmann constant. Simple expressions
for the velocity-dependent collision logarithm lnA can be
given in each case by using either classical or quantum-
mechanical (plane-wave) approximations. In particular, in
an impact-parameter description the result becomes of the
orm

lnA = ln(bq/b i ),
where the values of the maximum and minimum impact

parameters for each case are as follows.

(a) v »v„classical approximation:

Z)eb)—-b, =
mU

U
bg -=A,,g =

COp

(4a)

(b) v « v„classical approximation:

Z&e
bi =-b, =

mU,

(c) v »v„quantum-mechanical approximation:

bi -=iL= V
b2 —-A,,d

——

Q)p
(4c)

(d) v « v„quantum-mechanical approximation:
1/2

kg T U~

b2 ——A,D ——
4m.ne

bj =-A,, =
mUe

(4d)

Here iLD (k&T/4mne ——)' is the Debye screening length
and

cv~ =(4mne /m)'. ~

is the plasma frequency; namely, the frequency of long-
wavelength collective electron oscillations.

From Eqs. (4) we notice that the distinction between
classical and quantum-mechanical results arises solely
through the minimum impact parameter b~, since it is
only in the short-range domain where one should consider
possible quantum diffraction effects on the electron trajec-
tories. This is, in fact, the origin of the well-known
discrepancy between the Bohr and Bethe formulas for
the energy loss of fast charged particles. As in the solu-
tion given by Bloch, ' the important parameter here be-
comes

beg 6, Zl e

h QM A AU&

For large velocities, v »v„g=Zie /A'v depends only
on the parameters of the ion; in this case the quantum-
mechanical result applies for v & Zie /fi=Zi vo

(vv ——e /A'=Bohr velocity). On the other hand, for slow
1ons, v +(ve,

Z)e 1/2

g 7

AV~
(6)

I'

Z&e

2k' T

and hence the quantum-mechanical result applies at high
plasma temperatures,

2kB T»Z21me4/AZ=Z2]EO

where Eo ——me"/A' =1 a.u. =27.2 eV. For protons this
corresponds to electron temperatures larger than 10 K
(cf. Fig. 1 of Ref. 2). Moreover, as the charge of the ion
increases, the transition between the classical and
quantum-mechanical regimes appears at increasingly
higher plasma temperatures, reaching the regions of in-
terest for fusion reactors when Z, & 10.

Another point of interest in Eqs. (4a)—(4d) is the transi-
tion between static and dynamical screening effects. This
becomes apparent through the value of bz. At low veloci-
ties, v & v„ the Coulomb field of the ion is adiabatically
screened by the electrons over a distance given by the De-
bye length

XD ——(kii T/4mne )'

V ))Vq

(ii) Quantum-mechanical results (rI=Zie /fiv„«1):

%Pith increasing ion velocities the screening becomes less
effective and, for v & v„ it gives rise to a wake of dynami-
cal polarization in the plasma; in these conditions the
field of the ion becomes effective over increasing distances
as given by the adiabatic length ' k,d

——v/co&. In fact,
for distances p & A,,d away from the ion trajectory, the per-
turbation acts over a time b, t-p/v that exceeds the
response time of the plasma -co~ ', leading again to an
adiabatic response of the medium that shields the external
field. The transition between these two cases can be stud-
ied in detail only through numerical examples due to the
many-body character of the problem.

In summary, the expressions for lnA in Eqs. (1) and (2),
with the values given in Eqs. (4a)—(4d), can be written as
follows.

(i) Classical results (g=Zie /A'v, »1):
r

1.123@iU
(7a)

Z)e Np

4(kg T)
ln

2 ry2
—2y ——, , U &~v (7b)Z) e &pm

where U, denotes a mean relative velocity between the ion
and the electrons (in particular v„=v if v »v„and v„=v,
if v && v, ), CL represents the classical approximation, and
QM represents the quantum-mechanical approximation.
The value g= 1 separates the domains of applicability of
the previously mentioned classical (i) »1) and quantum-
mechanical (g « 1) approximations.

ln
2' v

k~T
ln +—,U &(U, .

4 '

(8a)

(8b)
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Correction terms of numerical interest have been included
so as to cast these results in the more exact forms given in
Refs. 8, 13, 9, and 2, respectively.

In this paper we develop approximations that comprise
these various results. In Sec. II the energy loss of an ion
moving in a plasma is described in terms of a relative-
velocity-dependent transport cross section. The problem
is then studied using classical mechanics, Sec. III, and us-
ing the quantum phase-shifts method, Sec. IV. In both
cases we introduce approximations that lead to final
analytical expressions for the energy loss per unit distance.
These results are analyzed in Sec. V, where we also re-
trieve the particular cases studied by previous authors and
we compare with experimental results. Finally, in Sec. VI
we summarize our results and conclusions.

II. TRANSPORT CROSS SECTION
AND ENERGY LOSS

In this section we obtain a general expression for the
energy-loss rate of a charged particle in a plasma as an in-
tegral over a thermal distribution of plasma particles (elec-
trons or ions) and in terms of a relative-velocity dependent
transport cross section. Let us consider the collision be-
tween a test particle of charge Z~e, mass m ~, and velocity
v~, with a plasma particle of charge Z2e, mass m2, and
velocity v2, as shown in Fig. 1. The kinetic energy
"gained" by particle 1 in the colhsion is

where n is a unit vector in the direction of v„(see Fig. 1)
and p =m

&
m z /(m, +m 2) is the reduced mass.

Using these values in Eq. (9) we get

hE=pu„(n n'—).v, =hp~ v, (13)

Let us now calculate hp& in the c.m. frame. It is con-
venient here to consider many plasma particles incident
with the same velocity v„but with different impact pa-
rameters. By symmetry the sum of hp& for all these par-
ticles will be in the direction of n; we then simplify the
problem by calculating only this component, namely,

hp t„=hp &
n =pu„(1 n—n ') =pv„(1 —cos8), (14)

where 0 is the angle of scattering in the c.m. system.
We can now relate hp1„ to the transport cross section

a«(u„), or momentum-transfer cross section, by integrat-
ing over impact parameters,

hp, „=pv„f (1 cos8)—2mb db =pu, o„(u„), (15)

where o„(u„)=f (1 cos—8)der
Taking into account the flux of plasma particles in-

cident with angle 82 and within a time interval At, we ob-
tain the momentum transfer corresponding to those parti-
cles:

5Pe ——AP 1„dN2v„htn . (16)

By Eq. (13) we obtain the energy transfer in the laboratory
system corresponding also to those particles:

(Pl+Pl) hPl
2m1 2m1

(9) hEg =hpe v, =(n v, )hp)„dNpu„ht, (17)

where primes are used to denote the values after the col-
lision, hp& ——p &

—
p& is the change in the momentum of

particle 1. By introducing the relative velocity v, and the
center-of-mass (c.m. ) velocity v,

where dNq denotes the fraction of particles incident with

angles around 8q,y2. For an isotropic distribution of plas-
ma particles in the laboratory system, and integrating over
the angle y2, we can set

—+ —+ —+
Vp = V2 —V1=vpn

v =(m]v)+m2v2)/(m]+m2)

we obtain

p1 m1 vc.m. pvr~

(10) =1 1 ~

dN2 —— sin82d 82dy2 ———, sin82d 82 .4'
Using Eqs. (10) and (11) we obtain

2 2
U U2 —U1 m1 —m2

(n v, )=—
2 v, m1+m2

(19)

/

p 1
——m1v, m

—pv, n
(12)

and integrating Eq. (17) over the angle of incidence 82 we
get the energy-loss rate as follows:

hE =
4 d 02sinL92

2 2
m1 —m2 U1 —U2+ 2m1+m2 v,

&spur~«(ur) . (20)

Z 1,le) V)

It is convenient to transform this into an integral over rel-
ative velocities v„

~

v~ —u2
~

&u„&v~+u2 .

FIG. 1. Illustration of the variables in the text. Incident par-
ticle with charge Z&e, mass m &, and velocity u&. Plasma particle
with charge Z2e, mass m~, and velocity u2, moving with angle

8&. The relative velocity u„and the center-of-mass velocity u,
are also indicated.

From Fig. 1, we can write

U~ =U1+ v2 +2U1U2cos822 2 2

and then
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s11182d82 = —U, dU, /U, U 2,
which yields

2 2
m) —m2 v) —v2

+ 2
Uqm)+m2

dE p & & 4

~

dVzvz CT«( V„)
4U U f~l "2

(21)

III. CLASSICAL THEORY

cos8=(b b, )—/(b +b, ), (28)

We now consider the classical problem of scattering of
a plasma particle of charge Z2e, reduced mass 1M, and
velocity U, on a center of charge Z~e. For close collisions,
the angle of deflection 8 in the c.m. system is related to
the impact parameter b by the Rutherford relation

(22)

and from Eq. (21) we obtain

To write this in a more familiar way we can now advance
a result from the next two sections, namely,

2 2
Z~ Z2e

cr«(v„) =4Irb, lnA„(v, ) =4rr 2 lnA„(v„),
pur

where

b, =ZIZ2e /pv„.

This yields a transport cross section, by Eq. (15),

0 g2+b2

(29)

(30)

with

dE (Z, Z e )
=4m. , G {VI,U2)

dx U~ dt PU &

(23)

2 2'
1 m) —m2 U) —U2

G(vl, v2) = dv„+ 2 1nA«(v„) .
U2 m~+m2 v,

(24)

Finally, we calculate the mean energy loss per unit dis-
tance S—i.e., the stopping power —as the average over the
thermal distribution of plasma-particle velocities, viz. ,

The logarithmic divergence of this integral, for bazoo,
can be avoided with the use of a more realistic potential in
the plasma, taking into account the effect of the screening
in reducing the range of the fields to a finite distance A,
In general, for a moving ion, this can only be done in an
approximate way. With these limitations in mind we re-
strict the integration of Eq. (30) to impact parameters
smaller than b „-A,„whose value —to be discussed
later —depends on the ion velocity v ~, but not on the rela-
tive velocity v„; this is a consequence of the collective
response of the plasma Thu. s, Eq. (30) yields

o.„"(v„)=2Irb, ln(1+a v, ) (31)

(ZIZ2e )S=— =4m.
2 n2G(vl),

dx pv 1

wltll

a =pb, „/ZI Z2e (32)

G(vl)=(G(UI, U2)) =J dv2%(v2)G(UI, U2), (26)

Using the value —,
' ln(1+a v, ) for the collision loga-

rithm in Eqs. (22) and (24) we obtain

2 2'")+"P m ) —m2 U )
—U2

G(v»v2) = dv„+ 2
8U2 I~1 ~2 I m~+m2

m2
X(U2)dv2 ——

77 gT

' 3/2 2—mv2
exp 4mu 2du2 (27) &&in(1+a v, ) .

in terms of the temperature T and of the density n2 of the
particles in the plasma.

This integral can be calculated analytically, as it was first
done by Gryzinsky, with the following result:

6 [r,s]= 1 M —rs
4d 2

VZs vZfr
farctan —arctan

1 —s 1 —7'

+ M+rs s +v 2s+1
(1+$4)1/2

ln
r +v22

f
r

f
+1

( 1+r4)1/2

+ (r+Ms)ln(1+s ) —— —+M
f
r

f
ln(1+r ) 2M(s —

f
r

f
) I, —

2 2 frf
(34)

where
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Pl 1
—7tl 2M=, r =d(1 —w), s =d(1+w),

Nl1+Pl2

iz vz~ w u1 /uz .1/2
(35)

Two useful approximations for the cases u»&uz and
ui « vz can now be obtained by expanding the integral of
Eq. (33), which yields

ll 56(vi »uz)=- ———ln(1+azu, ),
2 4

(36a)

'3

and we finally obtain

6 (vi ) = [(1—5/2)P(x) —xP'(x)]in(au i )

4x 5x 2+ in — i'3~
(40)

in terms of the error function P(x) and the exponential in-

tegral Ei(y) defined as

P(x)=, f dte

U1 4 2 V1
6(ui «uz)= —— in(1+a uz)+—

3 U2

with

5=2mz/(mi+mz) =2p/mi .

(36b) E, (y)= f dt,

and with

x =ui/vg, ug
——(2k' T/mz)'

Gi(vi) =(1—5/2)[P(x) —xP'(x)]in(au, ),
Gz(vi)=-, qzEi(x )—,[Ei(x )+e "in(av, )]

Sx
1/2

(39a)

(39b)

-3 I I I I I I I I I ~

0 1 2

FIG. 2. Comparison between the exact and the approximate
results for G(ul, u2) for m2/ml ——0 and 1, and for a=10'. The
exact results, from Eq. (34), are shown with solid lines. The ap-
proximations for u»&u2, Eq. (36a), and for u& &&u2, Eq. (36b),
are shown with dashed lines.

These approxiinations are compared to the exact result of
Eq. (34) in Fig. 2, for the typical cases of ions in an elec-
tron plasma, m z /m i

——0, and for equal masses,
mz/mi ——1.

Let us now calculate the thermal average of 6(ui, vz).
Eq. (26), to find the average loss S in Eq. (25). We can
approximate this integral analytically by separating the re-
gions 0& U2 & U1 and v1 & v2 & ao, and then using the ap-
proximations of Eqs. (36a) and (36b) on each of these
ranges of integration, viz. ,

U)

6(ui)-=f 6(ui »vz)X(uz)duz

+ G v1«v2 X U2 v2 . (38)

For ev1, nvz »1, these two integrals give

where s refers to a given species of plasma particles (e.g. ,
electrons or ions).

It is of interest to show now that the result of Butler
and Buckingham can, in particular, be obtained from Eq.
(33) with the approximation ln(1+a v„)=21nA-=const.
This approximation is equivalent to taking a minimum

angle of scattering L9;„«1 in such a way that

b,„=2b,/8;„, and lnA-=ln(2/8;„), where 8;„ is in-
dependent of v„. This leads to

(1—5/2)lnA, ui & uz

6(ui, uz)—: 1 u,——5 lnA, vi &vz
2 U2

(42)

and yields for the thermal average the well-known result

6 (vi )-=[(1—5/2)P(x) —xP'(x)]lnA . (43)

This approximation neglects an important contribution
to the energy loss—the second term of Eq. (40)-—due to
plasma particles with velocities U2 & v1. This is particular-
ly obvious in the case of an electron plasma, 5=-0, where
Eq. (42) gives G(ui, uz)—=0 for ui &uz, and the thermal
average yields 6 (vi ) =-F(x)lnA, with F(x) =P(x) —xP'(x)
giving the fraction of electrons with velocities smaller
than v, .

For some practical purposes, however, one could still
use Eq. (43) to describe the energy loss, provided that one
considers lnA as an averaged quantity whose value is cal-
culated a posteriori.

In Fig. 3 we compare the analytical solution, Eq. (40),
with the exact result obtained by numerical integration of
Eq. (26) using the expression for 6(u„uz) given in Eq.
(34). The agreement is quite satisfactory for the case
a=10 shown in the figure; with increasing a values, the
function 6(ui, uz) in Fig. 2 assumes a more pronounced
steplike behavior at ui/uz ——1 which leads to an even
better agreement between the curves for 6(ui) shown in
Fig. 3 (the range of a values of interest goes from a-10
to 10' for a range of plasma densities n —10' to 10'
cm and plasma temperatures T—10 to 10 K). The
curves for m z

——m i show that 6 (u i ) & 0 when x & 1; this
corresponds to test particles with subthermal velocities
who gain energy from the plasma. Thermal equilibrium is
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(ZiZ2e )
S-=4m.

~ n ln(aut),
Pl2v )

(48)

G(v& )

In particular, this agrees with the classical result of
Bohr for the energy loss of fast particles in matter, pro-
vided that we set b,„=(2/I')v~ /coo to obtain

au/ =1.123pu&/Z&Z2e coo,

where coo is the frequency of the atomic oscillators in the
medium (in our case coo is replaced by the plasma frequen-

cy cod). Using Bohr's arguments, this corresponds to an
adiabatic distance -v~/coo, as the range of "resonant" ex-
citation of atoms. The high-velocity result becomes in-
dependent of the plasma temperature. The classical re-
sults of this sex;tion will be further analyzed in Sec. V.

reached at x —= 1, when G(v&)=0.
One can further simplify the result in the cases x «1

and x » 1. For low velocities, x « 1, we can use the fol-
lowing limits:

P(x) =2x/m'i

P(x) xP'(x) =4x /—3n'i, — (44)

E&(x)=ln(1/I'x ),
with I =er=1.78 (y=0.577), which yields

2
+vs

G(u&)=
&rz ( —,x —5x)ln, x «1 .

The logarithmic dependence on v& of the first term of Eq.
(40) has been cancelled out by a similar dependence of
E~(x). For the case of a test ion in an electron plasma,
m2 «m ~, 5 && 1, the thermalization of the ion according
to Eq. (45) occurs at a value of x «1, namely, x =

~ 5,
which complies with m ~ v ~

——3k& T as expected.
On the other hand, for large velocities, x »1, we can

use the limits

P(x) =—1, {t)'(x)~0, E~(x )-+0 (46)

and obtain

G(v~)—=(1—5/2)ln(av~)=(p/m2)ln(au~), x&&1. (47)

The forefactor p/m2 leads to the right m2 dependence of
the energy loss of fast particles, namely,

2 3 4

X= Vj/Ve

FIG. 3. Comparison of exact and approximate results for the
thermal averaged function 6{v~) vs the velocity ratio x =U~/v„
where v, =(2k~T/m2)', for m2/m~ ——0 and 1, and for a=103.
The solid lines show the results of the numerical integration of
Eq. {26) using the exact classical expression for 6{v„v2) given

by Eq. {34). The dashed lines represent the analytical approxi-
mation of Eq. {40). The negative values of the function G{v~)
correspond to subthermal test particles gaining energy from the
plasma until they thermalize.

IV. QUANTUM-MECHANICAL THEORY

Zie
y(r) . , r &R

r
0, r&R. (51)

For r &R this agrees with the first term in the expansion
of Eq. (49); the next term is of order R /kD « 1, and can
be neglected.

The phase shifts for this potential were calculated by

In this section we describe the quantum-mechanical cal-
culation of the transport cross section cr„ for the case of
an electron plasma, and we develop simple approxima-
tions which are useful to obtain analytical results for the
energy loss. The results apply to the classical or
quantum-mechanical domains discussed in Sec. I (hereaf-
ter m2 —m is the electron mass and we set m2/m &

——0).
We start by considering the scattering of plasma elec-

trons on a slow test ion, taking into account screening ef-
fects by assuming a potential of the form

Z~e
V(r)= e (49)

r

where AD is the Debye screening length. The transport
cross section can be calculated in terms of the quantum
phase shifts 5{from the well-known expression

4~ oo

cr„(k)= g I sin (5~ —5I &),
1=1

where k =mu„/A' is the wave vcr:tor of the electron in-
cident with velocity v„relative to the scattering center.

The basis for our calculation rests on the observation
that kAD is very large for nearly all cases of interest.
Therefore, we can introduce a value L such that
1«L «kA, D. This corresponds to a distance R =L/k
such that ){,«R «A,D, where A, =k '=A'/mu„, and it al-
lows the use of different approximations for the short
range, l &L, and distant, l &L, terms of the scattering
problem.

(i) I &L. Since the value of R is taken as R «AD, the
potential for all those wave components with 1 &L can be
approximated by a Coulomb potential (as in a previous
calculation by De Witt ),
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Holdeman and Thaler ' who found

argI (I + 1+i rl) —rl 1 n(2kR)+0( rl/kR),
0, I))L wit

where 2I =Z1e /A'u„ is the "Bloch parameter. "Here we as-
sume that g/kR « 1; those cases where 2I/kR —1, i.e.,

sin (51—51 1)= (51—51 1)2——
dl

d5l mZ1e I + —,
'

dl 1r12k2g
'

kzD

2

(59)

(60)

51 —51 1
——argl (I+1+irI) arg—I'(I+ill)
=arctan(g/I), (53)

b, =Z1e /mu, -R,
will be discussed later. From this expression for 51 we cal-
culate

The sum of Eq. (50), for I »1, can be transformed into an
integral

2 2

(2) 4~ mZ] e

k fikk
and since l + —,

' =- l, the integral becomes

sin'(51 —51 1)=rl /(rl +I ),
and the cross section o'„, Eq. (50), becomes

( & ) 4~g I 2'&
tr = k' l I'+ ' k, l+'g I —g

~ +

(54)

(55)

00 L 2
(kAD)' f xE1(x)dx = (E1—E11E2) " . (62)

D

Using the limits of the Bessel functions for x « 1 (i.e.,
L « kA, D), we obtain (with y =0.577)

mZ~e 2kAD2

Otr =
k Ak

ln
L,

—y ——' . (63)2

where the sum can be written in terms of the digamma
function lit(z) as follows

L 1 L —1

I + 1 rl o 1I + 1 +1fJ

=lI(L +1+iri)

f(1+i'll)—

,

Finally, from Eqs. (56) and (63) we find for the transport
cross section (with k =mu, /A'):

o„(k)=o„+o„(1) (2)

r

Zie

mvr

and we obtain

2

crI,
"= [1nL —Ref(i rl )], (56)

Zie
&& ln(2k', D) —Rellt i

AV„

1—y—

mz]. e e ~"dx2

A' k 1 (x —1)'
(57)

where rc ——(I+—,
' )/k and 8=(l+ —,

' )/kin. The integral
gives the Bessel function Eo(8) and we get

T

mZ, e l+ —,

5l ——— Eo (5g)
kzD

For I &&1 we can use the property

dEO(x)/dx = —E1(x),
and approximate

where we used the properties

p(z' ) =[p(z)]*, Rebel (1+irl ) =Rell (irl ),
and f(z)=lnz for z~ ac.

(ii) I &L. The contribution from large I values can be
calculated using the semiclassical approximation for 51,
which for the screened potential of Eq. (49) yields

m " V(r)dr
5l ———

1rt2 fro [k2 (I + 1 )2/r2]1/2

independently of the value of L.
It is now interesting to consider the classical

(Z1e /A'u„»1) and quantum-mechanical (Z1e /1riu„«1)
limits of this expression.

A. Classical limit (CL), Z) e /A'v, &) 1

Using the asymptotic behavior of the digamma function
Ref(ig)=lnrl, g »1, we obtain

'2
Z&e 2mvr~D

ln —y ——,
'

(65)
mv, Z&e

o„=4mCL

in exact agreement with the result of a fully classical cal-
culation.

cr1O =4n2[ln(2k'. D) ——,
' ],

mvp
(66)

which is the result obtained using the Born approximation

B. Quantum-mechanical (plane-wave) limit
(QM or QMPW), Z1e2/Ru, && 1

In this case we approximate g(irl)=- —y for 11~0 to
obtain
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The values of b,„and b;„ in this formula can now be
chosen so as to reproduce very closdy the results of Eqs.
(64)—(66). First, Eq. (64) corresponds to the limit
b,„&&b, of Eq. (67), namely,

o,=-2mb,'[2 In(b, „/b, )—ln(1+ b';„/b, ')]
=2mb, [2 ln(b, „/b;„)—ln(1+ b, /b;„)], (68)

where b,„/b;„-kAD, and b, /b;„Zie /-AU„RS it will
be shown below. Furthermore, Eqs. (65) and (66) corre-
spond to the b, &&b;„and b, «b;„ limits of Eq. (68),
VlZ. ~

in the limit kA,& ~~ I, consistent with our case.
Thus, the result for the cross section, Eq. (64), is a gen-

eral quantum-mechanical solution for the scattering of
electrons in the screened potential of Eq. (49). In particu-
lai, lf. pcrflllts to llltcrpolatc between tllc classical (CL) Rlld

quantum-mechanical (QMPW) limits, much in the same
way as the Bloch formula ' for the energy loss of fast
particles unified different results, that were previously ob-
tRlncd with clRsslcal RIll quantuDl-mechanical appx'oxl-
matlons.

However, in order for us to get the energy loss using the
previous result for IT„(k},we must still integrate over all
the relative velocities U„=fikjm between the moving test
particle and the electrons in the plasma. Here we find two
additional difficulties T.he first one is that our approxi-
mation for 51, Eq. (52), can be applied only when
IllkR ((1 (or b, ((8 (&AI)), which is not satisfied when
k~O. In addition, we want to obtain an analytical ap-
proximation for the energy loss, which is not possible us-
ing Eq. (64).

A way out of this trouble is to propose a simplified for-
mula for the transport cross section, by introducing in the
classical expression, Eq. (30), a minimum impact parame-
ter b;„ to take into account the quantum-mechanical
corIcctlons; this iIIllncdiatelp fields thc I'csult

o,', =2Irb, [ln(1+b,„/b, ) ln{1+b—;„/b, )] . (67)

P=(IIIe r /Zie ) =(III/I Zie ) (74)

and 1 =e~=1.78.
The calculation of the energy loss S=—(dE/dx),

'thlollgll Eqs. (22)—(26), proceeds liow Rs 111 Scc. III. Ac-
cording to Eqs. (24) and (72) the integral over the angles
of incidence will consist of two terms,

G (ui, uq)=G (UI, UZ) —AGO {Ul,vZ),

where G "(Ul, uz) is given by Eqs. (33) and (34) for
m2/I i =-0, while AG~ becomes

t Ul —U2
b, G~ (Ui, U2)=—f du, 1+

8U I Up»

2

and quantum-mechanical effects.
As a further test of this approximation, we compare in

Fig. 4 the results of the derived expression, Eq. (64), and
of the proposed formula, Eq. (67). The agreement is re-
markably good with the only exception of the region of
small U, values, where Eq. (64) gives spurious negative re-
sults (this corresponds to the range mentioned before,
where Il jkAD ) 1 or b, )AD), while the approximate for-
mula, Eq. (67), has the proper behavior. Thus, Eq. (67)
not only simplifies the forthcoming integrations, but it
also describes the case where Eq. (64) fails.

Hence, our new formula for the transport cross section,
Eq. (67), has the form

tI =Otr —~o~r
CL QM

(72)

where o„ is the classical result of Sec. III, Eq. (31) and
the quantuIn-mechamcal correction is given by

b2
b,os = —21rb, ln 1+ z

———2mb, ln(1+pu, ), (73)
b,

with

' 4~b, ln(b, „/b, ),
4~b, ln(b, „/b;„), b, &&b;„.

(69R)

(69b)

10 I I f 1 I I

z

By comparing this result with Eqs. (65)»d (66) wc obt»n
the desired values

b,„=2e-'~+'~"xa =O.68xa,

bmin=e /k=0. 56k» X=A/mvz
(70)

With these values, Eq. (67) can now be applied to all the
pl evious cases.

It is interesting to notice that the same result, Eq. (67),
could have also been obtained &om the quantum-
mcchanlcai cxpl'cssloli, Eq. (55), by transfoHI11ng tllc sulIl
into an integral in the form

2 I.

/=1 +g
and then replacing li kb;„, l2 kb, „. This ex——plains-—
why our formula is so useful to incorporate both classical

I l 15 1 l

0 0.5 1.0
V& [G.u]

FIG. 4. Results for the transport cross section o.„vs the rela-
tive velocity U, (in atomic units), as given by Eq. (64) (solid
lines), and by Eq. (67) (dashed lines), with the values of
b and b;„given by Eq. (70), for XD ——200 a.u. Equation (67)
has the expected behavior for v, —+0 where Eq. (64) fails. See
the text for discussion.
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RQd by lntcgratlon wc obtain

66~ (ul, uz)= 2uz[ln(1+a )+ln(1+b )] 4—
SV2 Ul

+ 2P v 1
—uz+ —[arctan(a) —arctan(

[
b

( )]
1/2 2 2 fol Ul )Uz

fol' Ul & vz

with a=P'/z(ul+uz), b=P'/z(u, —uz). This yields the
quantum-mechanical correction to the classical results for
6 (ul, uz), Eq. (34), obtained by Gryzinski.

As in Sec. III, we now calculate the limits for ul p~uz
and vl «uz —but with no further approximations on the
terms containing Pu1 and Puz, this is important since we
want to span the whole range of P values relative to ul
and U2. Thus, we obtain

EGqM(UI ~~uz) = —,
' ln(1+Pu l ),

3

QM PUI 1
(vl «uz)—=

3vz 1+Puz

(78a)

To integrate over the thermal distributions, we split the
range of integration as in Eq. (38) and make use of the
previous approximations, Eqs. (78a) and (78b), in each of
those parts. Thus, we get

46~ (ul )= —,ln(1+Pu I )[p(x)—xp'(x)]

2x 1+;—El(t)exp
3m'~2 Pu,

where t = (1+Pu I )/Pu„x =u I /u„and u, =2kzl T/m. In
Flg. 5 wc compare this result with thc numerical lntcgra-
tion of Eq. (26) using the exact expression, Eq. (77), and
Rga111 f111d R very good Rgrccmcnt.

Our final result for an electron plasma, using Eq. (40)
for the classical part (with 5=0, i.e., mz «ml) and Eq.

(79) for the quantum-Inechanical correction, then becomes

AU I6 (ul ) =ln z [t))(x)—xP'(x)]
(1+Pu1 )' '

4x3
El(x ) ——,

' EI(t)exP
3m'~2

AD
IRx e

I

D 1
'1/z

2~ 2 z
' 1/z

+ 2
= + 28 U

(81)

where a =mb, „/Zl ez and P=(lrt/I Z&ez)z.
To obtain a complete solution for the energy loss S, that

can be applied to all values of x =ul/u„we must still in-
dicate the value of b,„. The value in Eq. (70) was found
for the case ul « u„where the screening of the ion is well
represented in terms of the Debye length A,D. As dis-
cussed in Sec. I, when U~ -U, we can no longer use a static
plctlll'c dllc to tllc Rppca1RIlcc o'f dynamical 111RIly-body ef-
fects, and for ul ~&u, the field of the ion extends over
longer distances, of the order of the adiabatic length
A,~d =U 1 /Cgp .

Since a good description of these effects cannot be given
in simple terms, we will consider b,„as an effective
velocity-dependent parameter, representing the variable
range of the ion field in the plasma, in a way that repro-
duces all known 1csults for low and high ion vclocltlcs. IQ
particular, thc obvious lntcrpolatlon

satisfies this requirement and permits accurate calcula-
tions, as illustrated in Sec. V. It is also of interest to no-
tice that we could obtain a similar approximation just by
adding the short-range (a) and collective (b) contributions
to the energy loss of a fast ion using, for instance, the re-
sults of Pines and Bohm:

0.5
4ItnZ, e mu I A,,

ln
mu I Zle

0 5 0
X= Vl /V~

FIG. 5. Quantum-mechanical correction to the value of the
function G(v~), denoted by AG™(U~),vs x =U~/U„where
v, =(2k~T/I)'~~, for incident particles with charges Z& ——1 and
2, as indicated, and for U, =l (T=13.6 eV). The solid lines
show the results of numerical integrations @phile the dashed lines
correspond to the approximate analytical expressions of Eq. (79).

2% PlZ le 2U 1

This lcndcls thc total cncrgy loss ln approximate agfcc-
ment with the use of Eq. (81) for A,, =ZA&/I . We must
notice, however, that Eq. (81) gives an oversimplified
description of collective losses.
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V. COMPARISON WITH PREVIOUS WORK
AND DISCUSSION

A. Analysis of the results

The main result of this work is summarized by Eq. (80),
which for convenience and further analysis can be cast in
a form that resembles the Butler-Buckingham result

with

G(v, }=F(x)lnA(v, ), (82)

F(x)=P(x) —xP'(x), (83)

and x=ui/u, . Thus, F(x} gives the fraction of plasma
electrons with velocities v2 smaller than the particle ve-
locity ui. In this way, we define the velocity-dependent
collision logarithm given by the expression

o.v ~

(1+Pu )'
lnA(ui) =ln

4x3 [Ei(x )——,'E, (t)exp(1/Pv, )]
1/2 P(x) —xP'(x)

(84)

and obtain for the stopping power

16~'" ~Zie vi
2 4

S=-
2k' T

' 3/2

(86)

which condenses a wealth of information on the energy-
loss problem depending on the parameters of the plasina,
electron density n,, and temperature T, and on the ion
velocity v ] and charge Z

&
e.

By Eq. (25), the stopping power of the plasma becomes

4~Z &eS=— =
2 nF(x)lnA(ui ) .

dX mv
&

We now analyze some particular cases of interest.

1. Low velocities, V~ &&ve

For x = u i /v, « 1 we can approximate

F(x)=-4x /3m'~, Ei(x )=-ln(1/I x )

au, 4(ks T)
lnAcL& ——ln =ln

Z, e'm 'scop

This agrees exactly with the result of Kihara and Aono. '

b. High temperatures, Zie /priv «1. This corresponds
to ktt T & 13.6Zi eV, or T & 10 Zi K. In this case t «1
and Ei(t)= —y —lnt; then from Eq (87). we find the
quantum-mechanical result for low velocities:

r

1—2y —— (89)

CXUe

lnAqM ~
= ln

r

k~T
=ln

P
+ —,ln2 ——,y ——, . (90)

This is in exact agreement with the result obtained by Ha-
mada and by Arista and Brandt, using the quantum-
mechanical dielectric function formalism for the case of
dilute plasmas [in the last reference the numerical terms
of Eq. (90) have been approximated by —', ln2 ——,'y ——,

'

1= —]

2. High velocities, U~ &gv,

For x =ui /u, » 1 we approximate F(x)=—1, and find

Equations (86) and (87) show a universal feature of
low-velocity stopping powers, namely, the linear depen-
dence on v &, the density and temperature dependences are
more complicated, although the dominant dependence is
of the form n/T ~ . The distinction between classical and
quantum-mechanical (QMPW) domains appears only in
the logarithmic term, through the parameter t that gives a
measure of the scaled Bohr velocity, Zie /A', relative to
the thermal electron velocity u, =(2ks T/m)' . The tran-
sition between these domains can be described by chang-
ing the temperature of the plasma. In particular, we ob-
tain the following.

a. Loiu temperatures, Zte /Au, »1. This corresponds
to

kttT & —,'Zime /fi =13.6Zi

in eV, or T&10 Z& K. Here we can take the limit t&g1
of Eq. (87), with Ei(t)=e '/t~0, and obtain the classical
result

Ave
lnA) ——ln I"

——,
' Ei (t)e'

47TnZ )eS=—— lnA2,
dx mv

&

where

(91)

—2y ——, ——,Ei(t)e1 1

mA, D

I e' Z e Pu

I Z]e
A'v,

=ln
Z~e m coP

where

(87)

(88)

AVi——,
' ln 1+

I ZIe
'2

I Z)e
'AU )

——,'ln 1+

InA~=lnfaui/(1+Pu i
)'~ ]

r

mv)
=ln

I Z)e2e)p
r

2mU )=ln
P

2'

(92)

A,ii kii T/mt'~, an——d co~ =4m ne /m [in Eq. (84) the limit
pu i ~0 has been taken]. In Eq. (88) the factor e 'r corre-
sponds to exp( —,') (not to be confused with the electric
charge).

with

a=- — 2, P=(fi/I Zie )
mU) 2 2

I Z)e2o)p
' (93)
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It is interesting to compare the last expression of lnA2
with the Bloch formula 0.1

I
$

I

T (o.u. )

10 100
I l & &

( r

I B] h=ln
2mu ) Zie—y —Ref i

'Ru i
(94)

20

CL1~

This provides an accurate analytical approximation for
Ref(i') as shown in the Appendix.

Hence, Eq. (92) can be used to describe the transition
between classical and quantum-mechanical results for fast
ions in a plasma. In particular, we obtain two well-known
results in the following cases.

a. Case Z&e /Rv»&1. From Eq. (92) we obtain the
classical result for fast ions2

3
2 mu1

inAcz, 2
——ln(a v

~ ) = ln —
2 (95)I Zie co~

b. Case Z~e /A'vq &&1. This leads to the quantu~-
mechanical expression

10

30 I l I

CL2 &

I I I I I I

10 10' 10e 107
T(K)

108

(96)
avi 2mu i

2

lnAQM2 ——ln = ln

which is the result obtained by Lindhard9 for fast ions in a
degenerate electron plasma (the degeneracy of the plasma
plays no role for high ion velocities). This also corre-
sponds to the result of Bethe for the stopping power of
atoms, by replacing the mean excitation potential of the
Bethe theory I, with the plasmon energy fico~.

In Figs. 6(a) and 6(b) we illustrate these various approx-
imations. They show the transition from the classical
(CL1, CL2) to the quantum-mechanical (QM1, QM2) ap-
proximations, with increasing relative velocities between
the ion and the electrons in the plasma. At low velocities
v~ && v, Fig. 6(a), this is illustrated by plotting lnA&, given
by Eq. (87), versus the plasma temperature Tccv, . For
high velocities u~ &~u, similar results are obtained in
terms of lnA2, Eq. (92), with increasing v~ as shown in
Fig. 6(b).

We can obtain further useful expressions from Eq. (84)
by taking the limits in a different order. Thus, we can
consider the limits p—+0 aud p~ao, which yield, respec-
tively, the classical and quantum-mechanical (QMPW) re-
sults, namely,

25—

20

10

5
0.1 100

v, (a.u. )

FIG. 6. The transition between the classical limit (CL) and
the quantum-mechanical (plane-wave) limit (QM), as it occurs
with increasing relative velocity between the test particle (with

Z& ——1) and the electrons in the plasma (with density
n =10" cm ). This is illustrated in (a) for low velocities
v~ &&v, where the transition is obtained by increasing the tem-
perature of the plasma. (b) shows the analogous case of high ve-

locities, v~ &&v„and where the velocity of the test particle is in-
creased. The solid lines are the results for lnA& and lnA2 ob-
tained from Eqs. (87) and (92). The lines of dashes for Ac~~,

AQMj ACL2 and AQM2 correspond to Eqs. (89), (90), (9S), and
(96).

4x' Ei(x')
lnAcL ——ln(av f )+ 3~'/' F x

(97)

av~ 2x3 E&(x )
lnAQM = ln

1/2 + 1/2P 3~ Fx (98)

These expressions apply now through the whole range of x
values. In particular, we retrieve the previous results,
namely &cL=+cL1 AQM=AQM1 for x «1, and
AcL =ACL2 AQM AQM2 for x » 1, as given in Eqs. (89),
(90), (95), and (96). Hence, Eqs. (97) and (98) describe the
transition between low-velocity and high-velocity collision
logarithms. This is illustrated in Fig. 7, where we show
lnAcL and lnAQM as a function of x =v&/v, . For x «1
we obtain the low-velocity results, independent of u&,
while for x »1 the v~ dependence becomes of the form
ln(av ~) and ln(bv f), respectively.

B. Comparison with previous results

As shown before, all known analytical expressions can
be retrieved as limiting cases of Eq. (84). That is already a
check of the agreement with previous work. We can ex-
tend this study by comparing our results with the analysis
given in a series of papers by Hamada et a/. ' ' They
have given a complete solution to the energy-loss calcula-
tion which was expressed in terms of auxiliary tabulated
functions. This provides a useful framework to ascertain
the accuracy of the analytical approximations given in
this paper.

First we consider the result for lnA~, Eq. (87), for
v~ &&u, and define



EW

CLl

X= V)/V~

FlG. 7. Classical Ocft scale) Rnd quantum-IDcchanical (right
scale) cxprcssIGQs for 1QACL Rnd 1QAqM, vs reduced velocItp

x =Uj /U, . The solid hnes correspond to the cxpressioQS of Eqs.
(97) and (98). The low- and high-velocity hmits, CL1,QM1 and

CLZ,QM2, are shown with dashed lines. Calculations corre-

spond to clcctroQ dcnsltg Pt =10 CIrl Rnd plasH18 tc1Tlpcra-

tures T = $0 K /or the classical case) and T = 10 K
(quantum-mechanical case).

AI'.
I ——InAI —InAqMI, (99)

where InAqMI ls the quRntuII1-11McllRIucal llmlt given by
Eq. (90). This gives for &I'-I

A&I ———
2 EI{t)e'——,

'
y ——,

' lnt,

2'2
I Zle

PU& 2k' T

The function —dd;1 is shown in Fig. 8(a) (solid line) as a
function of the parameter II=ZIe jA'u, —i.e., t=(I"ri) .
ThlS COXTCSPOQdS tO thC trRQSit10n bCtWCCI1 thC qUBBtUI-
IIleclla111cRI (QMI) Rnd tile classical (CLI) expI'esslons fol'

q ~~ I and q~~1, rCSPCCtiVCly. It iS COmP~rCd With the
result of George, Okamoto, Nakamura, and Hamada, '

——y+A (l)) (dashed line) in terms of the
tabulated function Aoo (Ii) (from Table 2 of Ref. 21;
our parameter II corresponds to the parameter v of this
reference). The figure illustrates the accuracy of the
RI181$tlCR1 3,PPI'OXlmRt1011.

A similar analysis is made for InA2, Eq. {92)for UI &)&,
in terms of

with ADMI given by the Bethe-Lindhard formula, Eq. (96).
ThlS giVCS

3= Z 82/kv

FIG. 8. Comparison bet%'ccn RQalptical RQcl QMDcrical results
for the corrcctioQS to the quaQtum-rnechaQical coHision loga-
rithm (plane-wave approrimation) due to classical effects arising
for large values of q. Our results, from Eqs. (100) Rnd (103), are
shown with solid lines. IQ case (8), for U~ (&U„
'g =Z~8 /flv~ =ZI 8 Pal /A(2k' T); thc 11Qc of dashes gjvcs
thc results 'tRbulRtcd 1Q Ref. 2I. IQ case g)) for U ) QQ Ug

'g =Z~8 /AUI, thc dRshcd 11Qc corresponds to Rcf. 19.

as a function of the parameter rt=ZIe /Irivl —hence,
t1 ——(I l))2. The agreement is again excellent, as we could
CXPCCt 0% iIlg tO thC RPPI'OXim8tlOQ

Re/(ix)=ln(I+I x )'~ —y,
EI. =—I ( n+It, )'i (103) ObtMQCd 1Il thC APPCM4X.

TO COIPIC'II;C fhC COIPSflM)Q WC COI1SldCf Q0%' thC IC-

suits for InA&L and InA&M. We define

dd. CL
——InACI. (U I )—InAC1„1,

AI-qM =InAgM(UI )—InAqM, ,

(105)
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where ACLI and A~MI are given by Eqs. (89) and (90). In
Fig. 9 we show the results for &I., cL and &&&M obtained
using our approximations, Eqs. (97) and (98) (solid lines),
and using the expressions of Hamada, namely,

4(kIIT) i
lnACL ——ln, — +hl(x)+ b, l(x)+ 1.116,

Zie d)J Pl

O.t

V(a, U. )

0.2
l

I

0.3 0.4
l

4k' T 1
lnAgM ——ln — — +61(x)+—,by(x)+ —, ,

8

where b, l(x) and 61(x) are the functions tabulated by
May', ' these results are shovvn in dashed lines. The agree-
ment is here less satisfactory at intermediate velocities,
x —1, where our approximations overestimate the value of
lnA. Since in most cases of interest lnA »1, the accuracy
obtained for intermediate velocities, of order (lnA), will

st111 bc good.
We finally notice that using in Eqs. (107) and (108) the

limits of the functions calculated by May, for x~0
[bl =——,, 41-=—(1+y+ln2) j and for x~ oo

(51= lllx + T~1112, Az —2 1Ilx —1 —1I12), wc find Rll cxRct,

agreement with the results obtained here —Eqs. (89), (90),
(95), and (96).

C. Comparison vnth experimental results

In a series of experiments Brown et al. have been able

to obtain results for the energy loss in an ionized plasma,
which for the first time cover the whole range of x values

of interest, throughout the maximum of the dE/dx curve.
In Fig. 10 we show the results for hydrogen ions in a sing-

ly ionized cesium plasma at temperature T =2100 K and

electron density n =10"electrons/cm . This is a good ex-

ample of the classical case, Eq. (97), both because of the
1011 veiocltyI u I ((Zle /fE, Rnd tllc plasma tcmpcraturcI
T ~~10' K. Moreover, in these conditions, the residual

X= V1/V~

Flo. 9. Velocity-dependent part of thc collision logarithID in

thc classical Rnd quantum-mcchan1cal Rpproxlmatlons frGIIl

Eqs. (105) and (106), vs x =U~ /U„with v, =(2k~T fm)'/. The
dashed lines give the numerical results of Ref. 20.

0
0

I I I ! I I I I ( I I I I { I I I

2 3

X= V/V~

FIG. 10. Experimental I'csults Gf Rcf. 35 foI' thc cncI'gy loss

of hydrogen ions in a cesium plasma of density n =10"cm
Rnd tcIDpcraturc T =2100 K. Thc solid linc gives thc Icsult Gf

this paper, Eqs. (84) and (85).

contribution to the stopping power due to the core of the
Cs+ ions can be estimated to be negligible. Hence, these
experiments serve as a good check of our results in the
classical limit, and for the relevant range of x values.

It would be important to extend this comparison to the
quantum-mechanical case, particularly for light ions in
hot fusion plasmas, where no similar data have so far been
prodUccd.

We have calculated the rate of energy loss of ions in di-
lute plasm as using classical and quantum-mechamcal
treatments. The analysis is carried over' by introducing
scvcr'Rl analytical approximations, based on physical
grounds, and preserving at each step the accuracy of the
CRlcUlation.

This procedure leads to a final analytical result, Eqs.
(84) and (85), which embodies all the cases of interest for
the energy loss of heavy ions in nondegenerate electron

plasmas. This includes the cases of low and high veloci-

ties (ul «u„ul »u, ) as well as the classical and

quantum-mechanical limits (ZI e /fiu„» 1, Zl e /Irlu,

(& 1, where u„represents a relative velocity).
The forefactor I' (x) in Eq. (85) contains the more obvi-

ous velocity and temperature dependences; it leads to
S Zlu)/T ~ at low elo ities, Eq. (86), d to S
IX:nZI/u I at high velocities, Eq. (91). This explains also

the maximum of the energy-loss function in simple terms.

On the other hand, the velocity dependent collision loga-

rithm, as defined in Eq. (84), incorporates quantum-

mcchanical corrcct1ons Rnd thc residual vcloc1ty dcpcil-

dence that arises from close and distant collisions. Hence,

lt ls R Illorc colnplcx fllnctlon of ul I ZI I II Rnd T.
In Fig. 11 we give a summary of the various cases

comprised 1n oUI' description. Hcic C1.1 RIld CL2
1cplcscllt condltlons of Rpphcablllty of t11c clRsslcR1 ap-
proximations of Eqs. (89) and (95), whereas QM1 and

QM2 indicate the cases where the quantum-mechanical
approximations of Eqs. (90) and (96) apply. The arrows
represent the directions of increasing ion velocity ul or in-

crcas1ng plasIIla temperature T. Also 1ndicRtcd oI1 each
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( BOHR)
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vX& v gZXvo

CLl

LOW VELOCITIES
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e' gX"0
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HIGH TEMPERATURES

FIG. 11, Summary of the cases included in our analysis of
the energy loss of ious in an electron plasma. CL1, CL2, QM1,
and QM2 correspond to the limiting cases of Eqs. (89), (95), (90),
and (96). The directions of increasing ion velocity U~ or plasma
temperature T are indicated. The transitions between these vari. -

ous llID1ts al'e descr1bed by A)~ A2s Acg, and A@M~ accord1ng to
Eqs. (87), (92), (97), and (98). All these approximations are con-
tained in the analytical result for the collision logarithm, Eq.
{84), as a function of the ion charge Z~e and velocity UI, and of
the plasma density n and temperature T= 2mu, /k~. Here

vo ——e /A is Bohr velocity.

l i i 1

0 5 8

FIG. 12. Results for the real part of the digamma function of
imaginary argument f(ig) as obtained from Eq. (Al) (dashed
line) and exact values obtained from tables (Ref. 28) (solid line).

energy-loss experiments in iomzed plasmas, under thc ex-
treme conditions of high temperatures required for ther-
monuclear research.

side is the approximation for the collision logarithm that
describes the transition between the corresponding cases.
Thus, for instance, by increasing the temperature, with a
fixed ion velocity ui ~&u„we go from the classical low-
temperature case, Cl.l, to the quantum-mechamcal high-
temperature limit, QM1. This transition is described by
the approximation denoted as lnA~ and given in Eq. (87).
In a similar way, the expression for A2, Aci, and A&M,
Eqs. (92), (97), and (98), connect the other limiting cases.
These are all approximations of the general result of Eq.
(84).

The agreement with experimental results is satisfactory,
but it only covers a limited domain of the analysis given
here. Oile of the basic problems described iil tllis paper is
thc transj. tlon between classical and quantum-mcchamcal
approximations. This is particularly important to describe
the effects due to the penetration of light and heavy ion
beams in fusion plasmas. In this sense it would be of
much interest to test the theoretical predictions with
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APPENDIX

The comparison of our result for ui ~~u„Eq. (92), with
the corresponding limit given by the Bloch formula of Eq.
(94) provides an approximating expression for Re11(ig),
namely,

Ref(i')= —y+ —,'ln(1+I i) ),
with I =cxPQ= 1.781.

In Fig. 12 we compare this approximation (dashed line)
with the exact values of Ref(ig) (solid line). Owing to the
wide range of applicability of the Bloch solution we con-
sider this result of considerable practical value.
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