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Calculation of period doubling in a Josephson circuit
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The method of harmonic balance is used to obtain analytic results for the differential equation
describing a current-biased Josephson junction with self-capacitance that is shunted by a resistor
with substantial self-inductance. This system is known to exhibit period-doubling cascades, chaos,
and other exotic nonlinear phenomena. After an accurate representation of the basic voltage oscilla-
tion is determined for high-bias currents, the value of bias current is computed for which this solu-
tion loses stability to a period-doubled mode. The predictions agree to remarkable accuracy with re-
sults obtained from both analog simulations and digital integration of the circuit equation, typically
5% for moderate values of inductance. Moreover, the method of calculation provides a systematic
scheme for achieving increasing accuracy.

I. INTRODUCTION

There has recently been considerable interest in the non-
linear dynamics of Josephson junctions' driven by steady
and/or alternating currents. ' Under appropriate con-
ditions, these devices exhibit period-doubling sequences,
chaos, intermittency, relaxation oscillations, and hopping
between metastable states. Much of this work has been
directed towards a junction shunted by its self-capacitance
and a resistor and driven by an alternating
current. ' ' This system is governed by the same
second-order nonautonomous equation as the driven pen-
dulum, namely,

5+y5+Qosin5=A cos(tot) .

There has been little experimental investigation of this
system with real Josephson junctions, but considerable
work has been done using analog simulations and digital
computers. There have also been efforts to study this
equation analytically. ' ' I.evinsen' replaced sin5 with
5—5 /6, an approximation that is valid only for small 5,
and that does not allow one to study running solutions.
However, one can predict the value of A for which the
solution first contains even-harmonic components. '

Pedersen et al. have analyzed Eq. (1) retaining the full
sine nonlinearity. They conclude that their approxima-
tions yield only a qualitative guide to understanding the
experimental results. On a more formal level, Gdyniec
and Chua' have been able to make statements concerning
the existence of periodic and aperiodic solutions to Eq. (1).

In this paper, we are concerned with a different system,
namely, a Josephson junction shunted by its self-
capacitance and by an inductance in series with a resistor,
and biased with a steady current. This system, which is
described by a third-order autonomous ordinary differen-
tial equation [see Eq. (8)], has been studied in detail both

experimentally' " and by means of analog simulations
and digital computations. ' Using analytic methods' '

similar to those previously employed to study Eq. (1), we
find results for high current biases that are in quantitative
agreement with those obtained by both analog and digital
means. Furthermore, we can predict the value of the
current at which the period-doubling instability occurs for
a given set of junction parameters.

In Sec. II we derive the equation of motion and con-
struct a solution using the method of harmonic balance.
We compare this solution with the results of both analog
simulations and digital computations. The onset of period
doubling is analyzed in Sec. III, and further bifurcations
are discussed in a more heuristic fashion in Sec. IV. Sec-
tion V contains a discussion of the results. The methods
used in the digital computation and analog simulation will
be described in detail elsewhere. '

II. EQUATION OF MOTION

The Josephson tunnel junction consists of two supercon-
ductors separated by a thin insulating barrier through
which pairs of electrons (Cooper pairs) are able to tunnel
coherently; the flow of pairs thus constitutes a super-
current. When an external current I is applied, no voltage
appears until the critical current Io is exceeded. The su-
percurrent is equal to Iosin5, where 5 is the difference in
the phases of the order parameters on either side of the
barrier. %'hen there is a voltage V across the junction the
phase difference evolves with time according to the rela-
tion 6=2eV/A', where e is the electronic charge, 2M is
Planck's constant, and the dot implies differentiation with
respect to time. The tunnel junction is shunted by its
self-capacitance C and by a conductance that allows a
quasiparticle current Iqp to flow in the presence of a volt-
age. In the device of interest here, an external shunting
resistance 8 is added which has a self-inductance I.. The
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I'csult1ng c1rcu1t 1s showQ 1Q F1g. 1, Rnd ls governed by thc
Cquatlons

C"I =Iosin5+ 5+Is+Iq~

(3)

where V~ 1s thc thcITD81 voltage QO1sc gcncratcd by thc
resistance R. If we introduce a dimensionless time vari-
able

CIcascs cvcn morc rapidly as thc blas curI'cnt 1s increased,
due to the presence of the capacitance which shunts alter-
nating current. As i is lowered from a high value, this
bas1c osc111at10Q gI'ows 1Q RIDplltude Rnd the dc coIllponcnt
decreases. Eventually, this solution becomes unstable to a
new mode. %e wish to represent this high-i solution
analytically, and to compute when it loses stability.

Since the voltage is proportional to 5, we put

5=U+x(t ),
where U is some constant, and x is a periodic function of
t11Tlc. Also, wc 1ntl'oducc 8 Qcw tiIl1c

t = (2mIOR /.40)t, (4) (10)
where @0—=h/2e is the flux quantum, Eqs. (2) and (3) be-

Taken together, Eqs. 9 and 10 imply

i =sin5+ pc5+is+iq~

5=~s+PI.~s+Ux ~

where the primes denote differentiation with respect to ~.
With these changes, the governing equation (8) may be

written

I /I—, i =I„,/I
V~ 2mI0R C 2m.LI0

PC= ~ ~ PL=
0 0 0

The dot now denotes differentiation with respect to t.
Neglecting the quasiparticle current and the noise volt-

age, we combine Eqs. (5) and (6) to give the third-order
cquatlon

+upL, [sin(r+x)]'+sin(v+x)=i —u . (12)

Although we have been motivated by the known behavior
for large i, we have made no assumptions about the rela-
tive size of the terms appearing in (12).

Equation (12) may now be tackled by the method of
harmonic balance, which is closely related to the method
of Fourier series used for linear equations. Assuming that
x 1s pcr1od1c, wc wr1tc

PL pc5+ pc5+5(1+PL, cos5)+sin5=i .

Thc system 1s scen to dcpcnd on thI'cc diIYlcnsionlcss pa-
rameters: pL, pc, andi Note tha. t in the absence of
driving terms, Eqs. (1) and (8) both possess the symmetry
5—+ —5. In the latter equation, the symmetry is broken by
the dc term. This difference between Eqs. {1)and (8) has
1IDportant conscqucnccs for thc obscrvcd dynaIMcs.

A crucial observation is that for high enough bias
current i, the voltage across the junction consists of a large
dc offset plus a small amplitude oscillation, regardless of
the values of pL and pc. Physically, this is because most
of the bias current flows through the resistor, so the junc-
tion RppI'oachcs R voltRgc b1ascd 11mit charactcnzcd by
sinusoidal current oscillations. As pz is increased, the ab-
solute amplitude of the residual voltage oscillation de-

x(r)= g A„sin(nr+P„),
g=1

(13)

where A„and P„are constants to be determined.
After substituting this into Eq. (12), we balance coeffi-

cients of each Fourier mode independently. This pro-
cedure leads to an infinite set of algebraic equations. If
Eq. (12) were hnear with constant coefficients, these
would be uncoupled, linear equations. However, Eq. (12)
instead generates an infinite set of coupled, nonlinear
(transcendental) algebraic equations. The method of har-
Inonic balance amounts to arbitrarily truncating the ex-
pansion, Eq. (13), and ignoring higher harmonics generat-
ed by the nonlinearities in Eq. (12).

For cxaIDplc, thc crudest approxlIIlatlon 1s obta1ncd by
including only a single term of (13):

x (v ) =A
~ sin(~+ P ~ ), (14)

Iqp(&)
Q

R C:: )&Iosin g V

&N(t), T~

FIG. II. Schematic representation of Josephson tunnel junc-
tion vAth critical current Io and self-capacitance C shunted vvith

an external resistance R which has a self-inductance I.; Iqp is the
quasiparticle tunneling current and V~ is the Nyquist voltage
noise of the resistance.

Now,

sin[r+A ~ sin(r+P~)]

J (A~)sin[(m+1H+mP~],

where J is the mth-order Bessel function of the first
kind. Consequently, substitution of Eq. (14) into Eq. {12)
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TABLE I. Values of Bessel functions J of argument A~.

J4

0.2
0.6
1.0
1.4

0.990
0.912
0.765
0.567

0.100
0.287
0.440
0.542

0.005
0.044
0.115
0.207

(10
0.004
0.020
0.050

(10-'
(10
0.002
0.009

yields terms of all harmonics. The justification for
ignoring all these higher harmonics is that for
A 1 ( 1,

i J~ (A i )
i

is a rapidly decreasing function of
i
m

i
(see Table I). In the parameter range considered, 3 i

is not bigger than about 0.7.
Thus, for x given by Eq. (14), Eq. (12) generates three

equations, obtained by separately balancing constant
terms, those proportional to sin~, and those proportional
to cos~. Omitting the detailed algebra, these are

J|sin/i =l —U

Atu(1 —pL pcu )+upL (JD —J2)cosp& —(JD+J2)sing, =0,
(18)

pcU & i
—Upi. (Jp+ Jg)sing|+( J2 —Jp )cosp] =0,

the calculation is self-consistent: Figure 3 shows that
A2/Ai ((1.

III. STABILITY ANALYSIS

To test the stability of the basic oscillation, one exam-
ines the evolution of an orbit infinitesimally close to this
solution. Thus we substitute

(21)

into Eq. (8), where 5D is the solution found in Sec. II and g
is an infinitesimal perturbation. The resulting Iinearized

equation for g is

pjp&g +U pc/ +Up +Upi, (gcos5p) +.gcos5D=O .

(22)

x (r ) =A i sin(r+ P i ) +A 2 sin(2&+ Pq) (20)

instead of Eq. (14) we find five coupled algebraic equa-
tions for u, A&, Aq, Pi, and P2. We omit displaying these
equations in the interest of brevity, but remark that they
reduce to Eqs. (17)—(19) if one sets A2 ——0 and $2

——0. A
particularly interesting question is whether this calcula-
tion gives the proper amount of higher-harmonic content
of the voltage signal. Figure 3 compares the ratio Az/Ai
from this calculation with that obtained for the analog
simulation from a power spectrum analyzer. The agree-
ment is quite good. Furthermore, we may conclude that

where the Bessel functions J are evaluated at A|.
Given PL, Pc, and i, these equations may be solved for

U, A &, and P&. Careful numerical analysis of Eqs.
(17)—(19) shows that this solution is unique.

Figure 2 compares the results from an analog circuit
with the values of u and A

&
obtained from Eqs. (17)—(19).

(The angle Il) &
is not a measured quantity. ) Also shown are

the results of integrating the evolution equation (8) direct-
ly on a digital computer. It is seen that the calculations
reproduce remarkably well the values obtained from the
digital computer, agreeing to within l%%uo over a wide range
of parameter values. The analog circuit also gives 1—2%
agreement for the quantity U, while there is a systematic
discrepancy of about 10%%uo for the amplitude 2 i. In both
cases, the disagreement can be accounted for by the uncer-
tainties involved in the measurements.

As already mentioned, Eq. (14) is the crudest represen-
tation of the oscillation. Of course, the method of har-
monic balance gives us a systematic scheme of approxima-
tion. One expects the fit to improve as more terms in Eq.
(13) are retained. If we use
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FIG. 2. Comparison of harmonic balance calculations with
analog simulations {open symbols) and digital computations
{closed symbols) for a variety of parameter values. Results
shown for {a) mean voltage U and (b) amplitude of phase oscilla-
tion A &.



0
0 P. &, ,6 8

(A,/ii, )'~' (@
FIG. 3. Ratio of second-harmonic amplitude A2 to first-

harIQomc aIDplltude A ~ for ana10g siQ1ulatlons vs harmonic bal-

ance calculations.

Equation (22) is a linear ordinary differential equation
with periodic coefficients. Floquet's theorem' guarantees
the existence of nontrivial solutions such that

Substituting Eq. (25) (along with the assumed-known
Fourier decomposition for 50) into Eq. (22), and balancing
the coefficients for each harmonic, we find a system of
coupled linear homogeneous algebraic equations.

Observe, however, that this system decomposes into two
disjoint subsystems. For, suppose Eq. (25) is restricted to
integer harmonics. Equation (22) couples harmonics via
the product of cos50 and g. Since cos50 contains only in-
teger harmonics, this product generates only integer har-
monics again. This even-m expansion for g corresponds
to a solution with the same period as 60, and is considered
further in Sec. III8.

In contrast, for the expansion

g(~) = g y cos +a sin
mg

- dd. 2 2

which represents a bona fide solution of period 4m, the
coupling gcos50 yields only noninteger harmonics. This
leads to a closed system of algebraic equations for the
coefficients of Eq. (26).

Next, we approximate Eq. (26) by retaining the I =1
and 3 terms only, and assume (as in Sec. II) that 50 is
given by

50—g+3 isin(a+Pi ) (27)
g(v +T)=iud(i),

where p is a (possibly complex) constant and T is the least
period common to the coefficients in Eq. (22)—for our
case T =2m. In fact, since Eq. (22) is a third-order ordi-
nary differential equation, we expect three such multi-
pliers iM, though they need not be distinct. The solution 50
is olbitRlly s'tRblc provided tliat tllc pcrtlll'batloIl g docs
not gros( in magnitude. In that case, all the multipliers
must satisfy

(24)

As the parameters of our system are varied, the multi-
pliers move around in the complex plane. An instability is
signaled when one of the multipliers crosses the unit cir-
cle. There are three possibilities.

to sufficient accuracy. With tllcsc approximations, Eq.
(22) generates a system of four linear liomogeneous alge-
braic equations for yi, ai, QI, and a3, whlcli may bc ex-

pressed in the matrix form

y1

M ' =0, (28)
y3
A3

where g I, U, and p I are obtained for any choice of pal'RIIi-

eteis (I,pz, pc) by using the procedure of Sec. II. The ma-
trix M is most conveniently expressed as the sum of the
three other matrices,

(i) Some iM passes through —1. From Eq. (23), it is
clear that p= —1 corresponds to a period-doubled solu-
tion.

(ii) Some iM, passes through + 1. This corresponds to an
instability of the same period as the original oscillation.

(iii) A complex-conjugate pair (iu„iu,*) pass through the
unit circle. In most cases the resulting orbits are confined
to an invariant torus. "

Nl '7 Pl 'T
g(w)=yo+ g y cos +a sin

h

(25)

We now proceed to examine each of these cases.

A. Period-doubHng instability

This corresponds to case (i) above. When the relevant
multiplier p is precisely equal to —1, there is a solution of
period 4m satisfying Eq. (22). To find when such a solu-
tion occurs, we again use the method of harmonic balance.
I.et

Q I I = 2 (Jo +J2 )—Ji Cosg I
—JISin PI,

QiI ——Q3q ————,J2sin(2/i),

Qi3 =
2 [Jo+ J2+ (Ji+J3)costi j

—J2sm Pi —Juncos(2/i)cosg,

Qiq=Qi2 ——,(Ji+J3)siniI)i+ J3sin(2/I)cosiI)i,

Q22 = —Q I I +2Ji cosf I,
QI3=Qi~+ Jz»n(2%I»

Q24 ———Q i3 —2J2sin2$I+ Jo+Jz,
Q33 = —Jicospi+ —,

' J2cos(2/I),

Q~ ———Jicosgi ——,
' J2cos(2/i),

Qij = ji

(30)



1~i, = —,UP~ Q2,
I—

I'2J = 2—UPI. QIJ.

3—I'~ =
z UPI. Q4,

3—
~4,.= 1—&PI.Q3&

2(a), we conclude that it is the oscillation Pequency, rather
tlia11 thc aIIlplitudc, which is of g1'catcst 1Illpoftancc 111

dctcITQln1ng %'hcn period doubling Sets 1n.
An interesting feature predicted by our calculation is

that there is a minimum value of PL ——PI;„(for fixed
Pc) for which the period-doubling instability can occur.
Th18 bchavlor 18 also observed ln thc analog 81IYlulat1ons,
For Pc ——0. 1 we find the theoretical value PL;„——0.72 as
compared with the value determined from the analog
simulation 0.77 &PL;„&0.84.

all other A;J =0. The solution of Eq. (28) demands that
the determinant of the coefficient matrix vanish, yielding
a single condition on the parameters (i,PI, ,Pc)

Figure 4 compares the results of this calculation with
both digital computations and analog simulations for
Pc ——0.0986, giving the critical value of bias current
i =i,„, for the onset of period doubling for various values
of Pl . In order to obtain accurate results, it is important
that an accurate representation of 50 be used. The figure
presents two theoretical curves. The solid line uses the
crudest approximation for 50, obtained by assuming the
existence of only the single harmonic [see Eq. (15)] in the
basic oscillation. The dashed-dotted curve (see inset) as-
sumes Eq. (20) to obtain better estimates of A 1, pi, and U,

but still uses Eq. (27) for the period-doubling part of the
calculation. Obviously, these are only the first of a sys-
tematic sequence of calculations which should converge to
thc exact answer. FroIQ Flg. 4 wc scc that good accuracy
is already achieved for the crudest approximation, the
more refined approach becoming important for higher
values of PI. . The first correction accounts for about
one-third of the discrepancy between the calculation and
the digital integration for Pi —14.

The results of the analog simulations agree with the re-
sults of the digital computations and analytical calculation
to a much greater accuracy in Fig. 4 than one might have
expected from the results summarized in Fig. 2(b). As
this agreement is more consistent with the results in Fig.

I l I I I l

I~t ORDER CALCULATION-~~ P«ORDER CALCULAT IGN
ANALOG SIMULATIGN

8. Period-one instabilities

%e now consider

/Pl Tg(r)=yo+ g y cos +a sin
PPl CVCII

We ignore terms with m &6, and take 5o to be given by
Eq. (27). Harmonic balance generates a fifth-order system
of linear algebraic equations, which we omit for brevity.
A period-one instability would be signaled by the vanish-
ing of the determinant of the 5&5 coefficient matrix.
However, we find that, for A 1 & 1.0, the determinant never
van18hcs.

To summarize, the situation is as fonows. For large
enough i, 5 oscillates according to Eq. (15). As i is gradu-
ally decreased, the amplitude Ai grows If P. L, &PL,
this solution will lose stability to a period-doubled oscilla-
tion at i =i,„, If PL, &.PL;„,no period-doubling instabil-
1ty occuI'8, RIll A ~ continues to gI'ow as / 18 lowered. Re-
call, however, that the truncation of Eq. (13) becomes less
reliable as AI increases. For AI &1.0, we have verified
that this basic solution remains staMe with respect to the
perturbation, Eq. (31).

C. Hopf instability

We can show that the case where a pair of complex-
conjugate multipliers exit the unit circle cannot occur for
Eq. (22). Toward this end, we rewrite Eq. (22) in the vec-
tor form

(32)

with

I

8 I 0 l2 I4

UPI, (cos50)'+ cos5O

U Pr.Pc

—(1+PL,cos50)

U PI.Pc PI.U

FIG. 4. Onset of period doubling: i,„, vs Pl, for .P~=0.0986.
Solid culvc IcpI'cscnts calculations based OB thc first-order ap-
prox1mation Eq. (14), while the dashed-dotted curve (inset) uses
the second-order approximation Eq. (20}. Dashed line gives the
results of digital computations, while the solid circles are from
analog simulations.

As pointed out by Crawford, ' a sufficient condition for
ruling out the possibility of a Hopf bifurcation for a
th1Id-order autonomous system 1s

I Tr =(r)dr & 0, (34)

where T is the period of the limit cycle. From Eq. (33),



CALCULATION OF PERIOD DOUBLING IN A JOSEPHSON CIRCUIT 2107

we see that the condition given by Eq. (34) is indeed ful-
filled, since PL is necessarily positive. This conclusion is
in complete agreement with the analog simulations.

IV. FURTHER (QUALITATIVE) ASPECTS

We have demonstrated that accurate quantitative pre-
dictions are in hand for the onset of the first instability of
the basic oscillation. The linear stability analysis of Sec.
III cannot tell us what happens beyond the instability.
This requires finding the new solution from the full non-
linear equation (8). One can well imagine using the
method of harmonic balance again to locate the period-
doubled oscillation, followed by a stability analysis of this
solution, and so on.

However, some further inferences may be gleaned from
the work already presented. In particular, consider the
analysis of Sec. IIIA. After i is lowered beyond i,„„the
system goes to a new period-doubled solution. Neverthe-
less, the period-one solution —though unstable —still ex-
ists. It may happen that this period-one solution regains
stability as i is lowered still further. If this is the case
then the determinant of the coefficient matrix appearing
in Eq. (28) vanishes a second time. This does indeed occur
for certain parameter values.

What can one expect to observe in such a case? In gen-
eral, one cannot decide simply by studying the stability of
the period-one solution. For instance, the period-doubled
solution might bifurcate to a more complicated solution
which retains stability even after the period-one solution
regains stability. The physical system could then operate
in either of these coexisting modes, depending on the ini-
tial conditions. However, most likely is the situation de-

picted in Fig. 5. The bifurcation diagram shown is pro-
duced from digital computations with Pc ——0. 1 and

PL, =0.904 (i.e., for PL slightly greater than PL, m;„). Here,
the local maxima U,„of the voltage oscillations are plot-
ted versus bias current. This figure shows a period-
doubling bifurcation which then "reverses itself. " (This is
reminiscent of Fig. 3 of Ref. 6.) The region containing

5=arcsini, 0 & 5 & 2rr . (35)

Linear stability analysis shows that the smaller value of 6
is a stable fixed point, the other is unstable. What, if any-
thing, may we say about the time-dependent solution of
Eq. (8) in this parameter regime. Physically, for i & 1, the
Josephson junction represents a short circuit at zero
frequency —the entire bias current flows through the junc-
tion and the (stable) fixed point Eq. (35) is observed. The
time-dependent solution is no longer seen. A clue to what
is happening is provided by the nature of the transition to
the fixed point. As one lowers i, the period of the oscilla-
tion increases dramatically before the oscillations disap-
pear at some i less than 1. If i is increased again, the ob-
served solution remains time independent until i = 1,
where a sudden jump to oscillations occurs. The transi-
tion is thus strongly hysteretic.

A11 this suggests the sequence of events depicted
schematically in Fig. 6. Here, the orbits in the three-
dimensional phase space (5,5,5) are projected onto a
plane. For i &1, the only attractor is the periodic orbit
[Fig. 6(a)]. (We have made the physically obvious identifi-
cation for the phase 5=5+2m.n. ) For i just under unity,
the pair of fixed points Eq. (35) appear in a saddle-node
bifurcation [Fig. 6(b)]. Eventually, the unstable fixed
point collides with the stable limit cycle, combining to
give an infinite-period, homoclinic orbit [Fig. 6(c)]. This
kind of bifurcation is called a global bifurcation ' in
contrast to a local bifurcation such as a saddle node. Glo-

the bubble corresponds to the existence of a period-
doubled solution, which has two distinct values of local
voltage maxima. The arrows indicate the values of i
where the period-one oscillation loses and then regains sta-
bility, as predicted by Eq. (28). For these values of Pl and

Pc, A i remains reasonably small ( & 1.0) in this range of i,
so that the agreement is still quite good.

Finally, consider again the case of Pl. & PL;„. As stat-
ed previously, the basic high-i oscillation remains stable as
i is lowered. Eventually, the amplitude Ai grows (as do
the higher-harmonic amplitudes A2, A3, etc.) to the extent
that our truncation Eq. (14) becomes unreliable. As i is
lowered past unity, the governing equation (8) has two
new fixed-point solutions

(b) (c)

0
3

FIG. 5. Bifurcation diagram for PL
——0.904 and Pc=0. 1,

from digital computations. Values of local maxima of observed
voltage oscillations are plotted versus i. Arrows indicate where
the harmonic balance calculation predicts the period-one oscilla-
tion loses and then regains stability.

FIG. 6. Sketches of the projection of flow in three-
dimensional (5,5,5) phase space onto the plane for i near unity.
(a) Trajectories all approach the stable limit cycle. (b) A saddle-
node bifurcation creates a pair of new fixed points. (c) The un-
stable fixed point collides with the limit cycle, forming a homo-
clinic orbit via a global bifurcation. e is a small, positive num-
ber.
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bal bifurcations are much more difficult to study analyti-
cally, but their occurrence often heralds very complicated
dynamics for nearby parameter values. For the present
system, this process is described elsewhere.

V. DISCUSSION

We have made analytic headway on the Josephson junc-
tion system of Fig. 1. Quantitatively accurate results for
the basic high-i oscillation and for the onset of period
doubling have been achieved using the method of harmon-
ic balance. One of the chief virtues of this method is that
it gives a systematic approach for finding successively
better predictions by including more harmonics in the
basic oscillation and/or the perturbations. Moreover, we
found that even the simplest possible calculations fit the
digital computations extremely well (Figs. 2—4), without
benefit of any adjustable parameters.

The governing evolution equation was taken to be Eq.
(8), which neglects the quasiparticle current and thermal
voltage noise. This restricts a detailed comparison be-
tween the present calculation and any experimental reali-
zation of the Josephson junction modeled by Fig. 1. How-
ever, it seems that an equation that took into account the
quasiparticle current could be fruitfully tackled by har-
monic balance. After all, this method relies on the oscilla-
tion having small higher-harmonic content, a condition
well satisfied in the present system (as demonstrated by
analog simulations).

Our approach has been essentially the one discussed by
Pedersen et al. to analyze Eq. (1). As mentioned in Sec.
I, those authors did not try to make quantitative compar-
isons between calculations and experiments. They cited
the above limitations of the governing circuit equations, as
well as the importance of higher-harmonic content ap-
pearing in the voltage oscillations as prohibiting any de-
tailed agreement. Their calculations included only the
lowest Fourier mode. On the other hand, the success of
the work presented here justifies renewed optimism for
getting good quantitative predictions for the system
represented by Eq. (1). It seems to us that the most im-
portant correction would be to include higher harmonics
in the basic oscillation. It is crucial to obtain a good rep-
resentation of this oscillation, since the search for a
period-doubling instability relies on linearizing the evolu-
tion equation about this solution. Thus even a small error
in the expression for the basic solution could have a large
effect on the stability calculations.

Another point to discuss concerns the role of symmetry.
Having isolated the large-i solution, linear stability
analysis allows us to find the first instability as i is
lowered —in the present case, a period-doubling instability.
In contrast, a recent paper by Novak and Frehlich' re-
ported successful predictions for the first instability of the
driven Duffing equation. In their case, the instability in-
volved symmetry-breaking rather than period-doubling.
For small driving amplitudes 3, the basic oscillation has
only odd-harmonic content —the first instability as A is in-
creased is to a solution containing both odd and even har-
monics. This symmetry-breaking was conjectured to be a
necessary precursor for the period-doubling cascade,

which is observed as A is increased still further. We want
to understand the fundamental reason behind this
phenomenon: Essentially, its origin lies in the symmetry
of the governing equation. The point is that the symme-
try of the equation (and basic oscillation} prevents the first
bifurcation from being a period doubling. Consequently,
a calculation along the lines presented here must be car-
ried out (at least) to the second instability in order to lo-
cate the onset of period doubling. In contrast, Eq. (8) is
not symmetric, so the first instability can be a period dou-
bling.

It is worthwhile to present here a heuristic explanation
of how symmetry suppresses period-doubling bifurcations
Our discussion focuses on equations with the symmetry of
the driven Duffing equation —hence it applies to Eq. (1) as
well —but the argument may be generalized. A general
discussion, using the methods of bifurcation theory for
mappings, is presented in Ref. 24.

The driven Duffing equation,

5+y 5+005+a5 =A cost, (36}

has the symmetry 5~—5, t~t+m. In other words, if
5(t) is a solution of Eq. (36), than so is —5(t+a). These
solutions may or may not be distinct. We shall call the
solution symmetric if

5(t) = —5(t +rr) . (37)

Observe that a periodic solution is symmetric if and only
if it contains only odd harmonics, as can be seen by look-
ing at the Fourier expansions

5(t)= g A„sin(nt+P„)+ g A„sin(nt+P„)
n odd

and

(38)

We now want to show that a symmetric periodic solution
(i.e., a symmetric limit cycle) will not lose stability to a
period-doubled solution.

As in Sec. III, the stabihty of a solution 50 is studied by
linearizing Eq. (36) about 50. Suppose we have exactly one
Floquet multiplier p on the unit circle. Then there is a
real perturbation g satisfying

g(t +2m. )=pg(t), p =+1
which is unique up to an overall multiplicative constant.

By the symmetry of the full nonlinear equation (36),
both 50(r)+g(t) and —50(t +m ) g(t +m)—must be s.olu-
tions to Eq (36). S.ince 50 is a symmetric solution,
g(t+m. ) satisfies the linearized equation. But since this
solution is unique up to an overall multiplicative constant,
we must have

g(t) =Cg(t + m),

so that

g(r) =C'g(t+2~) .

(41)

(42)

Comparison of Eq. (40) with Eq. (42) shows that @=+1.

—5(t+m)= g A„sin(nt+P„) —g A„sin(nt+P„) .
7l OCi(i

(39)
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It follows that generically the period-doubling case
p = —I will not occur, and symmetric limit cycles in syHl-
metric systems must first undergo a bifurcation producing
a pair of nonsymmetrical limit cycles before a cascade of
period-doubling bifurcations can occur. Many symmetric
systems become chaotic in exactly this way. "' ' ' We
again emphasize that Eq. {8)does not possess this symme-
try, and consequently the linear stability analysis allows us
to predict directly the parameter value for the onset of
period douMing.

This paper only scratches the surface of the rich
dynamics exhibited by Eq. {8). The wide variety of
dynamical behavior seen as one wanders through the
three-dimensional parameter space offers a host of in-

teresting problems to be tackled. The present work gives
hope that not all of these will prove intractable.
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