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Microscopic theory of photoacoustic pulse generation
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Nonlinear-response theory to quadratic order in the external electric field is used to derive
correlation-function expressions for the hydrodynamic disturbances caused by the absorption of
light in linear spectroscopy. For relatively low-frequency sound, this treatment is shown to give the
phenomenological expression for the pressure generated by adiabatic expansion of the solvent. In
addition, two new terms are obtained. These represent the direct coupling between the dynamics of
the absorbers and the local microscopic stress. One of these terms has a dependence on the polari-
zation of the incident light which is totally absent in the phenomenological theory. A photoacoustic
experiment is suggested which can measure this new effect.

I. INTRODUCTION

Photoacoustic spectroscopy has proved to be a very
sensitive detection method. ' The phenomenological
theory of photoacoustic pulse generation is extremely sim-

ple; the absorbed light adiabatically expands the fluid,
thereby generating sound. For many applications, any
coupling between the absorbed light and modes other than
those leading to adiabatic expansion, if present, should be
unimportant, since only relative measurements are being
made. On the other hand, in many cases absolute intensi-

ty measurements are needed (e.g. , as in the recent applica-
tion of the photoacoustic effect to the measurement of
various heats of reaction in solution, in the photo-
calorimetric studies of reaction intermediates in mem-
branes, and in measurements of photochemical quantum
yields ). Any couplings to other modes of the solvent
must be understood insofar as they effect the partitioning
of the absorbed optical energy between acoustic and
nonacoustic modes. At present, the experiments are cali-
brated using well understood standards and it is then as-
sumed that the partitioning for the system under study
will be the same.

At present, the phenomenological theory of photoacous-
tic pulse generation assumes that all the energy goes into
sound through the adiabatic expansion of the solvent. For
example, no couplings, hydrodynamic or otherwise, to
shear, entropy, or other modes are allowed. In this work,
these assumptions are reexamined from a microscopic
viewpoint.

In Sec. II, nonlinear-response theory is used to derive a
general expression for the response of average properties
of the system to quadratic order in the external electric
field. The system is treated quantum mechanically and
the coupling to the external field is treated in the dipole
approximation. Moreover, no solvent polarization (local-
field) corrections are considered. If they are important,
they can be included phenomenologically. Section II also
contains a summary of the manipulations leading to the
well-known correlation function expression for the ab-
sorbed energy, ' as well as some sjmplifications of the

general quadratic term resulting from the expected short-
range character of the dipole-dipole correlations.

In Sec. III, the expression worked out in Sec. II is
analyzed for the hydrodynamic response of the system,
i.e., for the behavior of the mass, momentum, and energy
densities. For sufficiently long-wavelength sound, an ex-
pansion in wave vector yields four types of terms: one
proportional to the absorbed intensity, one electrostrictive
in nature, and two which represent the direct coupling be-
tween the motion of the dipoles and the local stress in the
solvent. Significantly, one of the latter generates a distur-
bance which depends on the polarization of the incident
light.

Detailed expressions for the response of the pressure are
derived in Sec. IV. The incident beam is modeled as a
thin cylinder and the detection is assumed to occur in the
acoustic far field using a point detector. Of the three
types of terms obtained in Sec. III, the first is shown to
correspond exactly to the usual phenomenological expres-
sion. For the remaining two terms, the polarization
dependence of one of them is used to suggest an experi-
ment which should directly measure the coupling to the
microscopic solvent stress field. Section V contains a
summary and dlscusslon.

II. NONLINEAR COUPLING TO THE EXTERNAL
FIELD

In this work, the system is assumed to be subjected to
an external electric field of the form

E(r, t)—:e' ' "'''e(r, t)+c.c. ,

where c.c. is used to denote the complex conjugate of the

preceding terms, co and k are the frequency and wave vec-
tor of the incident light, respectively, and e ( r, t ) is the
space- and time-modulated electric field amplitude. In
what follows, geometric optics is assumed for the incident
light, which means that the modulation lengths and times
are large compared to the wavelength of light and co

respectively. In fact, the modulation time is further re-
stricted to be longer than the characteristic microscopic
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decay time for the optical processes under consideration,
typically I—100 ps.

By assuming the dipole approximation for the coupling
to the external field and neglecting local-field effects (this
should be valid for low-polarizability solvents), the Hamil-
tonian for the system HT can be written as

dom.
The system's density matrix p satisfies the quantum

Liouville equation

Bp(t) 1 [H+H, (t), p(t)]
Bt iA

HT H ——p(—r, t)+E(r, t) =H+Hi(t), (2.2) i [L—+L,(t)]p(t), (2.4)

where H is the Hamiltonian in the absence of the electric
field, H i ( t) is the perturbation,

p( r,t):+5—(r —RJ(t))p~(t)
J

(2.3)

is the dipole moment density operator, and the symbol e
is used to denote a dot product and integration over the
field point r. In Eq. (2.3), RJ is the center-of-mass posi-
tion of the jth molecule and pz is its dipole moment.
Note, the molecular dipole moment operator is Hermitian
and commutes with the center-of-mass degrees of free-

where [, ] is the commutator and L (Li) is the
tetradic Liouville operator corresponding to H (Hi ). The
formal solution to Eq. (2.4) is

p(t)=T+ exp i j— dr[L+Li(r)] p,q, (2.5)

where it has been assumed that the system was in equili-
brium in the infinite past, with equilibrium density matrix

p,q, and T+ is a positive time-ordering operator. In
response theory, the right-hand side of Eq. (2.5) is expand-
ed in powers of the perturbing Hamiltonian. The well-
known result is

[p,q, p(r, t, —t)]
p(t) =p,q+ dti e E(r, ti )

00 lA

where

00 QO (iA')
(2.6)

p(r, t)= exp
™p(r) exp (2.7)

Equation (2.6) is an expansion for the full N-body density matrix of the system; as such, it can be expected to give
reasonable results only when used to compute the average of few-body operators. Fortunately, this is the case here.
Denoting the operator whose average is desired by 8 and using Eq. (2.6) gives

(8(t)).,=(8)—f dt . +E( rt, )
([8(t—ti), p(r)])

( 8(t t, ), p(—r, ), p(r„ t2 t, ) ), —
00 —00 (iA)

(2.&)

where ( )„,and ( . ) denote a nonequilibrium and
equilibrium average, respectively. In obtaining Eq. (2.8),
the identity

Tr(2[8, C])= Tr(8[C, 3]),

for any operators A,B,C, was used.
The term linear in the external field is the usual linear-

response expression. It is completely unimportant for
photoacoustic pulse generation. It is linear in the electric
field and will oscillate at the frequency of the incident
light (i.e., to=10' sec '). The modulation of the incident
light will not modify this in any essential way as long as it
is slow. On the other hand, the photoacoustic signal is
usually detected by a microphone or piezoelectric crystal;
these will not respond to disturbances which vary on the
time scale of light and hence, the leading-order pho-

toacoustic disturbance will arise from the quadratic term.
Similar arguments can be used to show that the pho-
toacoustic signal only depends on the terms even in the
external field, since these are the only ones which can gen-
erate low-frequency disturbances.

There is, however, one aspect of the linear response
which is important, namely, the total power being dissi-
pated by the system. This is a well-known result and is a
specific example of the fluctuation dissipation theorem.
The power dissipated by the system, P(co), to leading or-
der in E is given by

aE(r, t) &[u r ti p r

(2.9)

which when combined with Eq. (2.1) and omitting all



high-frequency terms, can be rewritten as

x f drIe(r, t)I2.

whc«c is thc speed of light. With this, the absorption
coefficient a(co), defined by P(co) =a(co) f d r S( r, t)„be-

The volume of the system is denoted by V and the total di-
pole moment is denoted by p T. In writing Eq. (2.10), use
was made of the fact that the system is translationally and
rotatlonally Invariant~ and that thc corrclatlon length and
time of &[p(r, t), p(0, 0)]& are small compared with the
wavelength of light and modulation length and time
scales. This should be an excellent approximation, given
the short lifetime of the dipole-dipole correlation function.

A rough estimate of the correlation length can be ob-
tained when the correlation between different absorbers
can be neglected (e.g., a dilute or weak coupling limit). In
such cases, the correlation between different points in the
system is established through factors of the form
&(r —r ' —RJ(0)+RJ(t)), cf. Eq. (2.3). An estimate for
the distance traveled by the absox'ber during the dipole
correlation-function lifetime can be obtained by assuming
free streaming (gases) or diffusive (liquids) motion. The
former gives a much larger correlation length, but
nonetheless, is only O(10 cm) for lifetimes in the pi-
cosecondsz in liquids, the diffusive estimate gives
O(1—10 A). Note that isotropy implies that the correla-
tion function on the right-hand side of Eq. (2.10) is diag-
onal with respect to its Cartesian indices.

S(r, t), the incident optical energy flux along the in-

cident wave vector at position r (i.e., the Poynting vector),
ln geometric optics ls glvcn by

n(to)= . f dt sin(cot)&[pr, pT(t)]&,

47k N
tsln Qpf pT pT t

this being the usual result.
The quadratic term can be simplified somewhat by

making use of the expected short-range correlation prop-
erties of the correlation function. As was the case with
the linear term, it is reasonable to assume that the dipole
moment densities (or the various commutators of them)
will yield nonzero averages only if

I
r i —r z I

and

I ti —tz
I

are small with respect to the length and time
scales which characterize the wavelength of light or the
modulation. In order to exploit this propexty, the spatial
integration variables are changed from ri and r2 to
r'= —,'(r&+r2) and ri2=—ri —r2 m the two spatial m-

tegrations in the quadratic term in Eq. (2.8). Next, Eq.
(2.1) is used in the quadratic response term. Of the result-
ing four terms, two are high frequency (i.e., double har-
monics of the light) and can be dropped. Finally, expand-

iilg the electric field amplitudes aild e (wliicli vai'y
on long space and time scales) in Taylor series about
tl —t2 ——0 Rnd I'12 ——0 Rnd keeping thc lowest-order terms
allows Eq. (2.8) to be rewritten as

& [[8(t-t, ), I-(-'+-,'-.„)],&(-'--', -.„, —t )]&
&58(t) & = dti dt d r t2d r—cc 0 (t'A')

X[e'" e (r ', ti)c(r', ti)+c.c.] . (2.12)

The linear term has been dropped pux'suant to the discus-
sion given above. 58 is henceforth used to denote the de-
viation of 8 from its equilibrium average value and the su-
perscript e denotes the complex conjugate. Note, that at
this stage, unlike the case of the absorbed power, it cannot
bc concluded that thc quadx'Rtlc term dcpcnds only on

I
e( r, t)

I
. In fact, as will be seen below, it does not.

It must be stressed that the approximations which
transformed Eq. (2.8) into (2.12) are completely analogous
to those which allowed Eq. (2.9) to be reexpressed as Eq.
(2.10). Their validity depends oilly oil tile lai'gc sepaiatioil
OZ time and length scales between the dipole density corre-
lations and the properties of the incident light. In fact,
the weakest of these assumptions is the restriction that the
corrclRtlon length bc small %'ith lcspcct to thc wavelength
of light. While this should hold due to the fact that the
spectroscopy (i.e., ir, visible, etc.) is essentially a single-
particle probe, expressions valid for much shorter-
wavelength light can be obtained by restoring the factors

of e " to the integrands of Eqs. (2.12) and (2.11).
Up to this point, the discussion has not depended on the
precise form of 8. For photoacoustic measurements, 8's
corresponding to specific combinations of the hydro-
dynarmc variables arc px'obcd. These RI'c consldclcd ln
Sec. III.

Thc dctcctor ln photoacoustlc spectroscopy measures
the instantaneous pressure (momentum flux) at a specific
point in the system. Since the time and length scales in-
volved in this measux'ement are long, macroscopic expres-
sions x'elating the pressure to the hydrodynamic variables
can be used (e.g., the Navier-Stokes expression for thc
stress tensor). Hence, all that is actually required are the
instantanixius values of the hydrodynamic variables in the
vicinity of the microphone. The hydrodynamic variables
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are the densities of the conserved properties of the system,
i.e., the energy, mass, and momentum densities. These
will be denoted by H(r, t), M;(r, t), and P(r, t), where i la-
bels the components, respectively, or collectively by
A(r, t) .The nonequilibrium average deviation of these
quantities from their equilibrium values will be denoted by
lower case letters, e.g., h(r, t), or collectively by a(r, t).
The microscopic definitions of these quantities are well
known. ' What makes the hydrodynamic variables
relevant to long-time processes is the fact that they all
satisfy continuity equations of the form

+ WJ'(r —r '; t t» —co)]—

XS"(r ', t ), (3.2)

where J(r, t) refers collectively to the microscopic fluxes

of energy JE(r, t), mass J;(r, t), and momentum 7(r, t)
(stress tensor). Again, the microscopic definitions of the
fluxes are well known ' and will not be repeated here

From Eq. (2.12) it follows that

Ba(r, t)
(3 1) where

P"J(r —r ';t;co)—: f dt ' f dri2e' '([[A(r, t), p'(r '+ —,
'

ri2)], p (r ' ——,
'

ri2, —t')]),
C L

(3.3)

SJ'(r, t) =— [e'(r, t)]'e'(r, t),
277

(3.4)

and where, henceforth, repeated indices are to be summed. Note that translational invariance implies that 8' is a func-
tion of r —r '. In addition, the trace of S'J is the incident energy flux.

The spatial integral on the right-hand side of Eq. (3.2) is a convolution; hence, the subsequent analysis can be simpli-
fied by introducing spatial Fourier transforms, e.g.,

A(k, t)=—f dr e' "A(r', t) .

Equation (3.2) thus becomes

a(k, t)= f '
dt, [W'~(k, t t„~)+IVJ'(k—, t t„co)]S"(k—, t) . —

From Eq. (3.3) and translational invariance,

8"J(k t cg)= — f dt'e'"'([[A(k, t), p'( ——,
' k)], p'( ——,

' k, —t')]) .
c(iA') V

(3.5)

(3.6)

(3.7)

There are two types of motion contained in 8': the fast
motions associated with the absorption and other micro-
scopic processes, and the relatively slow motions associat-
ed with the photoacoustic pulse propagation to the detec-
tor. The latter are characterized by small k's and long
times in Eq. (3.6). In order to make the separation of time
scales more explicit, note the following projection operator
identity: '

A(k, t) =G(k, t)A(k, t=0)

+ f C 'Gt(k, t —t')ik I(k, t'), (3.8)

where G(k, t) is the hydrodynamic propagator and I(k, t)
is the random or dissipative current. In the language of
projection operators, the dissipative currents are orthogo-
nal to the space of slow variables and therefore represent

t

8"J(k,t,co)= 8'g(k, t,co)+ 8'g(k, t, co), (3.9)

where the reversible and dissipative parts of 8'are defined
by

the fast motions of the system. This, of course, depends
on a correct identification of the complete set of slow
variables. Here it has been assumed that the hydrodynam-
ic variables are the only relevent slow quantities in the
problem. The dissipative currents should thus have corre-
lations which decay on microscopic length and time
scales. The propagator, strictly speaking, is defined in
terms of the hydrodynamic variable time-correlation func-
tions, although for long-wavelength phenomena it can be
obtained phenomenologically (see below).

Using Eq. (3.8) in (3.7) allows the latter to be rewritten

c(iA') V
8"J(k,t,co)=G(k, t) f dt'e'"—'([[A(k), p'( ——,

' k)], p~( ——,k, —t')]), (3.10)

and

Wg (k, t, co)= — f dtiG(k, t ti) f dt'e' '(—[[ik.I(k, t&), p'( ——,k)], pj( ——, k, —t')]),cth V
(3.11)



respectively.
Note that the time-correlation functions in Eqs. (3.10)

and (3.11) have their time dependence associated with
sonic microscopic quantity, 1.c. thc dipole moment dcnsl-
tics or disslpatlvc currents. As such, they should decay on
microscopic time scales, with a concomitant microscopic
correlation length. Since photoacoustic spectroscopy
probes only long time and wavelength acoustic phenome-
na, the time-correlation functions on the right-hand sides
of Eqs. (3.10) and (3.11) can be expanded into Taylor
series in the wave vector (i.e., into a series in kA,„where
A,, is some small length). This is analogous to the expan-
sion of Selwyn and Oppenheim" in their treatment of
generalized hydrodynamics. As with all such expansions,
there is the question of convergence, a question which is

beyond the scope of this paper.
First consider the reversible part of W. It is easily

shown that the dipole moment density commutes with all
of the mass densities. T'he commutator with the momen-
tum density is easily shown to equal

Finally, for the coupling to the energy density, the result-
ing correlation function is a rank 2 tensor and thus must

be an even function of k in a system with inversion sym-
metry. Moreover, the k=0 limit of the energy density is
simply the total Hamiltonian of the system. Thus Eq.
(3.10) becomes

c(if&) V
W'J~(k, t,co)= dt'e'"'

I 6~H(k, t)([[H, p'T], pjr( —t')]}

—G „(k,t)Rk"([p'T, pJT( —t')]}J+O((kA,, ) ) . (3.12)

Of course,

(3.13)

which when used in Eq. (3.12), using the fact that the equilibrium distribution is stationary in time, and integrating by
parts gives

Wri~(k t co)= . f dt e ~ [icoGr It(k t)+G p (k t)ik ]([pT(t ) pT]}5J+O((kA ) )
ct fiV

(3.14)

(3.15)

where 5,J is the Kronecker delta. (It is due to the fact that the system is isotropic. ) Using Eqs. (3.14) and (2.11) gives

W'rj g(k, t, to)+My'~(k, t, co)=—[Gr Jt(k, t)a(to)+6 p„(k,t)ik "e(a))]5J+O((kA,, ) ),

e(co)—: f dt cos(cot)([p"T(t), pr] } (3.16)

is the derivative of u(co)/co. When Eq. (3.15) is used in
conjunction with Eq. (3.2), it follows that the response
due to the first term in the reversible part of the motion
depends only on the absorbed power. In fact, as will be
shown below, this term is exactly what the phenomenolog-
ical theories of photoacoustic pulse generation would
predict. BcfoIc showiIlg this, howcvcr, thc dissipativc paIt
will be examined. The term in e{co) will vanish at the ab-
sorption maxima. Roughly speaking, it represents the dis-

.]

turbance generated electI'ostrictively and should be veI'y

small. In fact, it can be shown, cf. Eq. (4.10) below, that
this term is O((cur~ ) '), where ~~ is the pulse time.

The response excited via the coupling between the dissi-
pative currents and the dipole moment densities is expli-
citly proportional to k, cf. Eq. (3.11). Since a simple
form for the reversible terms could be obtained only to
O((kk, ) ), it is sufficient to consider the leading order
behavior of WD. From Eq. (3.11) it follows that

c(iA') V
WDJ(k, t,co)= f dt&G(k, t) f dt'e'"'ik ([[IT(t&), p'I], pjT( —t')] +}0(( kA,, ) ),

where iri obtaining this last expression, the t& dependence of G was neglected, since it comes in with extra factors of k,
cf. Eq. (3.1). Also the limit of the t~ integration was extended to ao, as the integrand should decay on a microscopic
time scale. The correlation function on the right-hand side of Eq. (3.17) is much more complicated than that which ap-
peared in the reversible terms. Nonetheless, for systems with inversion symmetry, it is easy to see that the couplings to
the dissipative energy and mass currents vanish, since the associated correlations involve the average of a third-rank ten-
sor, which will average to zero. Thus Eq. (3.17) becomes

W'J (k, t,co)= f dt, G -{k,t) f dt'e'"'ik ([[I „(t)),pT], pJT( —t')]}+O((kA,, ) ),
c i' V yP '

O
(3.18)
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where I- is the k =0 limit of the dissipative part of the stress tensor. Since the correlation function is the average of aP, T
fourth-rank tensor in an isotropic system, Eq. (3.18) can be rewritten as

W&& z(k, t, to) =[6 z, (k, t)ikJ+6, (k, t)ik' —75&6 z„ik "]Al

+[6 „„(k,t)ik"]A25J+[6 ~;(k, t)ik —G,(k, t)ik']AI,

and

Al= f dtl f dt'e' '([[I"-"'(tl), pT], pT( t—')])+O((kA,, ) ),c IIII' V

A2=, f dtl f dt'e'"' ([[I'-' (tl), p~z j, pJT( —t')])+O((kA, , ) ),
9c(illl) V

(3.20a)

A3= f dtl f dt'e'"' ([[P-"' (tl), pT], p~T{—t')])+O((kA, , ) ), (3.20c)

where the superscripts a and s denote the asymmetric and

symmetric parts of I, respectively. The A coefficients
represent the dissipative coupling to between the external
field and the local stress in the solvent. Of the three
tcH11s, ollly A2 will gcIlcl'a'tc a rcspollsc wlllch Is plopol-
tional to the incident power, although the absorption coef-
ficient does not fall out exactly, as was the case with the
reversible terms. The terms in AI are qualitatively new.
They generate a response which in general depends
coherently on the IIoiarizations of the incident fields. Fi-
nally, the terms in A3 arise from nonspherically syrn-
metric interactions. They do not couple to the (longitudi-

I

nal) acoustic modes and are not considered further. The
remaining parts of 8'D are explicitly symmetric in ji, cf
Eq. (3.19); thus when they are combined with Eqs. (3.9)
and (3.6) the net result will be to take twice the real part
of the A coefficients [i.e., to replace the factors of e'"' by
2 cos(cot') in Eqs. (3.20a) and (3.20b)]. It is henceforth as-
sumed that this has been carried out and the same nota-
tion, i.e., Al 2 will be used for the coefficient of the result.

In the hmits of high dilution or weak interabsorber cou-
pling, the correlation between different dipoles can be
neglected and Eqs. (3.20a) and (3.20b) can be rewritten as

QO

Al —— f dtl f td' co(sicot')([[I"~' (tl), pl], p~l( —t')])+ 0(( kA,, ) )
c IIII

(3.2 la)

Ag —— f dtl f dt'cos(cot')([[I'-' (tl), p11], pjl( —t')])+O((ki, , ) ),
9c{iR)

(3.21b)

where n~ is the absorber number density and p& corre-
sponds to the dipole moment of any single absorber. In
addition, pursuant to the preceding discussion, Eqs.
(3.21a) and (3.21b) have been written in a form which can
bc dlrcctly used 111 Eq. (3.6). Sllllllarly, the absol ption
coefficient can be written as the absorber number density
times a single-particle absorption coefficient [cf. Eq.
(2.11)].

Note that the fact that the dissipative stress is evaluated
at k =0 leads to some well-known simplifications. Specif-

+T ~ rj jFJ Jj j'(+j)
(3.22)

where Fi J is the force j exerts on j (pairwise additivity is
assumed).

Combining Eqs. (3.19), (3.15), (3.9), and (3.6) gives

ically, the x-y components become equal to the corre-
sponding components of the stress tensor, i.e.,

ar(k, t)= f dtl IGr, H(k~t —tl )&(to)+ik"6 p, (k, t t )l[ A2+(ee)l]J—S(k, t )I

+[6 p, (k, t —tl)ik +6 z, (k, t tl )ik' —,5JG ~„(k,t ——tl)i—k"]AIS~'(k, tl)+O((kA, , ) ) . (3.23)



In Sec. IV, a specific experimental configuration which
should allow Ai to be measured is proposed and analyzed.

IV. THE PHOTOACOUSTIC EXPERIMENT

+ikGq~~ t (k, t t i)[A2+e(~)] j

XS(k, t, )+2tkGii (k, t —t, )A,

x( kk ——,
' 1):S(k,t, ), (4.4)

Equation (3.23) is a general expression for the response
of the system to quadratic order in the external fields. All
that needs to be done in order to compare with the experi-
ment is to write out the various elements of the propaga-
tors and carry out the algebra. In what follows, it is as-
sumed that the photoacoustic experiment measures the in-
stantaneous deviation of the hydrostatic pressure from
cqui1ibrium, i.e.,

where the superscript
~ ~

on the propagator denotes the
part corresponding to tlie loiigitlidiiial velocit'y aiid where
k 18 a un1t vcctoI' 1Q thc k d1I'cct1on. Thc low-wave-vector
form of the propagators is well known and for example is
given in Appendix A of Ref. 12 (note that the notation is
somewhat different). The propagators are thus

Cg QT
2 —k I2

G~„,H(k, t) = cos(kc, t)e (4.5a)

5pg(k, t)::-Mm;—(k,t),+=Hh(k, t), (4.1)

(4.2a)

2
s 'VT

Cp

(4.2b}

and c„yT, and c~ are the adiabatic sound speed, thermal-
expansion coefficient, and specific heat at constant pres-
sure, respectively. Thus from Eq. (3.23) it follows that

Gq„r(k, t)::-MGMr(k, t—)+=H, GH , r( k, t), y =H, P

(4.3)

is needed. This is not too difficult a task if use is first
made of the fact that hydrodynamics does not couple
longitudinal and transverse modes (the pressure belongs to
the former class) and if the length and time scales of the
acoustics are chosen to be sufficiently fast so as to be able
to ignore purely diffusive modes. That is, the diffusive
Q1odcs will not have time to Icach thc dctccto1. Hc1c thc
longitudinal diffusive modes are the entropy and mass dif-
fusion modes. The purely longitudinal response, cf., Eqs.
(4.3) and (3.23) can be written as

—k2I' t
G~~~ p(k, t)=i' sin(kit)e

where I, is the sound damping constant. For what fol-
lows, it is assumed that the distance to the detector is
small enough so that damping can be neglected in the
acoustic propagation.

The photoacoustic experiment measures the acoustic
81gIlal gcncratcd by RQ extended souI'cc. Thc 1ncldcnt
beam is usually modeled by an infinite cylinder of radius
R along the z direction thus

S(r, t) =
Io(t)

Qn
2 ~

P'g QR
mR

0, otherwise (4.6)

where n is the polarization direction of the incident light
(it of course must lie in the x-y plane), the subscript J.
denotes the projection onto the x-y plane and Io(t) is the
incident power. For the moment, the time dependence of
Io(t) will be left unspecified, except for the fact that it be
a pulse w1th chRI'actcf1st1c time v&. With th18 incident
beam profile, Eqs. (4.6) and (4.5) can be used in Eq. (4.4)
to compute the pressure response. In order to simplify the
calculation, it is assumed that the measurement is per-
formed in the acoustic far field and that the incident beam
is very thin (specifically, ri ~~A and R &&c,vz }. The de-
tails are contained in Appendix A and the pressure
response is

t —e/c
&pi, (r, t)= J dt' .

c,yTa(co) . e(co)+A2+4Ai[(n ri)2 ——,'] ..
~o(t')+ Io(t ')

Cg

[c,'(t —t')' —r,']'~' (4.7}

where the overdot denotes a time derivative.
The first term in the integrand of Eq. (4.7) is exactly

what was obtained by Patel and Tam' and arises from the
adiabatic expansion of the fluid on absorption of light.
Thc two tcITl18 1Il A arc ncw. As mentioned Rbovc, they
arise from the direct coupling of the molecular dipole mo-

l

ment to the local stress. Roughly speaking, the relation-
ship between the new and old terms is analogous to that
bctwccIl thc revcr81blc and d1sslpRt1vc terms 1Q thc hydI'o-
dynamic equations (e.g., the sound speed versus the
viscosities). It is probably the case that the new terms are
small. However, the term in A& is qualitatively new; it de-
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the inciden gt»htpends on the po
f h h toacoustic pulses gen-d'ff«entjal measurem

'
ting toward and

ment o1 .
h olarization poincrated from light w p

o ld measure the Ai termperpcn d' lar to the detector wou mea
directly.

order to facilitate comparison wi
'

then o
time mtegrals in Eq.
which is Gaussian in time speci ica y,

Eo (tAp']
IO(t) =—

1/2
7T +p

P') ~~cgI;, thc

i 2 2 1/2 (2r )1/2[c (t ti) r ]1/2[c (t t') —rz —— rz

This RHows q.E (4.7) to be rewritten as

ulse. Moreover, sincewhere o isE '
the energy in the pu se.

(4 9)

2n-(2r, c,~p )
'"

1

3t ( )+A2+4A1[( n. rz
f, f(t —r, Ic, )lr~]

Cg Vp2c,

(4.10)

I /2'" -"'"[2'"xD „,( —2=2 8

D 2/2( —2 —x )]

and

(2t —1)e
f2(x) = dt

3m

e-"'"[3D „,( —2'"x)
6

1/2—4xD 3/2( —2 x )

—(2x +1)D 1/2( —2 x)] ~

arabolic cylinder function. q
' n' E uationwhere D„(x) is a p
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V. DISCUSSION
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different symmetry is involved. e co
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final expression for the new coefficients can be converted
to a classical one simply by replacing [, ]!iR by
the Poisson bracket. Of course, a better approximation
would be to treat the mechanics of the dipole semiclassi-
cally and the remaining degrees of freedom classically.
Tilts sllould i'eslllt iil coeffltclellts whlcll, at wol'st, should
be amenable to (classical) numerical simulation. This
direction is currently under study.

Clearly what is needed is an experiment. If the new
terms are observable, then they wi11 yield more direct in-
formation concerning the coupling of the internal motions
of molecules (at least as described by their dipole mo-
ments) and the solvent (via the local microscopic stress).
In addition, the magnitude of such couplings must be un-
derstood if photoacoustic detection techniques are to be
used, without extensive calibration, for absolute intensity
measurements.

dk—2c, e ' 'k sin(kc, t)(kk ——,'I)
(2sr)3

.-C

(r r —,—1) 5"(r c,—t) —5—'(r c,—t)
mr r

+ z 5(r c,t)—
3

r

where terms in 5(r+c,t) have been dropped. This propa-
gator is doubly contracted and convolved in space and
time with S(r, t), cf. Eq. (4.6). The derivatives on the 5
functions are moved to S by integrating by parts in time,
thereby giving
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APPENDIX

In this appendix, the Inampulations which lead to Eq.
(4.7) are described. The most difficult term is that in A, .
The integrals are most easily performed in the coordinate
representation. From Eqs. (4.4) and (4.5b) it follows that
the required propagator is

In the acoustic far field, t =rlc, is large compared with
tlM pulse duration time; hence, the last hvo terms in tlM
integrand in Eq. (A2) can be dropped. The spatial integra-
tion is performed in cyhndrical coordinates and the 5
function is eliminated in the z integration. Equation (A2)
is thus rewritten as

2 & i~ [(r —r ')i(r —r '4 —
3 I

I
r —r '

I
i]:nne(cs(t t')

I
ri——&i—'

I
)-

z
dt' r'dr' dP Io(t'),mac, ~="'~'[ '(t —t'P ~( ') ~']'"

l

(A3)

where e is the Heaviside step function. In the far field,
ri »R and thus Eq. (A3) can be approximated by

2(rzr& ——,I ):nn t —~, «, Io(t')
me~ —~ c t —t' —ry

Multiplying Eq. (A4) by Ai gives the corresponding term
in Eq. (4.7). The remaining two terms are obtained in an
analogous fashion.
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