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The motion of an elastic pendulum with two degrees of freedom has been investigated in the vi-

cinity of a separatrix, using the Liouville equation. Even for this simple system, an irreversible ki-

netic equation of the Fokker-Plank type for the momentum-distribution function has been obtained

in the limit of a stiff pendulum. This equation describes a monotonic approach to the "microcanon-

ical equilibrium state" for a given energy surface. The diffusion coefficient for the energy of the

unperturbed pendulum in this work is directly related to that obtained by Chirikov s heuristic argu-

ment.

I. INTRODUCTION

The purpose of this paper is to derive an irreversible ki-
netic equation which describes the long-time behavior of a
conservative nonlinear dynamical system with a f~,v de-
grees of freedom near a separatrix. Since Boltzmann'
showed the H theorem in his kinetic equation for a dilute
gas system with a large number of degrees of freedom,
compatibility of the second law of thermodynamics with
the basic laws of dynamics has been the object of contro-
versy. It is well understood, at present, that Boltzmann's
derivation of the kinetic equation was basically phenom-
enological. The main step involved is the replacement of
the dynamical laws by a physically plausible stochastic
Inechanism: the "Stosszahlansatz. "

An important development after Boltzmann's deriva-
tion has been achieved by Van Hove in quantum systems
and by Prigogine and his colleagues in classical sys-
tems. Collecting the most divergent terms in the limit of
time t~ 00 in a perturbation series, they have derived ir-
reversible kinetic equations. An essential development
and distinction of their derivation from others ' is that
they have clearly distinguished roles of dynamics in evolu-
tion of the system from roles of statistics. The statistical
assumption involved in their theory was imposed only on
the initial conditions. With this distinction, Prigogine
has summarized a dynamical condition for the irreversi-
bility as the "dissipativity condition, " that is the "condi-
tion of the existence of nonvanishing collision operator. "
He has also emphasized the importance of analytical re-
strictions on the initial conditions of the system to have
the irreversibility.

However, the arguments by Van Hove and by Prigogine
and his colleagues have been concerned with systems hav-
ing an infinite number of degrees of freedom because of
the following reasons. First, complexity of the motion
quickly increases, as the number of degrees of freedom in-
creases. It is natural to suppose that the irreversibility is a
result of the complexity. Second, one of the necessary
conditions to obtain the nonvanishing collision operators
is that the Liouville operator of the system should have a

continuous spectrum. This condition is satisfied if we
consider a system in the thermodynamic limit, i.e., a sys-
tem enclosed in an infinitely large box with a finite densi-

ty.
Independently of the development in the nonequilibri-

um statistical mechanics, recent study of dynamical sys-
tems with a finite number of degrees of freedom reveals
the complexity of the motion in nonlinear systems, even

when they have only two degrees of freedom. When the
well-known difficulty of the resonance effect in the per-
turbation theory for nonintegrable systems (that is, the
difficulty of the small denominator) was overcome by
Kolmogorov, '

by Arnol'd, ' and by Moser" (i.e., the
KAM theory), the following was found: In every e
neighborhood of a given point in phase space through
which passes a trajectory of a certain type, one might find
trajectories corresponding to asymptotically different
behavior no matter how small e is. For a given Hamil-
tonian, there are various types of motion possible, each
with a nonvanishing measure. This complexity is strik-
ingly illustrated by computer simulations of Henon and
Helies, "Ford, and others. "

It seems to us from these findings that an "embryo" of
the irreversibility exists already in such comp1ex motion in
nonlinear conservative systems with two degrees of free-
dom. Our purpose is, thus, to show this embryo and add
a new mechanism of the irreversibility, i.e., the nonlineari-

ty, by extending Prigogine s perturbation theory into the
form that makes it possible to treat finite nonlinear sys-
tems whose periodicity depends on energy.

One of the conspicuous distinctions of Prigogines per-
turbation theory from other theories (e.g. , the K AM

theory) is that this theory deals with the evolution of the
Gibbs ensemble. The classical approach to dynamical sys-
tems is to study individual trajectories. However, when
the motion starts from an unstable region of phase space,
different initial conditions, which lie arbitrarily close to
each other in phase space, may yield exponentially diverg-
ing trajectories. In this situation the concept of deter-
Ininistic motion along trajectories ceases to be a physica11y
meaningful idealization. ' This makes it necessary to go
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to a probabilistic description of physical states in terms of
the Gibbs ensemble.

Another conspicuous distinction is that this theory
chooses time as one of the expansion parameters in the
pcrtUibat1on series» Rnd collects thc IIlost d1vcrgcnt terms
coming from the resonance effect in the limit as the time
goes to infinity. This makes it possible to deal with the
evolution of the system in the resonance region in phase
space, where the RAM theory does not work. By using a
siIDplc cxaIIlplc, wc show t4at thc 1rrcvcI's1b111ty 1s 8 I'csult

of the resonance effect, when the resonance value of the
momcnta 1Q phase space 1s dcnscly distributed.

As an example to illustrate our extension of Prigogine's
perturbation theory, wc consider an autonoInous system:
an elastic pendulum with two degrees of freedom with a
linear spr1ng wh1ch obeys Hookc s law, Rs shown 1Q Fig. I.
Here, 8 denotes angular displacement of the pendulum
from its stable equilibrium position at bottom, x is the dis-

placement of the spring from its natural length I, and m is
the mass. For sufficiently stiff spring with large natural
frequency, we show that the Hamiltonian of the system
slillply coIlslsts of till cc tcrnls: flic HRllliltoiliail of tllc
unperturbed pendulum (i.e., the pendulum with the fixed
length /), the Hamiltonian of the linear spring, and a small
interaction between the Unpex+urbed pendulum and the
spring. Then we focus our attention to the vicinity of the
separatrix of the unperturbed pendulum in phase space
(i.e., a trajectory that separates mtational motion of the
pendulum fmm librational motion). In time evolution the
pendulum stays almost all the time around the top (O=Ir)
without iiltcractlon, RIld passes quickly tllc bottom (8=0),
where the centrifugal force becomes maximum, with a
short interaction time.

The existence of the separatrix is a typical property of
nonliner systems. A complex deformation of the unper-

turbed separatrix by a small perturbation has been already
noticed about 100 years ago by Poincarc. Indeed, we

show that there exists an unstable region, called the "sto-
chastic layer» RI'oUQd thc separatrix. Thc unstable

motion is confined in the stochastic layer. Then, if the in-

itial condition of the ensemble is chosen in a small region
inside th1s Unstable I'cgion, Rs 1t cvolvcs in tiDlc, thc cil-

semble stretches in a direction parallel to the unperturbed

separatrix and expands in the vertical diIcction, as sho~n

In Fig & F« the case of sufficiently small interaction,
the stretch in the parallel direction is rather systematic,
and 1s mainly 8 icsult of nonlinearity 1Q thc unpcrtubcd
system where the periodicity of the system depends on the
energy, so that this process exists even when the interac-
tion does not exist. Gn the other hand, the expansion in
thc vertical diI'ection cx1sts only when thc 1ntcIact1on ex-
ists. This is the process in which we are mainly interested
in this paper. %C show that this process is described. by
an irreversible kinetic equation which reduces to a
Fokker-Planck equation for sufficiently small interaction;
the diffusion coefficient of the unperturbed energy of the
pcndulUII1 characterizing this iricvcI's1blc pI'occss is g1vcn
by

72m H2
D

P QH I T(H I )

with thc condit1on

Q3()p= Q+ II

Q

Here, 0 is the natural frequency of the linear spring,
coii=v'g/I is the natural frequency of the harmonic
pendulum for small amplitude, and T(H I )
=[I (n16/IH —

I 1I )] ' is the period of the rotation, or
the half-period of the libration of the unperturbed pendu-
IUID ncaI' 'thc separatrix. Thc variables H) Rnd Hp arc d1-

mensionless energies of the unperturbed pendulum and the
spring measured with a unit of the energy of the unper-
turbed pendulum at the separatrix. If we replace T(HI)
in Eq. (1.1) by its average value in the stochastic layer, we
show that the diffusion coefficient DII, coincides with the

onc obtained by Chirikov s hcur1st1c RrguITlcnt with thc
assumption of ergodicity. We further show that our
FokkeI'-Planck equation describes a monotonic approach
to the microcanonical equilibrium state for a given energy
SllIfRCC.

The pmgram of technical argument in this paper is the
following. In Sec. II we introduce a well-defined frame-

FIG. 1. Elastic pendulum.

FIG. 2. Dlffuslon process 1n phase space: Th1S 1s a closs scc-
tlon 1n phase space. Dlffuslon ploccss 1n thc vertical dlrcctIon
to the unperturbed separatrix is a result of the resonant interac-
tion. Stretch process in the parallel direction is rather systemat-
ic, and is mainly a result of nonlinearity in the unperturbed sys-
tem.
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work (i.e., canonical variables) to describe the motion of
the elastic pendulum in the vicinity of the separatrix. A
difficulty encountered in treating the motion around the
separatrix is that the action-angle variables of the unper-
turbed pendulum diverge at the separatrix. We show that
there is a set of canonical variables —instead of the
action-angle variables —that is well defined and continu-
ous at the separatrix and make the Hamiltonian of the un-
perturbed pendulum cyclic. In these variables, however,
the interaction term is yet nonanalytic at the separatrix;
higher-order derivatives of this term in the new momen-
tum diverge, due to the logarithmic divergence of the
period of the unperturbed pendulum at the separatrix.

At the same time, however, we show that the interac-
tion term as a function of the parameter p in Eq. (1.2) has
an essential singularity at p=0. This singularity appears
as an infinitely rapid oscillating factor in the interaction
term. Because of this rapid oscillation, the effect of the
interaction damps very quickly to zero as the value of p
decreases. We emphasize the importance of this essential
singularity to overcome the above-mentioned logarithmic
singularity in the perturbation series at the separatrix.

Using the new canonical variables we show that the
value of the energy at the separatrix of the unperturbed
pendulum is an accumulation point of infinitely many res-
onance values of the energy around the separatrix. We
further show that these resonances give rise to an infinite
number of singular motions (i.e., stable and unstable of
periodic motions). The distribution of these singular
motions is studied by constructing a Poincare map, called
the "whisker map, " similar to the one obtained by Chiri-
kov. ' From this map we estimate the width of the sto-
chastic layer in phase space.

In Sec. III we extend Prigogine's perturbation theory
such that we may treat a nonlinear system, periodicity of
which depends on the momentum. Using the new canoni-
cal variables, we show that the discreteness of the spec-
trum of the unperturbed Liouville operator tends to zero
with decreasing difference of the energy of the unper-
turbed pendulum from the separatrix, so that we may con-
struct a nonvanishing collision operator to obtain an ir-
reversible kinetic equation for the momentum distribution
function in the stochastic layer. In the limit of small in-
teraction, we show that the contribution of the interaction
comes only when the resonance condition between the un-
perturbed frequencies of the pendulum and the spring is
satisfied.

In Sec. IV we investigate some properties of our kinetic
equation. In a certain choice of the variables, we show
that the kinetic equation reduces to the one-dimensional
Fokker-Planck equation for the distribution function of
the energy of the unperturbed pendulum. Finally, we
compare the diffusion coefficient Eq. (1.1) with the one
obtained by Chirikov s heuristic argument. ' Then we
show the two coefficients are equivalent if we replace the
period of the unperturbed pendulum in the diffusion coef-
ficients by its average value in the stochastic layer, and if
we assume the Inicrocanonical distribution for the phase
of the spring in Chirikov's argument.

In Sec. V we summarize our results and make a few
comments on an analogy of characteristic time scales in

the elastic pendulum to the ones in a dilute gas system
with a short-range interaction.

II. ELASTIC PENDULUM

We consider the motion of an elastic pendulum with
two degrees of freedom, made from a stiff linear spring
which obeys Hooke's law, as shown in Fig. 1. The Hamil-
tonian of the system is given by

2PsH= +ml coo(1 —cos8)
2m'' I+»

2 2 2x px mQ x——ml coocos8+ +2' (2.1)

CX2—p ~y2 cos8 icos
p

(2.2)

Note that if we regard the dimensionless quantities H and
t=~ot as the new Hamiltonian and time, respectively,
then the dimensionless variables Y~ and 0&, and y2 and a2
are canonically conjugate variables to each other, respec-
tively.

On a given energy surface H=E, the energy of the
spring, y2, has the maximum value at F) ——6I) ——n2 ——0
such that

(y» -= & b +4 '+4E)'"1' . (2.3)

Let us assume the inequality in Eq. (1.2) and 0(E)= l.
Then, we approximate the Hamiltonian, Eq. (2.2), to first
order of x /I =2p~y2cos(a2/p) and obtain

H=HO+A, V,

where Ho ——H&+H2 with

Hi ——Fi+ —,
' (1—cos8i),

H2=3'2 ~

and the interaction A, V is given by

2 CX2kV= —Ap(4Yi +cos8i)1/y2cos
p

(2.4)

(2.5a)

(2.5b)

(2.6)

where we have introduced the parameter A, to indicate the
order of the interaction. The elastic pendulum corre-
sponds to the case of A, = 1 in Eq. (2.4).

where I'0 and p are momenta which are conjugate with 8
and x, respectively. We denote time which is conjugate
with H by t.

Let us measure the energy of the elastic pendulum by
the unit of H,„=2ml coo which is the value of the energy
of the unperturbed pendulum at the separatrix. Let
H=H/H, „, F) Pe/(2m——l coo), 8,=8, y2 QJ/H, —„—, and
a2 ——pP, where the action-angle variables (J,P) of the
spring are defined by x =v'2J/m Qcosp and
p„=v'2mQJ sing, and p is defined in Eq. (1.2). Then, the
Hamiltonian, Eq (2.1)., is given in a dimensionless form
by

F( 10= + —,(1—cos8i)+yz
( I+2S ~y2cos«2/V) l'
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Hi in Eq. (2.5a) is the Hamiltonian of the unperturbed
pendulum. In this representation the energy of the unper-
turbed pendulum on the separatrix is normalized such that

Hi ——1. The region of interest in phase space of the elastic
pendulum is specified by the inequality

~ Hi —1
~

&& 1.
We now introduce new canonical variables (yi, ai) in

which the Hamiltonian of the unperturbed pendulum be-

comes cyclic. The variables are defined through the fol-

lowing canonical transformations:
(i) for the rotation (0 & c & 1)

g) cz)
sin =+sn,c, Y~

——+yidn, c; (2 7a)
2 2' ' 2'

(ii) for the separatrix (c = 1)

of the complementary modulus of c ' is approximated by

~

c' ~. The rotational motion corresponds to the case of
c'&0. For sufficiently small

~

c'
~

we have c'=~i —1,
i.e., c' is just the difference of the energy of the unper-
turbed pendulum from the separatrix.

Applying the canonical transformation in Eq. (2.7) to
the Hamiltonian of the elastic pendulum in Eq. (2.4) we
obtain the new Hamiltonian

= 2 2 CKp

H=71+g2+~pp i [2—c —6f (al, c)]~yicos—,
p

(2.13)

where

0( a) o;a
sin =+tanh, Y& ——+y

&
sech

2 2
' 2

(2.7b)
CX)dn, c, c )0

(iii} for the libration (c & 1)

1 Vc 1 vc 1
sin = sn a&,—,Y&

——y&cn o.~,
—

2 2v'c 2 c ' 2 c

where c is related toy~ by

1C=

(2.7c)

(2.8)

and the new Hamiltonian of the unperturbed pendulum is

2 (2.9)

T~ 2v cK(c——), TL i~ 2K(c '), —— (2.10)

respectively, where K is the complete elliptic integral of
the first kind. Near the separatrix, i.e., c=1, T~ and TI &2

are both approximated by

16
T, =ln (2.1 1)

where

c =1—c (2.12)

is the square of the complementary modulus of the elliptic
function for 0 & c & 1. For c & 1 and

~

c'
~

&& 1, the square

for any value of c. Here sn(u, c), cn(u, c), and dn(u, c) are
the Jacobi elliptic functions and c in Eq. (2.7a) and c in

Eq. (2.7c} are square of the modulus of the elliptic func-
tion. ' Each sign in Eqs. (2.7a) and (2.7b) corresponds to
each direction of the motion in the rotation and on the
separatrix: We assume y& )0 in this paper, so that the +
sign corresponds to counterclockwise motion.

Note that our canonical transformations, Eq. (2.7), are
well defined and continuous at H~ ——1. This property is
not satisfied by the ordinary action-angle variables of the
unperturbed pendulum that diverge at the separatrix. The
relation between our variables and the ordinary action-

angle variables is discussed in the Appendix.
The period of the rotation Tz and the half-period of the

libration Tl ~z of the unperturbed pendulum are given by

f(ai, c)= .
Vc 1

cn CX),
C

c'&0.
(2.14)

Because the system is periodic with respect to a~ we

may restrict the region of a~ to
~
ai

~

& T(c)/2 for given c
in the phase space without any loss of generality, where
T(c) is the period of the function f (a~,c) and is given by
T(c)=4K(e) for c') 0 and T(c)=4c ' K(c ') for
c' &0.

To investigate the long-time evolution of the system
around the separatrix, we will apply a perturbation theory
to the Hamiltonian, Eq. (2.13). In this paper, however, we
will not attempt to justify the applicability of the pertur-
bation theory, but content ourselves with a few remarks
on analytic properties of the interaction term in the Ham-
iltonian, Eq. (2.13). A detailed argument of higher-order
approximation of our perturbation theory will be given
separately in a forthcoming paper.

We first notice that the interaction has an essential
singularity at p=0, as a function of this parameter. The
effect of this singularity appears as an infinitely rapid os-
cillating factor in the interaction. Because of this rapid
oscillation, the effect of the interaction damps very quick-
ly in the limit of p —+0.

Second, the interaction has a singularity of the momen-
tum y~ at y~

——1 (i.e., at the separatrix, c =1) which comes
from the logarithmic singularity of the elliptic integrals of
the first kind K, and the second kind E, at this point. '

Because of this singularity the mth-order derivative of the
function f(ai, c) by c diverges in the limit of c~l for
m )2. However, since the zeroth and first derivatives by
c are finite in this limit, we may show that the effect of
the interaction vanishes at this singular point in the limit
of @~0due to the rapid oscillating factor in the interac-
tion. This implies that we may regard the interaction as
a weak perturbation even though we have the singularity
at c=1.

Finally, the interaction has a singularity of the momen-
tum yi at yz ——0 and at infinity. In order to avoid diverg-

ing contribution of the interaction at these points, we as-
sumed that the initial value of y2 is chosen such that

p «~yq «p '. We will see later that this condition is

always satisfied around the separatrix for sufficiently



2082 T. Y. PETROSKY

small p.
We now study a structure of the phase space around the

separatrix. Because f (a~,c) in the interaction is a periodic
function of a~, we can expand it in a Fourier series such
that for the dn function

a& E +~ 2n Qk inaka&dn, c =—+4k e
2 ' K „sinh(2n b,k E')

(2.15)

and for the cn function
T

cn cx),c =c dn cx),c +c
2

' 2
(2.16)

with the expansion Eq. (2.15), where

2'�(c)
(2.17)

and the prime on the summation sign stands for n&0
Therefore, we have an infinite number of resonance in-
teractions between the spring and the unperturbed pendu-
lum. The resonance values of c' are given as solutions of
the resonance equation n Ak(BH ~ /By ~ ) + (1/p)(BH2/
By2)=0. When sufficiently close to the separatrix, i.e.,

~

c'
~

&& 1, we can solve the resonance equation explicitly,
and the resonance values are given by

~

c'
(
=16e (2.18)

where n is any integer. This result shows that the separa-
trix c'=0 is an accumulation point of the resonance
values of c'.

We now show that the resonance interactions give rise
to an infinite number of singular motions (i.e., stable and
unstable periodic motions) around the separatrix. To find
the singular solutions, we first construct a discrete map of
the Poincare surface of section for the variables y& and a2
on a surface given by a& ——ap in phase space. The periodic
solutions are found as fixed points of the Poincare map.
We here assume that the surface is chosen such that

~
ap

~
&&1 because of the following reasons. First, we are

interested in a phenomena which occurs in longer time
scale than a duration of interaction between two degrees
of freedom. Second, the time scale that the pendulum
spends in the region of

~
a~

~

& 1 (which will be interpreted
as the duration of interaction, later) is negligibly small as
compared with the time scale of the uncoupled motion in
the region of

~
ai

~
&&1 for sufficiently small iLt.

To construct the map, we choose the origin of the time
t =0 such that a~(0) =0 [i.e., Oi(0) =0], and assume that
the trajectory passes the surface of section at t = tp and-
next at t= to+T, i.e., a, ( —to)=a&( —tp+T)=ap. The-
increment 4y~ of y~ in an interval of the map is given by

—t0+ T

ay, = —f 0 BA}
(2.19)

—m/2p,

6&A, '1/y2p sill (a2+ t)
p p

(2.20)

where y2p ——yq( —tp).
ln approximating the integrand in Eq. (2.20) by the un-

perturbed solution, we have assumed that the inequality
p/+y2(t) «1 is always satisfied. We can verify this as-
sumption by estimating the increment Eye(t) =y2(t) —y2o
for —to &t & —to+ T in a way similar to the above such
that

To evaluate the right-hand side of Eq. (2.19), we ap-
proximate the evolution of a~(t), y&(t), az(t), and y2(t) by
the unperturbed solutions. Then we approximate such
that c=1, since we are interested in the energy H~ very
close to the separatrix. The integrand in Eq. (2.19) is now
proportional to the factor sech t tanht, which damps ex-
ponentially to zero for large

~

t ~, and changes most rapid-
ly around the origin, t =0. Furthermore, the integrand in-
cludes a rapidly oscillating factor cosy '(t +tp+ az ),
where a2 ——a2( —tp) is the initial phase of the spring at the
surface of section. This implies that the contribution of
the interaction in Eq. (2.19) comes from only a small in-
terval of t around t=0. Further, we approximate T by the
unperturbed period T, , in Eq. (2.11). Therefore, because
of the way we choose the surface of section and the origin
of time, the values t p and —tp+ T are much greater than
one. Consequently we may replace the limits of the in-
tegration, —to and —to+ T, by negative and positive in-
finity, respectively.

We may interpret this fact that the two degrees of free-
dom collide in a short interaction time around t =0 where
the centrifugal force becomes maximum, and move
without interaction almost all of the time before and after
the collision. We may estimate the duration of the in-
teraction, t;, which may be defined to be the time for
which the absolute value of the integrand in Eq. (2.19) de-
creases to e ' of its maximum value. Neglecting the os-
cillating factor in the integrand, we obtain t;=1. This
verifies the above replacement of the limits of the integra-
tion in Eq. (2.19). This estimate of t; is also supported by
evaluating the singularity of the collision operator, defined
in Eq. (3.48a), with respect to z. We will estimate it in
this point of view after we obtain the explicit form of the
collision operator of the elastic pendulum.

Substituting the Fourier integral of sech t tanht in Eq.
(2.19) and integrating by t with the above approximation,
we ultimately obtain the following result for p « 1:

+ 00
2Ey ~

—6AiM+y2p dtsech t tanht

1
Xcos —(t + tp+ a2 )

p

by2(t)

y20 f, dt'(1 —6sech t')sin —(t'+to+a2) &8A,
y2o ' t Vy2o

(2.21)
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where we have replaced —tp by —Oo in evaluating the
second term and neglecting exponentially small contribu-
tion for sufficiently small p. Equation (2.21) is the
desired result, because we have assumed the initial condi-
tion such that p/Qyzp «1. This result shows also that a
variation of y2 in an interval of the map is a higher-order
effect of the perturbation. Therefore, we neglect this vari-
ation in each mapping of yi and az in the lowest-order ap-
proximation.

The increment of the phase of the spring b,a2 in an in-

terval of the map is approximately estimated by the un-

perturbed solution of a2(t) and by T=T, . Then we ob-
tain

8 (2.22)

where

e
—m/2p

M =6&A,+y2p
p

(2.24)

In the second equation in Eq. (2.23) we have substituted x,
for x in order to make the map canonical. Because of the
relation c'=2x for small c', we may also interpret the
map, Eq. (2.23), as a map for the pendulum energy c'.

Note that a change of sign of x in Eq. (2.23) is
equivalent to the shift of a to a+pm without change of x.
This implies that the structure of the phase space corre-
sponding to the oscillatory motion is the same as the one
for rotational motion, except for the shift of the phase a
by mp. Thus, it is sufficient to investigate the case of the
rotational motion, c' &0, to obtain the whole information
of the structure of the phase space around the separatrix.
The following statements about the structure of the phase
space are, therefore, only for the rotational case.

The fixed solution of the map is now easily obtained by
setting sin(a/p)=0 and In(8/x)=2mpn, where n is any
integer. Then, we obtain

a=0 or mp, x=8e (2.25)

Noting c'=2x, we see that the fixed value of c' is just the
resonance value in Eq. (2.18). We may conclude that the
resonance interaction gives rise to an infinite number of
periodic motions around the separatrix.

The map, Eq. (2.23), is essentially the same map as the
whisker map which has been derived and discussed by
Chirikov' in his study of a driven pendulum. Here we
summarize his findings about the structure of the phase
space (for c' & 0).

(i) The fixed solutions given by Eq. (2.25) are all un-

stable at u=mp. On the other hand, they are stable at

Now, we can combine the above results to obtain the
Poincare map. Introducing new variables x =y~ —1 and

a=a2+tp, and denoting the variables after an interval of
the map by x and a, we arrive at a set of difference equa-

tions,

CXx =x+m sin —,
p

(2.23)

a=a+in (mod 2mp),
8

a =0 for x & x i and unstable for x &x i, where

W
x) = 0

4p
(2.26)

Consequently, we have a region around the separatrix,
0&x &x i, where all fixed solutions are unstable. We may
expect that the motion inside this region is very erratic.

(ii) Above the threshold value xi there is another
threshold value which gives the boundary that separates
the erratic motion from the regular motion. The value of
xp is evaluated from the "overlapping criterion" of the
resonance region; erratic motion begins to occur, if the
separatrices surrounding adjacent stable fixed points
touch. This value is given by

(2.27)

where we have neglected higher-order terins of p/~yq.
The minimum value of ~yz is given at ai ——0, a2 ——pm;
the maximum value at a& ——a2 ——0.

We may estimate the average period of the pendulum

T, , Eq. (2.11), in the stochastic layer such as

16e
T~ dc'=ln (2.29)

cp cp 2p

where cp ——2xp. This shows that the system has two time
scales well separated for sufficiently small p; one is the
time scale for free motion, the order of which is given by

T, and the other is the interaction time t; the order of
which is 1.

Similarly, we may estimate the average value of the
discreteness of the spectrum of the Fourier component b,k
in Eq. (2.15) in the stochastic layer, which is given by
hk=2p.

III. KINETIC EQUATION
IN THE STOCHASTIC LAYER

In this section we derive a kinetic equation which de-
scribes long-time behavior of the system in the stochastic
layer. The method on which we rely here is the perturba-
tion theory developed by Prigogine and his colleagues"
for nonequilibrium statistical systems. When we apply

For xi &x &xp the motion is still erratic because of the
overlapping effect of the resonances. However, because
there are stable fixed points in this region, we can observe
some regular motion around these stable fixed points. In
the Poincare map we see a mixed structure of erratic
points and islands of regular points.

Because trajectories cannot cross each other, the motion
in the erratic region is confined to a thin layer,

~

x
~

&xp,
around the separatrix. We call this layer the stochastic
layer.

In each map the value of yi is also confined to a small
region. This region can be easily estimated from the ener-

gy conservation for a given energy surface H=E in the
stochastic layer and is given by

(2.28)
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this method to nonlinear systems, however, we need a few
extensions of the perturbation theory such that we may
treat systems the periodicity of which depends on the
momentum. The extension will be pointed out in the fol-
lowing context of the derivation of the kinetic equation.

In order to describe the evolution of the system, we
start with the Liouville equation

i —p(c/, y, t)=Lp(a, y, t) .
at

(3.1)

Here, p is the distribution function of the ensemble of the
system in the stochastic layer and a =(ai,az) and
y=(yi, yz) are abbreviations of the canonical variables
with the vector notation. The function p is normalized
such that

j.+xo m/d, k2 g /hk1

f dyz f dy/ f diaz f,k «~(&1 &2,1132) (3.2)

where y~ and y are the upper and lower bounds of the
values of yz satisfying p «y~ &y~ &&p

' in the ensem-
ble, xo is the boundary value of the stochastic layer given
in Eq. (2.28) with yz// ——yz, b,kz ——p ', and

g g @k,k (tel 2)K,» (/21 /22) 5(/zl /21)5(/zz ct2)
k1 k2

(3.9a)
m/hk2 m/hk,

/g/ d~z /gk d+1@k,k (~1 t 2)@k' /,
(cti /zz)k1,k2

c'&0
2E

(3.3)

where K =E(c '). Note that the domain of the integral
of ai depends on the momentum y/ because of the non-
linearity of the system.

The operator L is the Liouvillian which is defined by
the Poisson bracket L = i IH, I where the factor i is intro-
duced to make L, a Hermitian operator. Corresponding to
the decomposition of the Hamiltonian, Eq. (2.4), we have
the decomposition of L,

where the superscript asterisk denotes the complex conju-
gate, and gk g» and 5» », 5» k, are abbreviations of

2 1 1' 1 2' 2g+" g+" „and 5„„5, respectively, for
k, =n Ski and kz ——m b,kz. Sufficiently close to the
separatrix, i.e., bk/ «1, the summation b,k/gk reduces

+ 00 1

to the integration dk ~.
In order to make notation simpler in the following cal-

culation, it is convenient to introduce a "Dirac" bra-ket
notation. In this notation the eigenfuction 4k, k is
represented as an inner product of bra and ket vectors by

where

-o+X 5I (3.4)
ek, k, (a„az)=(a

~
k), (3.10)

-. aLo= —l QP'

8cx
(3.5)

Lc
i
k) =(k co)

I
k) . (3.11)

where
~

k ) =
~
k1,kz ) is the eigen-ket vector of Lo, i.e.,

Ba 3y

Lo@»1,»z(/zl&~2) (kill+ kz~z)@»1,»z(&»+2) (3.7)

with the eigenfunction @k k given by

(3.6)
By Bn

and pZ = (co/, coz) = (BHo/By „t3HO!By2 ) = (2y 1, 1), 8/8 a
=(a/aai, B/Baz), and so on, and we have used the nota-
tion of the inner product, i.e., A.B=A ~8~+A282.

Because the unperturbed Liouvillian I.o is simply a
derivative operator of the coordinate, we may immediately
solve the eigenvalue problem of Lo and have

The complete orthonormality of the eigenvector is ex-
pressed by

g ~k)(k(=i, (3.12a)

(k~k )=5„„,, (3.12b)

where g-„=gk,gk and 5„
We further introduce a certain matrix element defined

by

m/hk2 m/h, k1

,ak daz f ~~k dCE14»1 kz(DI, R2)L

(~k/ ~kz)'" (k, ,+k,~z)@k,k (~1 122) = 8 (3.8) X4„, , ( „).
1~ 2

Here k) ——n hk) and k2 ——m Akg where n and m are any
integers, and we have imposed periodic boundary condi-
tions on the eigenfunction with period of 2m/b, ki for ai
and 2m. /b, kz for az, respectively.

The eigenfunction consists of a complete orthonormal
set such that (k iLO i

k') =(k co)5„-„, (3.14)

(3.13)

Obviously, this expression is still an operator of the mo-
menta with the derivative acting on everything to its right.

By the definition of L, we have
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Here, V„ is the Fourier component of the interaction in
the Hamiltonian, Eq. (2.13), i.e.,

( k
i

A, 5L
i
k ') =A+bk I —V-„-,(k —k ').

8 A V(a, y)=A, ski g V-„(y)e'"' (3.16)

k 'V„„, Qhkl .
(3.17)

with

@y', 6E 12' &k &

(1—5k 0) for c' & 0
sinh 2k E'

Pg1 cE 12Pk I —(1—5k o) for c' & 0
Eked X ' sinh(2k IE'I )

(3.18a)

(3.18b)

where E =E(c ), E =—+ (c ), »d so on~ Rnd

2
—(5,1+5,-1) (3.19)

for kz —mgk2. Note that because of the nonlinearity of the system, &kl »d kl in Eq (3 15) depend on thc momcn«m
y I and they cannot, comnlute wltll tllc dcrlvatlvc opcl'Rtoi' I)/Bgl.

To obtain the kinetic equation, we need to specify the class of the ensemble in phase space. In this paper we restrict
the class such that the distributio function of the ensemble is expanded in the following Fouricr series Rt t.

Ak1hk2
p(a, y)=, g po, k, (7)+~klg'pk, ,k, (y)e ' ' c ' '

Ir kj
(3.20)

Here po k stands for the Fourlcl conlpollcI1't liavilig

kl —(), and pk k foi the component having kl&0.
assume that po k and pk k in Eq. (3.20) 11Rvc flllitc valllcs

in the limit of ski~0. T»s Rssumptlo»s R dl««cx«n-
sion of the assumption for the volume dependence of each
Fourier component of the distribution function in a gase-
ous System cncloscd 1n R large box, which has been made
by Prigogine and Balescu. The physical meaning of this
assumption is that we consideI' only ensembles the distri-
bution function of which depends smoothly on the coordi-
nate al and the deviation of the distribution on al from
the uniform distribution is not pathologically large.
(For more detailed discussion of this assumption, sce Ref.
5).

Denoting the distribution function p(a, y) by the bra-
ket notation, such that

p(a y)=&alp&=X&aII &«lp&

~l4k2 m/hk )
p (y)= J daz J k daip(a, y) (3.23)

which is an invariant of the motion in the unperturbed
system.

In order to pick up dominant contributions in the long
time scale in the perturbation series of the solution, we
hcI'c 1ntI'oducc R pro)ection operator P which pro)ccts out
the time-invariant component of a given phase function in
the unpcrturbcd SystcHl and also 1ntroducc 1ts COIDplcmcn-
tary projection operator Q, which are defined by

P=
(

O&(O [, Q=g'
)

I &&I
]

. (3.24)

They are Hermitian operators and satisfy the following re-
lat1ons:

P+Q=l, P'=P, Q'=Q, PQ=QP=O, (3.25)

alld comparing lt with tllc cxpailsioll, Eq. (3.20), wc obtRlil
the relation

po, k, (y) — „„-&0,kl lp&
I I

(3.22)

aild R SIB111RI' Iclatloll between pk k aild (kl, kp i p).
Note that p-( y ):—po 0( y ) is just the momentum distri-

bution function,

(3.26)

Using these operators, we can decompose
~ p) into

orthogonal components such that
~ p) =P

~ p)+Q ~
p):

The component Q ~ p) is related to the geometrical config-
uration of the ensemble in the configuration space of the
System. Following the terminology in nonequilibrium sta-
t18t1cal ITlcchanlcs» wc call this component thc correla-
tion component" and the component P

~ p) the "vacuum
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of correlation component" (or, merely, vacuum com-
ponent).

The formal solution of the I.iouville equation is given

by the resolvent operator of the I.iouvillian (z L—) ' in a
Laplace transform

(r) &
iL,I

~

(()) & I d sz—I
(

(()) &

(3.27)

where the contour I lies above the real axis of z and goes
fl'Onl + oo to —oo fol' / )0.

In the resolvent formalism in the perturbation theory,
the asymptotic contribution of Eq. (3.27) for I~+ oo is
estimated by evaluating the singularity of the integrand at
z=O. To make this singularity explicit, we rewrite the
resolvent operator by the following identity:

1 =[P+&(z)] — [P+N(z)]+ H(z),1

z z PLP — —z

where we have used the relations in Eq. (3.26). Note that
the collision operator is defined in the perturbation series
such that each term does not have the singularity at z =0
that comes from the I' subspace in the intermediate state
of the perturbation expansion. Remaining kinetic opera-
tors are similarly constructed by the perturbation series,
and they have the same properties on the singularity at
z =0 with g(z).

Because the Liouville is the Hermitian operator, the
function obtained by operating the kinetic operators to a
given function is analytic in the upper half-plane and the
lower half-plane of z, except for the real axis. In the limit
of the continuous spectrum of the unperturbed I.iouvilli-
Rn, 1.c., Ak] ~0, each term ln thc pcrtulbatlon scflcs ln
Eq. (3.30) operating to a given function is expressed by a
Cauclly llltcglR1 Rlld llas R dlscontlnulty oil thc I'cR1 axis of
z. In this case, the integration of z in Eq. (3.27) must be
performed with analytically continued functions of the ki-
netic operators from the upper half-plane of z to the lower
half-plane for I & 0.

Substituting Eq. (3.28) into (3.27} and expanding the
factor including P(z) in a series we obtain

g{z)=PI.Q QLP,
1

z —QLQ

W(z) =PLQ 1

z —QLQ
'

&(z)= 1 —QLP,
z —QLQ

(3.29)

(3.30)

and

P ~p(t)&= . g I dze "',[g(z)]"
n=0

X[P+~(z)]
~
p(0) & (3.34)

H(z)= Q .
1

z —QLQ

Thc Identity Eq. (3.28) can be proved by a simple algebra-
ic manipulation with Eq. (3.25). Thc operators p ~
Rnd H, wlllcll wc call klllctlc operators, are basic quanti-
tlcs lll oui forlnalism. The operator p is called the "col

operat«" and lt determines the evolution of
P

~
p(t) & through Rll intermediate state in the Q subspace.

This operator is an extension of the COHision kernel ap-
pearing in a kinetic equation (such as the Boltzmann
equation in a dilute gas). The operator W(z) and Ã{z) are
called the "destruction operator" and the "creation opera-
tor, " respectively. The former describes the decay process
of the initial spatial correlation, while the latter describes
thc cl'catloll process of a Ilcw coll'clatlon. Tllc opcl'Rtol
H(z) is called the "propagation operator, " which de-
scribes the propagation process of the initial correlation in
the Q subspace. More details of these concepts are found
in Ref. 5.

The decomposition of the resolvent operator, Eq. (3.28),
ls still foITDal, bccausc wc do not know thc lnvclsc Qpcla-
tors of z —QLQ and z PLP f(z). We may—, h—owever,
construct cxpl1cltly thcsc opc1Rtol's by thc perturbation cx-
panslon. Fol example thc collision opcratol ls glvcn by

Pl

X &(z) „,[y(z)]"[P~~(z}]1

+ ~(z)
t p(0) &,

where we have used the relation PI.I' =0 which is ob-
tained from Eqs. (3.14), (3.15), and the definition of P in
Eq. (3.24).

The asymptotic contributions of Eqs. (3.34) and (3.35)
for t—++ ~ are obtained by evaluating the singularities at
z=0. To evaluate them, let us here assume that the singu-
larities at z =0 of z '"+" in Eqs. (3.34) and (3.35) are
isolated from the singularities of the analytically contin-
ued kinetic operators. For sufficiently small p we can
verify this assumption. (For this case, we wiH show later
that the singularities of the kinetic operators are poles in
the lower half-plane. ) Thus we may neglect the contribu-
tions coming from the singularities of the kinetic opera-
tors for asymptotic time evolution. Evaluating the residue
of the integrand at z=o in Eqs. (3.34) and (3.35), we ob-

tain the asymptotic solution for I~+ oo,

P
~
p(I) &

= g —, „c ' [g(z)]"
0 n!

P(z) =P&&L Q
—Q QA, BL Q

X [P+~(z)]
~
p(O) &,=+,. (3.36}

and
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ao 1 QN

Q ~
p(t)) = g, e ' &(z)[Q(z)]"

0 &! Bzn
$2(z)=A. P5L Q Q5LP,

z —QLpQ

which gives us

(3.48a)

X [P+~(z)] p(0)),=+;p, (3.37)

where z = +i 0 means that the residue is taken for analyti-
cally continued kinetic operators from the upper half-
plane of z.

Introducing the inverse Laplace transforms of the col-
lision operator and the creation operator by

g(z)=i f dte'"g(t) (3.38)

( 0
~ g (+i0)

~

0) =in'. g'Qhk, k b,k,
~

V-„~
By

B
&&5(k co)k Qb, ki,

By

(3.48b)

(z)='i f dte' K(t)
0

and using the Leibnitz formula for the derivative in Eqs.
(3.36) and (3.37), we obtain the following asymptotic equa-
tions:

Ki(z)=A, 1
Q5L P

z QL p—Q

which gives us

(k
i @i(+i0)

~

0)

(3.49a)

—P
i p(t) ) =f «'g(t')P

~
p(t —t') ) (3.40)

Qb, k i . (3.49b)
By

= lim A,Qb,ki-
e—+0+ (k a)) ie—

Q
~

p(t) ) =i f dt'8'(t')P
~

p(t —t') ) . Here we have used the Plomelj formula3A1

By introducing a new operator 8, Eq. (3.40) can be
written in the following compact form: lim =P—+ in 5(x),1 1

a~0+ X —l E X
(3.50)

i Pp(t) —) =BP
~

p(t) ) .. B

Bt
(3.42)

1 Be= g, 1i(z) e" .
n 1 Bzn

(3.43)

Here, the equation for 8 is obtained by substituting the
formal solution of Eq. (3A2), P

~
p(t) )

=exp( iet)P p(—0)), into both sides of Eq. (3AO) and
we obtain

where P stands for the principal part of 1/x: the princi-
pal part in Eq. (3.41) does not contribute due to the sym-

metry of the function of k. In Eq. (3.48b) we interpret the
summation of k i as the integration of k|, i.e.,
b,k i g» ~fdk i, since b,k i (( 1 holds in the stochastic

layer.
Combining all above results, we arrive at the lowest-

order approximation of the asymptotic kinetic equations,

Similarly, introducing the new operator C by

oo 1 BnC= g X(z) e"
n

n=0 z=+iO

we have an alternative expression of Eq. (3.41)

Q
~

p(t) ) =CP
i
p(t) ) .

(3.44)

(3.45)

i (0
~

p—(t) ) = ( 0
~

P2(+iO)
~

0) (0
i
p(t) )

(k
~
p(t)) =(k K&(+iO) 0)(0

~

p(t)),
or, equivalently,

-p( p, y)=t~~ g' .

krak,

i
V

(3.51)

(3.52)

and

B=fz(+i 0) (3.46)

This result shows that the Q component of ip(t)) be-

comes a functional of the P component in the asymptotic
time limit.

From Eqs. (3A3) and (3.44}, we can easily obtain the
lowest-order approximation of 8 and C with respect to A,

such that

X5(k.d)k bk, p-(y, t)B-y

~~o,k,
pp», (y, t)= hm k2 bk p (y, t)

e~o+ k 2602 —l 6'

(3.53)

(3.54a)

C=@i(+i0), (3.47)

where $2(z) and Ã, (z) are the lowest-order approximation
of g(z) and Ã(z} in Eqs. (3.29) and (3.31), respectively,
and given by

ak, p»» (y, t)= lim1' 2 ~ 0+

kV
k'- b,kip-(y, t)

(k co) ie &y—

(3.54b)
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Note that the right-hand side of Eq. (3.53) has a contribu-

tion only at thc rcsonancc point, k aP =O. These rcsUlts
show a conspicuous distinction of our perturbation theory
from others (e.g., the KAM theory), that is, our theory is
appllcablc ln thc rcsonancc rcglon.

8
&

0(yl, Ho t)+
&

i(yl, Ho t) =o.
Bt By I

(4.1)

Here we have Put P(yI, Ho, t) =Po(yl, yz, t) and introduced
thc probablllty current by

j {yI,Ho, t) = —,' D'(yl, Ho) —bklp(yI,Ho, t), (4.2)
~3'1

D'( y,IHo)= 2IAr, bkl g'I kl V„ I
5(k co)

2
18IrA, Ho —y I nlpy, —

e
P 3'1

(4.3)

This result shows that the evolution of the momentum-
distribution function for the weakly coupled system is
essentially one-dimensional on a unperturbed energy sur-
fRcc.

Introducing a diffusion coefficient D and the drift coef-
ficient I' by

D (y I,Ho )=hk ID'{yI,Ho ),

IV. PROPERTIES OF THE KINETIC EQUATION
AND EQUILIBRIUM STATE

In this sectjon we show that fhc klllctlc equation (3.53)
reduces to a one-dimensional Fokker-Planck equation for
a suitable choice of variables, and describes a motion of
thc systcID which approaches an cqUlllbrium state. %c
also estimate the diffusion coefficient of the unperturbed
energy of the pendulum in the stochastic layer, and com-
palc our rcsUlt with 8 1csult which ls obtained
Chirikov's heuristic argument.

Let us replace the independent variables (y, ,yz) in the
kinetic equation by (yl, Ho), where Ho is the unPerturbed
energy, i.e., Ho ——y1+y2. In the new variables, terms in-
volving the derivative operator 8/BHo in Eq. (3.53) vanish

because of the relation (k.co)5(k io)=0 and we obtain the
following continuous equation:

To investigate further the evolution governed by our ki-
netic equation, we need to specify the boundary condjtjon
of the distribution function. Because the stochastic layer
js restricted and isolated in the region of

I
x

I &xo, whirr~

xo is given by Eq. (2.27) with yzo-Ho —1, we assume that
the probability current, Eq. (4.2), vanishes at the boundary
of the stochastic layer, x=xo. This boundary condition
enables us to show that the operator —if I( +i 0) is a Her-
mitian operator in a space of the functions ofy I, i.e.,

1+xo
31 ~ 31 —~ O 2 +&O O .y1

1+xo

I, „dylf:(yl)[ —I &014z(+i0) I 0&f (»)]
(4.8)

where f and f„are any integrable functions of yI which
saflsfy flic above-mentioned bolllldal'y condltlon.

S111cc thc colllsloll opcI'Rtol, Eq. (4.7), lllvolvcs ollly tllc
dcrlvatlvc operator of yI, lt ls clear fhat R sfcRdy solutloll
of Eq. (3.51) is given by

f.q {Ho)
Ipq)=

I

(4.9)

where f,q
is any function of Ho.

We can further show that this steady solution is unique
as a continuous function of y„and the distribution func-

tion (0
I
p(t) ) approaches this steady state monotonically,

as follows. Let p;(yl ) be an eigenfunction of the operator
—lgz(+10) bclollglllg to RI1 clgcllvRlllc Ag Rnd sRtlsfylIlg
the above-mentioned boundary condition. Since
—igz(+i 0) is a Hermitian operator, we may assume that
the eigenfunctions p;(yI ) consist of a complete orthonor-
mal set. Then we have

1+xof dylan (yl )I. I & o
I
fz{'+Io)

I
o &0 {yl )]

D'{yI Ho) i)
V'~kIp;(yI )

In the new variables the collision operator has also a
simpler form,

a D'(y I Ho)(0
I
l(z(+i 0)

I
0)=i+bkI QhkI .

j)y I

(4 7)

F(yl, Ho) = —,b,kl 'D(
y, lH)o,

I)y I
(4.5) (4.10)

we can further rewrite the kinetic equation (4.1) in the fol-
lowing form of the Fokker-Planck equation:

P {y1 )0{y1.t)]
8

Bt BP1

I 8+
2 z [D(yl)0(yl I)]
2 ~yl

(4.6)

whcrc wc have omitted thc argument Ho ln order to em-
phasize the one-dimensionality of the equation and to
make notation simpler.

Because the solution of Eq. (3.51) is expressed by
(0

I
p{t)) =exp[ i (0

I Pz(+i 0—)
I
0 )t](0 I p(0) ), the re-

sult, Eq. (4.10), implies that the state belonging to A,; ap-
proaches zero monotonically, except for the state belong-
ing to A,;=0 which gives us the equilibrium state, Eq.
(4.9).

Combining the result, Eq. (4.9), with the relations (3.20)
RIld (3.54), wc call calclllatc thc cqlllllbrlllID sollltloll of tllc
full distribution function p~(a, y ) and obtain

p„(~,y) =+„(Ho)+XV{a, y) F;,{H,),da,
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where F,q(Ho) = ('1/ Eked/2m)f eq(Ho) The right-hand
side of Eq. (4.11) is just the first two terms in the Taylor-
series expansion of F,q(H) =F,q(Hp+. A, V) by A, . This im-
plies that the equilibrium state is a microcanonical distri-
bution for a given energy H =E.

To compare our result with a result obtained by
Chirikov's heuristic argument, ' let us rewrite the
Fokker-Planck equation for the momentum y~ to the
equation for the energy of the unperturbed pendulum
H~ ——y~. Because ~y&

—1
~

&&1, we have B/By&
=2B/BH~. Substituting it into Eq. (4.6), we obtain

B
(FH p)+—,(D~ p) . (4.12)

a'
2 ~II2i

for ~c'~ &&1. Consequently at this angle 0& the micro-
canonical'distribution function is independent of a2 and
therefore the spring "feels" space to be uniform. It is easi-
ly seen that at this angle the centrifugal force cancels the
radial component of the gravitational force acting on the
mass.

Finally, let us verify our assumption stated in obtaining
Eqs. (3.36) and (3.37) that the singularities at z =0 of
z '"+" in Eqs. (3.34) and (3.35) are isolated from the
singularities of the analytically continued kinetic opera-
tors for sufficiently small p. We consider first the case of
the collision operator $2(z) in Eq. (3.48b). Using the
product expansion

Here, the diffusion coefficient DH of H& is related to the
1

one ofy~ in Eq. (4.4) by

sinh(mx )
" x1+ 27TX i g

(4.17)

2

DIE 4D (y(,H——p)=72m. A, e 'b, k ) (4.13)
9yi

we can perform the integration of the Fourier argument k
in $2(z). Then we see that $2(z) has simple and double
poles in the lower half-plane of z at

which is equivalent to Eq. (1.1), and the drift coefficient

+H, by
2

FH, =4F(y),Hp)=36~'I,', e " 'hk, .

(4.14)
p yi

1+

+1
p

nay i—i-, , c') 0

nmyi—l, C & 0K'

(4.18)

This gives us

p2

DH)

2

p yi
(4.15)

This implies that the drift process in the stochastic layer
is negligible as compared with the diffusion process.

We now compare this result with the "diffusion coeffi-
cient" Dcq defined by Chirikov' such that

&[~Hi]'&.. . , e '& . ,a-
DCh =2X12 mX y2o sin-

Tg P P av

=12 mA, y2o
p

(4.16)

Here ~~-2'~ [cf. Eq. (2.20)] and T is given by Eq.
(2.29). The quantity (sin (a/p)), „stands for the ensem-
ble average of sin (a/p) with the equilibrium distribution
function given by Eq. (4.11).

On the other hand, if we approximate, in Eq. (4 13), y~
by 1 and Aki by its average value in the stochastic layer,
i.e., Aki ——2p, we have Dch ——D~ . This shows that our

kinetic equation describes essentially the same diffusion
process which has been investigated by Chirikov with nu-
merical computation.

Let us make a comment here on Chirikov's derivation
of the diffusion coefficient. In his heuristic argument, he
has assumed a uniform random phase distribution of the
phase of the external field. ' However, it is clear that the
random phase distribution of the spring in our system is
not compatible with the microcanonical one because of the
existence of the gravitational field. That the nonuniformi-
ty of the distribution in a2 is due to the gravitational field
may be seen by observing that the interaction term in Eq.
(2.14) vanishes if 6sech (a&/2) —1=6cos (8&/2) —1=0

where n is taken over all positive integers. Therefore,
$2(z) has no singularity in the neighborhood of z =0.

For the case of remaining kinetic operators &(z), C(z),
and H(z), we need to restrict the initial state and observ-
ables such that their Fourier coefficients do not introduce
a singularity at z =0 in the integration of the Fourier ar-
gument. Assuming this initial condition and these observ-
ables, we obtain a similar result to the one in the collision
operator.

The result, Eq. (4.18), gives us also a time scale of the
duration of the interaction, t;, between the two degrees of
freedom in a collision, since the effect of the interaction
damps with the ratio of [ ~

Im(z)
~ ] '. Then this gives

us t; =—,, the order of which coincides with t; =1 which
has been roughly estimated in getting Eq. (2.20).

V. SUMMARY AND CONCLUDING REMARKS

With the extension of Prigogine's perturbation theory
we have derived the kinetic equation of the Fokker-Planck
type in the vicinity of the separatrix in the elastic pendu-
lum with two degrees of freedom. The important step in
obtaining the irreversible equation (that is, the nonvanish-

ing collision operator) was the replacement of the summa-
tion of k& in Eq. (3.48b) by its integration. Indeed, the
contribution from the 5 function in the collision operator,
Eq. (3.48b), exists only when the spectrum of the Liouvil-
lian is continuous.

We have also shown that for a given energy the system
approaches the microcanonical distribution monotoniml-
ly. To get this result, we have assumed that our kinetic
equation is valid in the whole region of the stochastic
layer. Of course, this assumption is not valid bemuse the
islands found in the stochastic layer induce regular
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motion. However, we expect that the effect of the islands
is only significant near the boundary of the stochastic
layer.

The diffusion coefficient obtained from our kinetic
equation has shown good agreement with the one obtained
by Chirikov's heuristic argument. This result lends sup-
port to the validity of our discussion, since Chirikov s esti-
mate has been tested by numerical simulation.

Let us remark upon an analogy of characteristic time
scales in the elastic pendulum to the ones in a dilute gas
system with a short-range interaction. The order of the
duration of the interation between the pendulum and the
spring, t;, is unity. We may regard t; as being analogous
to the collision time in a dilute gas. Similarly, we may re-
gard the mean period of the pendulum in the stochastic
layer t =m/2p .as being analogous to the mean free time.
The largest time scale in our system is the time describing
its relaxation to an equilibrium distribution tz. For the
case of the reflecting boundary which we have assumed,
t~ may be approximated by a mean approaching time to
the boundary by the diffusion process, starting from the
middle of the stochastic layer. From this we obtain
tz-co /D~ -p . In our system there is another time

1

scale which does not have an analog in the dilute gas sys-
tem, namely, the period of the uncoupled spring, t, =2'.
In the weak-coupling limit we may summarize these re-
sults in the following inequality:

APPENDIX

(Al)

where c = I/H~. This shows that the Hamiltonian H~ de-
pends only on the action variable, namely, the angle p is a
cyclic variable.

The generating function of the canonical transforma-
tion between ( I'&, 8&) and (j,p) is given by

(A2)

where E(X,c) is the elliptic integral of the second kind.
The angle variable is given by

Bw(j, 8i)
Bj

'/7 ~ 10

E(c) 2
' (A3)

where E(X,c) is the elliptic integral of the first kind.
Inverting Eqs. (Al) and (A3) we obtain the canonical

transformation

In this appendix we show the relation of the action-
angle variables (j,p) of the unperturbed pendulum to the
canonical variables (y~, a~) introduced in Eq. (2.7). Here
we discuss only the case of the rotational motion. The li-
brational case can be treated similarly.

The action variable j is defined by

We note here that the existence of well-separated time
scales is enumerated as one of the grounds to obtain a ki-
netic equation of the Markovian type in phenomenological
arguments.

The diffusion process described by our kinetic equation
is very slow. (Note that the diffusion coefficient is ex-
ponentially small in the limit p~O. ) This slowness is the
result of the existence of the essential singularity of the in-
teraction at p =0. Even though it is very slow, our results
suggests that an embryo of the irreversibility already ex-
ists in nonintegrable conservative systems with two de-
grees of freedom. Extension of our perturbation calcula-
tion to higher-order approximation will be given in forth-
coming papers.
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E(c)sin =+sn p, c

(A4)

Y, =+ dn P,c
1 E(c)
c

Comparing Eq. (A4) with Eq. (2.7a), we obtain our
desired canonical transformation

E(c) 1
p Vc

where c is related to j by Eq. (Al). The inverse relation is
given by

2m . 2 E(c)p= &t ~ l=
K(c) m Vc

where c = 1/g I.
Note that the canonical transformation, Eq. (A4), is not

defined at the separatrix, i.e., c =1, while our transforma-
tion, Eq. (2.7a), is well-defined there. It is interesting to
note that the relation between a& and p is essentially the
same as the relation between the arguments of the Jacobi
elliptic functions and the elliptic theta function.
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