
PHYSICAL REVIEW A VOLUME 29, NUMBER 4

Effects of rotation on radial heat flow in a gas
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A controversy which has appeared recently in the literature surrounding the topic of this paper
has so far left open the question of whether the Boltzmann equation is invariant under rotation of
the reference frame, and speculations regarding exotic consequences of the Coriolis acceleration
have yielded physically paradoxical results. In this paper it is shown that by consistently using gen-

eralized canonical dynamical variables appropriate to a rotating reference frame, the exotic para-
doxes dissolve, and a proof emerges that the physical consequences of the Boltzmann equation are
invariant with respect to the rotation of the frame of reference.

I. INTRODUCTION

The question, "In a disc having radial temperature gra-
dient does the flow of heat remain strictly radial when the
disc is rotating?" has produced some interesting contro-
versy. The traditional structure of continuum mechanics
would demand frame indifference; the heat flow should,
intuitively, remain purely radial. But the kinetic theory of
heat flow is based on the Boltzmann ansatz of molecular
chaos, which is in fact a violation of classical mechanics
and, as pointed out by C. C. Wang, ' the Boltzmann equa-
tion could very well fail to be frame indifferent. Wang
concluded that the frame indifference of the Boltzmann
equation was still an open question.

Muller had studied the heat flow in a "rigidly rotating
gas" and found that the Coriolis force should cause a net
transport of energy across radial lines proportional to the
temperature gradient. Hoover et al. have recently
claimed that computer simulations show that a rotating
disc observed from a corotating reference frame does
indeed show a transverse component of heat flow under
the impact of a radial temperature gradient. Their
motivation for this study was the observation that the
Coriolis acceleration appears coupled with the tempera-
ture gradient in a second-order expansion term of the
Boltzmann equation.

The argument implied in Ref. 3 is essentially as follows.
The immediate effect of the Coriolis acceleration occurs
during the free-path motion of the particle between col-
lisions as visualized in the Boltzmann ansatz. This ansatz
is the basis of the familiar Boltzmann equation which
may be written, in its simplest form: If the unperturbed
distribution function is fo, the perturbed distribution
function f can be expressed as a Taylor series either by

f=fo rDF ,'HD f— ——

celeration gives rise to a term in DoD&fo which couples
the angular velocity of the reference frame with the tem-
perature gradient

t) pr dT dfo
2Qp,

Bp, m dr dT

where p, and p, are the transverse and radial components
of the linear momentum.

Because the Coriolis acceleration vanishes in any nonro-
tating reference frame, the term displayed in Eq. (2) must
vanish even for a rotating gas if the gas is observed from a
nonrotating frame. This raises serious doubt as to the
"physical reality" of the effect. However, in this paper we
shall derive a result equivalent to Eq. (2) from the canoni-
cal equations of motion of an ideal gas in rotation,
without introducing the Coriolis acceleration, and prove
the result to be independent of the rotation of the refer-
ence frame.

II. CANONICAL EQUATIONS OF MOTION
FOR AN IDEAL GAS IN ROTATION

We consider an ideal gas contained in a perfectly
smooth and rigid cylinder of radius R and unit length in
the z direction. Collisions with the walls can change nei-
ther the kinetic energy nor the angular momentum. The
question of how the gas is given its net angular momen-
tum in the first place is not addressed. Cylindrical polar
coordinates r, P,z are employed.

A. Inertial reference system

The Lagrangian for a free particle is

Lo ———,
'

m (r' +r P +z ) .

The generalized momenta are then defined as

or, equivalently, by

f=fo &Dfo+ ,' ~D'fo—— p„=BLo!dr' =mr',

p4 =t)Lo lt)/=mr P, (4)

We may write D =Do+D] where Do is the derivative gL ~~z mz
due to acceleration between collisions and D~ that due to
temperature gradient. It is claimed that the Coriolis ac- Lagrange's equations of motion are
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p„=BL p/ar =mr P

pp B——Lplap=0,

p, =aL, /az =O.

The Hamiltonian is defined by

Hp= p„r'—+p~P —Lp ——(1/2m)(p„+p~/r +p, ) .

Hamilton's equations of motion are

BHplap„=r', BHplap, =y, aH, /ap, =z,
BHplar = —p„, BHp/ag = —py, BHpIBz = —pg .

From Eq. (7) we then have

(5)

(6)

BH) . BH) . BH)
ap„="' ap,

= ' ap,
=''

BHi . BHi

ar "' ac
aH,= —Pp az

yield the results

P, . Pp . P,r=, 4= —Qf, z=
m my' m

H) — + + —PPQf .
2m 2m 2mp'

Hamilton's equations of motion

= —P, ,

(16)

(17)

and

r =p', lm, P=p~/mr, z=p, /m

3 ~

p„=p~lmr, p~ ——0, p, =0.

(9)

(10)

2

P =
3 PA=0 P =0 ~

mr

Note that p~ is angular momentum, not the linear
momentum p, used in the discussion above of the Coriolis
acceleration.

B. Rotating reference frame

C. Maxwell-Boltzmann distribution, inertial frame

The most probable distribution having given total ener-

gy is the familiar Maxwell-Boltzmann distribution func-
tion. (This is a density-in-phase, with the phase element
dr dP dz dP„dP~dP, .)

fp ——Cpe (19)

Here the Lagrangian for a free particle is

L = —,'m(r +r 4 +z )+mQfr 4+ ,'mQf—r

where

Cp p(2mmkT—)—~, .p=Nlm(R rp) . — (20)

BL . BL
P, =— =mr, P, =— =mz,

ar' ' az

P~—= . ——mr 4+mQfrBL 2

(12)

Lagrange's equations of motion are

Pr = =mr@ +2mQf7 4 +mQfr,r

Here the coordinates r and z are presumably unchanged by
the rotation, but 4&P, it being measured with respect to
the rotating frame Qf is. the angular speed of rotation of
the frame about the z axis. The new generalized momenta
are now given by

We recall that (1/kT) is the "undetermined multiplier" in
the Lagrangian process of maximizing probability. The
angular mom. entum given by this distribution is easily
seen to be zero:

0 3p 0 21

If we ask for the most probable distribution of a gas for
which the total (conserved) angular momentum is not
zero, we need another undetermined multiplier, con-
veniently written QlkT which is to be determined by the
total angular momentum and the result is

HolkT QP~/kT
(22)

Pp —— ——0, P, = =0.=ae = ' '=az=

H =P„r'+Pp@—I.
=mr' +(mr 4+mQfr )4 L+mz-
=-,' mr'+

2
mr'e'+m Qfr'e

—mQfr 4——,mQfr +—mz2 & 2 2 & 2

P, P, , (Pp mQfr )—+ + —,mz
2m 2m m p'

—
2 mQfP2

Again the free-particle Hamiltonian is defined by

(13) where

3&z
mQ (R rp)l2kT—

C) ——p(2n.mkT)
mg2g2y2kT mQ r0 I2kTem —e

(23)

M =Nm Q(r'),
where (r ) is the average of r in the given distribution,
and from this it is clear that Q is to be interpreted physi-
cally as the mean velocity of rotation of the gas relative to
the inertial frame.

D. Maxwell-Boltzmann distribution, rotating frame

(14) and the total angular momentum is easily found to be

which may also be written in the form
Here the appropriate Hamiltonian is H& of Eq. (16). If

we ask for the most probable distribution with only the re-
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striction that this Hamiltonian be conserved, we find

H—
1
/kT

(24)

~f1 . ~f1
Dof1 =P +r'

P, r
(31)

and because the angular momentum in this frame is given
by integrating the factor mr@=P~/r mr—Qf [see Eq.
(12)] over the distribution of Eq. (24), this turns out to be
identically zero.

More generally we are interested in a gas with an aver-
age angular velocity, in the laboratory frame Q, and ob-
served from a rotating reference frame having an angular
velocity Qf relative to the inertial laboratory frame. This
requires that we add an undetermined multiplier
(Q Qf ) I—kT to conserve the angular momentum relative
to the noninertial frame. The new distribution function is
now

»f1 = dT ~f1 dp 1)fl

m dr "r}T dr Bp
+ (32)

P„=P~/mr (33}

[Here we have omitted those terms from the complete ex-
pansion that we know are individually zero, namely,

P&df, /dP& and P, df1 ldP, ; see Eq. (13), zBf, /Bz and
4Bfl /84 which are all zero].

From Eq. (18)

—Hl /kT P~(n 0/)/kT—
1 le e (25)

When we define the angular momentum relative to the ro-
tating frame as above, it integrates very easily to yield

M =Km(Q —Qf)(r ) . (26)

To see this and other later developments it is convenient
to write Eq. (25) in the form

and from Eq. (27)

~f1
flBr mr kP

~f1
fl ~

mkTaP,

Using these equations in Eq. (31) results in the identity

(34)

fl ——Clexp[ (P„+P, )—I2mkT (P~ Qmr )—/—2mr kT

+mr Q /2kT] . (27)

Cl p(2mmkT) /——[1—mQ (R +ro)/4kT+ ] (28)

(r ) = , (R +ro)+(mQ /24—kT)(R ro) +—

It is to be particularly emphasized that this distribution
function contains no term depending explicitly on the ro-
tation of the reference system itself, Qf. We thus have the
theorem that the form of the distribution function in
terms of the appropriate generalized canonical dynamical
variables is invariant with respect to the rotation of the
reference frame. Therefore if we can express Boltzmann's
equation in these same dynamical variables, then that
equation must be frame indifferent in the same sense.

Before proceeding with this, we present a couple of use-
ful approximations valid to first order in the ratio
mQ R /kT:

Dof1 =0 (35)

and

df 1 H 1
—Py(Q —Qf } d lnC

aT= kT2 ' dT
(36)

Using Eq. (6) this can be written

~o —Py d lnC
kT' (37)

Finally we have

Note that Eq. (31} invokes the gradient in phase space
with the six phase variables r, @,z,P„,P~,P, .

To determine Dlfl we need

~f1 fl

when evaluated under the distribution of Eq. (24).
P„

Dlf1 =
m

~o —Py d lnC
kT d lnT

d lnT d lnp

dr dr
+

III. BOI.TZMANN EQUATION
IN CANONICAL DYNAMICAL VARIABLES:

ROTATING REFERENCE SYSTEM

(38)

Using the approximation Eq. (28) we can now write down
the "perturbed" distribution function to first order:

We now review the Boltzmann equation —Eq. (1) using
generalized canonical dynamical variables, Eq. (12), and
the canonical equations of motion, Eq. (17), appropriate to
the rotating reference frame. The appropriate distribution
function is fl of Eq. (27).

The Boltzmann equation now reads

f =f1 —r P„Ho QP&+ , m Q'—(R'+r, )—

m kT

d lllp
dl'

f=f1 rDfl+ l ~D'fl —'—

where D =Do+a~ with

(30) Write Ho QP~ P /2m —,
'

m—Q r,——where—

P =P„+P,+(P~ Qmr ) Ir— (40)
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Equation (27) becomes P'„„=f dr f f f (P&lmr —Qfr)(P /2m)

fi ——Ciexp( P—/2mkT+ —,'mQ r IkT) (41)
xfdp, dp~dp, .

and Eq. (39) reads

" + ] ") (" lt is convenient to write

+d lnpldr )fi, P~lr mQ—r =P,

G(r) = ——,
'

m Q [r ——,(R +ro)] . (43)

The currents of interest are as follows. Total radial p«-
tlcle current at i'adlus r:

J(r)„s——2m f f f (P„lm)fdp, dp~dp, .

Total tangential particle current [see Eq. (18)] at any given
+4

/„„,= f dr f f f (P4/mr f)/r)fdP, d—P4dP, .

Total radial flow of kinetic energy [see Eq. (15)] at any
given p."

W(r)„d ——2m. f f f (P, lm)(P2/2m)f dP, dP~dP, .

(46)

Total tangential flow of kinetic energy at any given 4:

f f f dP, dP4dP, 4rrr=f P'dP, (49)

while the factor in the integrands of Eqs. (45) and (47) be-

(P~lmr Qfr) =—P, lm +(Q —Qf )r .

Provided we exclude the line r=O, (ro &0), the integrals
arc all well behaved and clen1entary.

We must note first that, because of the factor (P„/m) in
the perturbed distribution function, the tangential
currents, Eqs. (45) and (47), are both identically zero. The
only tangential currents are the convective currents arising
from the unperturbed function fi in the integrands, and
these are independent of the temperature and density gra-
dlcnts. Thc 1adlai currents arc obta1ned cas11y. Fron1
Eqs. (41) and (42) we may write

/, m(r)= —2rrrr f f f (P, /m) [(6+P /2mkt)(d(nT/dr)+d)np/dr(/gdP, dP, dP,

= —(82r/3)rrCiexP[ —,'(mQ r )IkT] j[6(d lnT/dr)+d lnP/dr)]I, +(d lnT/dr)Iz}, (51)

I~ —— P m e ~ I'= 3 m. 8m 2m T

I2 ——f (P /2m kT)e
~

dp=(15M ir/16m )(2mkT) /2 .

Using Eq. (28) and retaining only terms up to first order in m Q r /kT we find

J(r)„d—— 2mrrp(kT/m) —j 1+mQ [r ——,'(R +ra)]/2kTI[(G+ —, )(d lnT/dr)+d lnpldr] .
Using the same procedures we also find easily that

W„d(r)= 2mrrp(4k T /m—) j 1+mQ [r ——,
' (R +ro)]/2kT](5/8)[(G+ —', )(d lnT/dr)+d lnp/dr] .

(52)

(54)

Here it must be noted that even if d lnpldr were zero,
there would still be a net particle current J(r)&0, induced
by the temperature gradient. We must suppose that the
boundary is impenetrable to particle flow and that a densi-
ty gradient Inust accompany the temperature gradient and
adjust itself to cancel the particle current, J(r)=0:

d lnpldr =—(G+ —,
' )(d lnT!dr) .

Using this relation in Eq. (54) we flnd the heat current

8"„d(r)= 5n re(k Tlm)(dT/dr)—
X jl+mQ [r ——,'(Rz+ro)]/2kT] .

The dependence on r should be adjusted to conform with
conservation of energy, but as this is only a first-order
perturbation, wc shall have to accept the temperature gra-
dlcnt as an average ovcl thc radius and write

W(R)/2nR= —,' pr(k T/m)(dT/dr)—
X[1+m Q (R r() ) /4kT] . (57—)

The thermal conductivity at Q=O is only one-half the
conventional result which is written down from Eq. (54)
by equating the density gradient to zero and ignoring the
particle current that must then accompany the heat flow.
%'e emphasize that these calcu4, tions have been carried



W'pogy (Q Qf ) p EkT(r ) (59)

Both these currents vanish in a "comoving" reference
fl'aIIle Qf =Q.

%'e now proceed to evaluate terms second order in ~
and first order in the temperature gradient. From Eq. (35)
D IDofo is identically zero. It remains to consider
DoD, fo, and from Eqs. (31) and (32) we have

j 8 ~ 8
zDoDifi= 2 P.

~p +r~dPr dr

dT dfi dp dfi
m dl' dT dr dp

+ (60)

out in the generalized dynamical variables belonging to
the rotating reference frame and that the results are in-
dependent of the rate of rotation Qf of that frame.

On the other hand the convective currents are not frame
indifferent. As mentioned above, these are found by using
the unperturbed distribution function fi in place of f in
Eqs. (45) and (47). From Eq. (50) we have

J„„„=(Q—Qf) f r'dr f f f f,dP„dP, dP,

=X(Q Q, —)&r) (58)

and similarly

( —,DoDifI ),= —, (P~/m r ) .1 , dT I)fi
dr BT

(62)

P& Qmr—=P, r, dPy=rdP, ,

H, =(P, +P, +P, )/2m ——,mQ r
(63)

(64)

Then Eq. (47) simplifies to read

Wi,„s——,'r f—frdrdP, dP, dP, (P, /m)(P /2m)DoD, fi,

DiiD, f, = „(P,r+Qmr ) /m r .dT dfi 2 2 2 3

dr T (66)

Clearly the only nonzero contribution to the tangential
heat flow comes from the term in Eq. (66) that is linear in
P„which is

(DiiD IfI ),=2Q
dT
dr

I)fi
P, /m,

Because we are looking for tangential heat flow under
conditions of zero convective heat flow, we must set
Qf =Q in Eq. (47). It then becomes convenient to write,
using Eqs. (50), (16), and (25),

1 dT 8 Pr 8
(TDoDifi), =

2 d
P.

~P
+ P„af,

PE
e

—P2/2mkT

2mkT

and using Eqs. (33) and (34) this reduces to Using these equations we write Eq. (65) as follows:

W„„s——,'r (Q/—m ) re ' i" dr
dT R dCi p2

+c, e '" kTdP„d-P, dP, .
dp' fo 2mkT2

Because we are not interested in terms with higher powers of Q, we take

0
remniril2kTdr i (R2 r2)

0
0

dCi i ci
c I

——p(2mmkT)
—3/2

(69)

(70)

W = r(Q/m )—(R —r )(c /T) I P dP( —'P +P /2mkT)e-
dr

(71)

The elementary integrals involved here are

—2~ P" """dP+ "(2mkT)--'
0 3

X f P e i2 dP = —,(2mkT) i2mli2 (72)

The final result is (in three dimensions)

8;,„s= ,' Hp(k T/m)Q(dT/d—r)(R rii) . —

If one is interested in a two-dimensional model and
suppresses the z dimension completely, I' =I', +P„and
modifies Eqs. (70) accordingly, one finds easily that (in
two dimensions)

8;,„s= HpQ(k T/m)(dT/—dr)(R ro) . (74)—tang

Generally, the mean tangential velocity (rP) per parti-
cle at a given radius r using Eqs. (12) and (27) is easily
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shown to be

(rP)(r) =(Q—Qf )r (75)

,'s Q(k—lmr)(dT/dr) . (77)

Initiating the heat flow must therefore produce a torque,
and the product of this torque tensor with the vorticity

which vanishes in a corotating frame; so the vorticity also
vanishes there. But using the perturbation determined by
Eq. (66) as derived for the corotating frame, we find

(rP)(r)=v Q(klm)(dTldr); (76)

so the vorticity is now

tensor is responsible for the tangential component of the
heat flow (Ref. 6).

The result found here in Eq. (67) is essentially the same
as that given in Ref. 3, Eq. (3), but its interpretation is dif-
ferent. Our final results, Eqs. (73) and (74) should serve as
a check on the computer simulations at least in the limit
of zero interaction energy.
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