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Coherent-state Langevin equations for canonical quantum systems with applications
to the quantized Hall effect
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The formulation of quantum-statistical-mechanical expectation values as long-time averages in-

volving the solution of associated Langevin equations with complex drift terms is developed. As an
example, some applications of this method to study the quantized Hall effect are presented.

I. INTRODUCTION

Statistical methods to study classical and quantum sys-
tems are extensively used at the present time with Monte
Carlo and Langevin techniques among those more com-
monly employed. ' In this paper we elaborate on a method
to analyze canonical quantum systems through the study
of associated Langevin equations the form of which has
been previously announced. As an application we exam-
ine some aspects of the two-dimensional (anomolous)
quantized Hall effect.

Section II is devoted to a careful and rather complete
derivation of the Langevin equation for canonical quan-
tum systems, including a treatment of the exclusion prin-
ciple for fermions. Essentially all quantum-statistical
problems may be formulated as path integrals, most gen-
erally expressed in a phase-space formulation. To relate
this formulation to Langevin equations it is necessary that
all the variables in the path integral assume continuous
values, and this is ensured only for coherent-state, phase-
space path integrals. Consequently, the first part of Sec.
II is devoted to a review and discussion of canonical
coherent-state path integrals. Given a path-integral repre-
sentation of a problem, the introduction of an associated
Fokker-Planck equation and a corresponding system of
Langevin equations then follows rather standard lines here
extended to the case of complex expressions.

In Sec. III the application to the two-dimensional quan-
tized Hall effect is discussed, along with results obtained

by a computer solution of the corresponding Langevin
equations. While these numerical results generally sup-

port the applicability of these methods to complex systems
they, unfortunately, do not shed any special new light on
the physics of the anamolous quantized Hall effect. Inter-
pretation of our results is aided by an analogous study of a
harmonic oscillator, in which the concept of improved ap-
proximations naturally arises, and in the study of two un-

coupled harmonic oscillators that obey the exclusion prin-
ciple.

for all p, q ER denote the canonical coherent states, where

Q and I' constitute an irreducible Heisenberg pair, [Q,
I'] =i Th. ese states enjoy a number of interesting and use-
ful properties, the most important of which is the resolu-
tion of unity given by

1 = p~g p~g (2.2)

The overlap of two such states reads
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which shows that H and h (hence P ) are uniquely corre-
lated. If h~(p, q) denotes the Fourier transform of
h~(x, k), then it follows that

H(p, q)= f e 'P "' (~ 'h (r,s)"2~'
or stated alternatively,

an expression which never vanishes, and as a consequence
an operator A is uniquely determined by its diagonal
coherent-state matrix elements. To see this connection
assume that A is expressed in Weyl form,

~= f h (x k)e"k(2-""
2~

where h~ is a uniquely defined distribution associated
with A . It follows that

II. DERIVATION OF THE LANGEVIN EQUATIONS 1 8 8
H(p, q) =exp —

2 + 2 h~(i(), q) .
4 Bp Bg

A. Coherent-state and operator properties

For a single degree of freedom, let

l p, q &
—=e "p~-")

l
0&, (Q+a )

l
o& =o,

(0l0&=1,
(2.1)

The operator A also admits the representation"

~= f h(r, s)
l
r, s&(r,s

l
(2.3)

where the weight h may be determined from the relation
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H(p, q)=&p q l~lp, q& where
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Thus we find that

1 8 8H (p, q) =exp —
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which leads to the relations
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h (p, q) =exp ——
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2 h„(p,q) .
4 Bp' Bq'

(2.4b)

For later use these relations are conveniently summa-
rized with respect to the basic %'eyl representation

Improued actions: With some extra effort one may im-
prove the accuracy of (2.6) [and hence of (2.7)] by using
the analog of "improved actions. " The idea is to replace
(2.6) with the expression

h. (x,k)e'(k~ ""dx-dk,
2m'

(2.5a) dp dq
I p q«p q

2m

in the form

h (p,q)= f h (x,k)e'+ "t')dxdk,
2m

(2.5b)

H(p, q)= h (x k)e'+ "t' ' '" +" 'dx dk, (2.5c)
2m

h (p, q}= h (x k)ei(kq xP)+1/4(x—+k )dx dk (2 5d)2'

B. Path-integral representation

If we combine (2.2) and (2.3) we learn that

I —em= f [I—eh (p q)] I p q & &p q I

dp dq
2m

and thus, with an error which is 0 (e ), that

e
—E'4 e —o'A{P,g) p q p q

Pd d
2m

(2.6)

where pN+1, qN+1=—p1,q1, and we have taken the X—+oo
limit to eliminate the O(e ) terms. This expression yields
a (discrete form of) path-integral representation of the
partition function Z, which we may approximate by keep-
ing N large but fixed as

Z f . . . f es(p, q)d+

If N is an integer chosen such that P=Ne, then by multi-
plying (2.6) by itself N times and taking the trace we find
that

Z= Tr(e ~ )

N —eh {pl,qI )
PI+1qI+1 PI qI e

N~(x) /=1

dptdqt
X

which is designed to be valid apart from terms of order
O(e" +'} for some n &1. It is straightforward to deter-
mine an expression, at least formally, to give our version
of an improved action to any order. First recall the
Moyal product formula,

h" (p, q)
—=h "(p,q)e h (p, q),

3D=—2i
Bq (]p

8 8

~p aq

with the arrows signifying an operation on either the left
or right factor. Then it follows that

e-'~= m! -' —e
m=0

=—f g (m!) '( —e) h[ ](p,q) I p, q & &p, q I

dp dq
2~

where

h[o](p, q) = 1

h[i](p, q)—:h (p, q),

1 8 cl
h[ ](p,q)—=exp —— +4 Bp' Bq'

h [ ](pq),

hw[m+)](Aq) =htu(p q)e hN[m](p q}

for m =1,2, . . . . Thus to determine an expression correct
to O(e"), i.e., with an error which is O(e" +'), it suffices
to choose

to find the Weyl representation for the operator product
/IB in terms of those for A and 8 separately. Here
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or any equivalent expression that differs by terms
0(e"+'). By using h~„~ rather than h alone in numerical
studies a coQ1parablc accul acy should bc obtalncd with
fewer thermal-time steps (of order X'~" rather than N.
In what follows we shall generally use h, but the formulas
hold as well if one substitutes h~„~ in place of h.

The usual (Metropolis) importance sampling Monte
Carlo procedure to estimate Z is inapplicable since S is
not real, i.e., e is not everywhere positive as needed if it is
to be interpreted as a probability density.

If S were real and locally bounded, then the validity of
(2.9) follows from the fact that exp[S(p, q)/2] is the non-
degenerate, zero-energy ground state of a Hamiltonian (see
below). ' When S is complex there simply is no general
argument of this nature to draw on. Since the harmonic-
osclllatoI' Hamiltonian ls cxpllcitly soluble, wc shall ini-
tially discuss this case fully. At the end of this analysis
we shall see how the harmonic-oscillator results can be ex-
tcndcd to a gcncral Hamlltonian.

Harmonic oscillator: For the oscillator example we
choose ~= z (P +g —1), and thus h (p, q) =

z (p +q
—2). We initially adopt

Go(p, q)=(2 ) &' '(p —po)&'"'(q —qo), (2.10)

%ith the eventual goal of clrcumventlng the nonposl-
tivity of e in mind, we next introduce a function
G(p, q, v) that satisfies a Fokker-Planck-type equation '

glvcn by

«r ar»«ary po=(po» pox) and qo=(qadi ~ qox)
as the boundary condition at ~=0. More specifically we
choose

aG(p, q, r) 1 ++ a
aT 2 I t a@

as a
ar/ ~Pl aJ/

G(p, q, r) .

(2.8)

for O~r~~1, where r= (q,p) denot—es a 2E-component
vector. Given this initial condition, then the solution to
(2.8) appropriate to the harmonic oscillator is necessarily
of the form

G (p, q, ~)=D (r)exp[ —,
' r rC(r)r rrB—(r)], —

This equation has been chosen so that
where C is a symmetric matrix, 8 a vector, and D a scalar
factor. To satisfy (2.8) these quantities obey the equations
of motion

is a stationary solution for any C. Moreover, if
Go(p, q) =G(p, q, 0) denotes a smooth, general initial con-
dition for (2.8) normalized so that

Gp P~g P=Zp 0 q

C(~) =—C'(~)+ —,
'

[A C(~)+C(~)A],

8(r) = [ ,' A —C(r) ]8(r—),

D(r) = ,'Tr[~ C(r)+-a(r)a—&(&)]D(~),

(2.11a)

(2.11b)

(2.11c)
then we require that the solution to (2.8) satisfies

G(p, q, r)~Ce '~'~' as r~oo, (2.9)
where A is a 2%&2% symmetric matrix determined by the
I'elation

where C =Zo/Z is a finite, nonzero proportionality fac-
tor. This asymptotic crIterlon ls of central importance to
our approach, and we now embark on a detailed analysis
of it.

Thus A = ,' Ao+eI which a—part from a multiple (e) of the
ldcntlty I, ls determined by Ap, where

0
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—Av'
e ~0 as 'p~ 00 (2.12)

Like So, the scale factor is independent of ro as deter-
mined by the fact that f 6{ p, q, r) dp is independent of r
and has the value unity, its value as w—+0+, independently
of po.

Although 2 is not a real symmetric matrix it does have
a complete set of eigenvectors and eigenvalues. Specifical-
ly, for Ao, the eigenvalues are given by

each of which is doubly degenerate. Since Rek,„)0, the
convergence criterion (2.12) is in fact satisfied, although
the rate of convergence is as slow as e

The preceding argum. ent can be extended to any smooth
initial condition Go(p, q) simply by superimposing the re-
sults for sharp initial conditions. Consequently, the con-
vergence of a general solution 6(p, q, r) to a multiple of
exp[S(p, q)] has been established in the case of the har-
monic oscillator. We now deduce the same conclusion for
a general Hamiltonian.

Ge)lera/ Ha)ill/ro)llafls: If we introduce tile qllantlty

Y(p,q, r)= G (p, q, r)e

then it follows from (2.8} that Y satisfies the equation

QY(pq+) ) ~ ) ~ -+' ' -- =—( V +—r))'S) {r))' ——VS)Y(p q r) (2 1
Bv'

where r))—:(8/Bq, 8/Bp). Stated otherwise, we find that

8Y(p, q, r) Y( )
Bv'

H:——2Q +V,

~ = —,(&S)'+—,&'S .

It follows from (2.13) that

Y (p q) e&(P,q)/&

is a zero-energy eigenstate of the Hamiltonian H, i.e.,

The solution to the equations (2.11) is given by

C(r) =A (I e——')

8(r)=exp f [-,'A —C(o)]do 8, ,

D(r)=exp —,
' f Tr[A —C(cr)+8(o)8 (o')]der Dl .

As r—+0+ it follows that

C(0+ ) =Sir,
8(0+)=80/r,
D(0+)=Dor exp( BOB—O/2r) .

Qn comparison with the initial condition it is clear that
and DI should be chosen so that Bo = ro and Do = 1

this is certainly possible. Qn the other hand, as z—+ ~ the
solution converges to a firute, nonzero multiple of exp(SO)
if and only if

HYO ——EOYo, with ED=0. If S were real and YOEI. ,
then it follows that Yo is the ground state (since it is
nowhere vanishing), and the solutions to

H Y„(p,q) =E„Y„(p,q),
assumed discrete for simplicity, have the property that
E„&0, for n ~ 0. Thus the solution to (2.13) given by

Y(p, q, r)= g a„Y„(p,q)e

satisfies the limiting relation

lim Y(p, q, r) =aoYO(p, q),

or alternatively stated, that

lim 6(p, q, r)=aoe '~'~),

as desired.
When S is complex, as is the case of interest, then V is

complex and the general theory of self-adjoint operators is
not available to us to reach the desired conclusion. The
spectrum of A+i3 when A and 8 are both self-adjoint
operators is a nontrivial question with diverse answers.
For instance, consider the operator rg+ip, which in the
Schrodinger representation is given by rx+8/Bx. The
solution of the eigenvector equation

rx + )t)(x) =p)//(x)
Bx

4~

is given by

q(x ) ~e —rx lll+px

Por r «0, the solutions are all normalizable and yield an
eigenfunction for all complex p (these are just coherent
states!), which are not mutually orthogonal. However, if
r ~0, then there are no eigenstates, i.e., there is no spec-
trum whatsoever.

In the present case we have [cf. (2.7)]

S{p,q)=S){p,q)+/ST(p q»
where S~ and S2 are real. But instead let us consider

S (p, q)=S)(p, q)+oSl(p, q),
where o. is a complex number. Correspondingly, we intro-
duce

1H~—:—2V +v~,
V =——,'(7'S~) + —,V' S

It is easy to convince oneself that H ~ does have eigenfunc-
tions and eigenvalues (unlike the case r &0 above), and
that both are analytic functions of cr in a strip near the
real axis that includes o =i Moreover, i.f o is real, then
S~ is real and the asymptotic condition (2.9) is fulfilled.
That means, for o real, that Eo ——0 and El &El m;„~ 0 for
o bounded, say

~
Reo

~

&X~ oo,' all other eigenvalues are
even higher. Now as o. becomes complex, on its way to-
ward o.=i, Eo remains zero, while all E„,n «0, generally
become complex. Violations of the desired asymptotic
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condition (2.9) occurs whenever any of the inequalities
ReE„&0, n &0 is not satisfied. Evidently there is some
interval J =J(I) ), where lImo

l
(J, for which, by con-

tinuity, ReE„&0, n &0; whether this interval extends to
J= oo is unknown, but this is not really important. What
is surely true and has been borne out in numerical eigen-
value studies carried out by Petersen, is that if the
inequalities ReE„~O, n ~0 are valid for some S—=S~
+iS2, then these inequalities remain valid for S =Si+iS2
whenever S& &S&. Since we have already established the
convergence criteria for the harmonic oscillator (or impli-
citly for a positive multiple thereof), we can choose
S~ ——ReSp. Consequently, whenever

h (p, q) & a(p +q )+const,

for some u &0, it follows that Si (Si and thus ReE„&0,
for all n &0. This result establishes the desired conver-
gence criterion (2.9) for a general Hamiltonian and con-
cludes our discussion of this point.

D. Langevin equations

Associated with every Fokker-Planck equation is a set
of Langevin equations, ' which in the present case are
given by

Moreover, since G satisfies (2.9) it follows that

p &
es(»q)

lim (F(p(r),q(r))) =
'P~ 00 es(p, )I)dp

(2.15)

In addition, the convergence criterion (2.9) ensures that
the ensemble is also ergodic. Ergodicity means that for al-
most all solutions of the Langevin equations we have the
relation

T I: P,q eS'»q'dIJ,
lim —f F(p (r),q(r) )dr =
T~~ T e '»q'dp

(2.16)
If C denotes the right side of this equation and

1AT= —f F(p(r), q(r))dr,T 0

then this limiting behavior may be understood as

))m exp if )up —rq)dt (Az —c))=0T~ 00 0

for all smooth functions u and r of compact support.
One degree of freedom: For the specific case at hand,

where S is given by (2.7), the Langevin equations (2.14) be-
come

1 1
q! (PI —1 Pl+1) (2qi —ql+1 qi —»4 4

1 BS
q!(r) = +—gi(r),

2 Bqi(r)

1 S
pl(r) =— +rli(r),

2 dpI(r)
(2.14b)

e ah
2 Bql

i 1
P! ('ql+1 'ql —1) (2PI P!+1 Pl —1)4 4

(2.17a)

where 1 ( l (N, and g and r! denote two independent sets
of standard Gaussian white-noise sources determined by
their mean

(gI(r) ) (rlI(r) )

and by their variance

(gi(r)g (a)) =5! 5(r—o),
(~1(r)~ (~) ) =5, 5(r—o),
(g( )rl ( ))=0.

Here and elsewhere the average ( ) is with respect to the
noise ensemble. We are interested in the solution to these
equations for r & 0 subject to the initial conditions

'ql (0) qpl Pl (0) Ppl

for 1 & l & N. The white-noise sources as well as the initial
conditions qo,po are chosen real, but since S is complex
the solution q(r),p(r) will, in general, be complex, too.
For fixed (nonrandom) initial condit1011s qp Pp the solu-
tion of the Langevin equation is related to the solution of
the Fokker-Planck equation by the expression

(F(p (r),q(r)) ) = f F(p, q)G(p, q, r)dp,
where G (p, q, r) is the solution subject to the initial condi-
tion (2.10). Linearity of this expression in the distribution
of initial values then extends its validity to any smooth
distribution Gp(p, q) normalized so that f Gpdp =-1.

e Bh

2 8pI
(2.17b)

where q, p, and q,p denote two solutions of (2.17) deter-
mined by different initial conditions, qp, pp, and qp, pp, but
with the same noise histories for each solution. It follows
froin the Langevin equations that

N

~ = —
2 g l I (qI qI ) (qI pi qi+—I) I

'— —

+ l(pl Pl) (Pl+1 Pl+1) I'1

, 'aI—e g Re (ql —ql)'
1=1 ~ql

as

Bh+ (P! P)—
apl

(2.18)

Like the large-time behavior of the solution of the

for 1&1(N. It is iinportant to assess the stability and
sensitivity to the initial conditions of these equations.

Stability is guaranteed whenever the forces Bh/Bq and
Bh/Bp all act attractively toward the origin, at least for
large enough arguments. To study sensitivity to the initial
conditions let us introduce the quantity

N

&(r)==g I: lqI(r) ql(r) I'+ lp—l(r) PI(r) I'f—
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Fokker-Planck equation it is difficult to make definitive
statements regarding (2.18) for a general Hamiltonian.
However, in the case of the harmonic oscillator, where
h = —,

'
(p +q —2), it follows that

R = —
2 2 [ I (q!—q! ) —(ql+1 —q!+1)

~

'+
~

(pl —pl )

where 1&1&% and 1&m &M, and all white noises are
mutually independent of one another. Here h =h(p, q),
which is given by an evident generalization of (2.4) as

M g2

—(»+1—Pl+1) I

'& —e g [ I ql ql
I

+
I Pl P —

I
'f .

M g2 g2
=exp

4 Q( 1B)2 Q( m)2
h (p, q) .

From the general fact

0& I~ —& I'&2(I~ I'+ I& I')

we learn that

—eR &R & —(2+a)R,
with the solution

e "R(0)&R (r) &e ' +"R(0)

q l (P! 1PI+ I ) (2ql ———ql+1 q—! 1)—
4 4

~ aI
+Pi2 ~$

(2.19a)

Thus we see that R decays, R(r)~0, establishing the
desired asymptotic independence on initial condition, but
as noted previously this decay can be rather slow.

Seueral degrees of freedom: Up to this point we have
largely worked as if there was only a single degree of free-
dom under consideration. If instead there are M distin-
guishable degrees of freedom, then we need only add a
"particle" label and interpret the coherent states as direct
products over the M variables as in

M

lpq&= , lp, q &.

It follows directly that the modified form of the Langevin
equations (2.17) is given by

Finally we must discuss the case of M nonrelativistic
electrons, indistinguishable particles that obey the ex-
clusion principle. A description of electrons may be ac-
complished by the replacement of the distinguishable par-
ticle coherent-state overlap factor

M

m=1

by the associated Slater determinant

(M!) 'det(&p, q ~

p", ,q", &), (2.20)

N
S= g I»[(M!) 'det(&pl+1 ql+1 ~pl ql&)l eh(pl ql)I

(2.21)

where the determinant is of the M &&M matrix of conven-
tional coherent-state inner products. The factor (M!)
ensures that this kernel satisfies the integral equation of a
projection operator onto the space of antisymmetric func-
tions. To incorporate the exclusion principle it is ade-
quate to replace just one overlap factor in the multiparti-
cle path integral. However, it is analytically equivalent to
replace all overlap factors by determinants, and this is the
approach we have generally followed in our numerical
studies. Consequently the revised form of the function S
is given by

Guided by our previous discussion we are led to reconsider
the set of Langevin equations (2.14) based on the new
choice for S, which then becomes

e Bh
+BI

PI
(2.19b)

P I (ql+1 ql —1) (2Pl Pl+1 Pl 1)—4 4

. m Bh (pl, ql)
ln(det&pl+1 ql+1 lpl ql&det&pl ql Ipl »ql 1&)— — —+Ps2 gqm ~R

m , » (pl, q!)
P 1 2

ln(det&Pl+1 ql+1 I pl q! &det&p! q! I pl 1 q! 1& ) —— —
'

+r!1
dp! ~PI

(2.22a)

(2.22b)

for 1&l &N and 1&m &M. Although our intuition sug-
gests that the long-time average of functions of the solu-
tion of these Langevin equations is equivalent to an aver-

age of such functions in the normalized distribution based
on S as given by (2.21), we have not succeeded in directly
proving this result as we did for the case of distinguish-
able particles. However, a model problem of two uncou-
pled harmonic oscillators that obey the exclusion principle

I

does give the right results (see Sec. III) and supports the
validity of these equations for more general problems.

A new feature appears in the Langevin equations (2.21)
that we have not previously encountered. Since the deter-
minant (2.20) can vanish when two (or more) electrons are
in the same state, this can lead to singularities in the drift
terms of the Langevin equations. However, the nature of
these singularities is such as to drive the electrons apart.
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An algorithm explaining how to deal with such singulari-
ties which is also suitable for numerical studies, has been
discussed elsewhere and will not be repeated here. In
practice, for the examples studied in Sec. III, no incidence
of a singularity or of a near singularity occurred and no
special algorithm was required.

III. STUDY OF T%0-DIMENSIONAL
QUANTEZED HALL EFFECT

A fascinating development of the past several years has
been the discovery and explanation of the ordinary and
anamolous two-dimensional quantized Hall effects. " The
explanation of these effects involves the deformation of
the free-electron energy levels into highly degenerate Lan-
dau levels as modified by the Coulomb interaction be-
tween electrons. We shall (i) concentrate on the low tem-
perature, large magnetic field case in which only the first
Landau level need be considered, (ii) eliminate the fast
component of electronic motion, and (iii) retain only the
Coulomb interaction between electrons within the first
I.andau level. As shown by Fukuyama and Yoshioka'
the Hamiltonian operator under these circumstances
reduces to

2 d k
exp ilk

~ (Q g~)—
2m p ik/

+ ilk~(P —P )—p k l
2

Here i =v'cleH denotes the Larmor radius and a,P refer
to particle labels 1(a,P(M. By definition of the Weyl
representation we have

h„(p,q) = & f exp ilk, (q q—)
e dk . p
2m p ik/

+ ilk&(p p—)—p k I
2

Consequently the function h needed for the functional
description of Sec. II is given by [cf. (2.4b) and (2.5d)]

h (p, q) =exp + h„p, q4 &(pr)' ~(qr)'

f exp[ilk~(q —q )
e d k . p
2m p fk/

+ilk'(p p~) ]—
e ~ 1

[(qa qP)2+(pet pP)2]1/2

which is just the Coulomb potential again.
So as to deal with only a finite number of electrons as

well as a finite electron density, we replace this potential
by a periodic one

e 1"Pq=
i gg„p, +g (,q)+

a&p m [ q q +~] + p p +~p) ]

Here m; is an integral multiple of B,

m;=. . . , —2B, —B,O,B,2B, . . .

where 8 is the periodic size in both the q and p directions,
and m and c denote contributions from the jellium back-
ground of positive charge necessary to ensure that the sum
defining the periodic potential converges. It may seem
natural in this case to replace the sum defining the period-
ic potential by an Ewald sum, ' however, since our coordi-
nates q and p can become complex (as they appear in the
Langevin equation) this procedure is not advisable. In-

I

I

stead we truncate the sum at some reasonable value M to
approximate the results of an infinite sum so that in prac-
tice

m; = —MB, —(M —1)B, . . . , MB .

For most of the Langevin calculations the value M =4
has been chosen; this choice leads to 81 terms in the
"periodic" sum and yields energies within 1%%A of those
given by the full sum.

Closed form expressions for w (p, q) and c are given by
[L:—(2M+ 1)B]

r

w (p, q) =
B (L +p)sinh ' +(L +q)sinh ' +(L +p)sinh

L+q L+p L —q
L+p L+q L+p

r T

+(L —q)sinh +(L —p)sinh ' +(L +q)sinh
I +p . ~ I+q
L —q L —p L+q

+ (L —p)sinh +(L —q)sinh
L —q . ) L-
L —p

I
L —q
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In practice the equation for w was expanded out to terms
of order l. , an approximation which contributed no
more than a l%%uo error. The so-expanded relations com-
plete the characterization of the energy expression enter-
ing the Langevin equations (2.19) and (2.22) used to study
this problem. Most of our effort has been directed toward
the four-electron problem (M =4), while we have also
made a few studies for nine electrons (M =9, no data
presented). We principally have calculated the mean ener-

gy

((A )) =Tr(A e ~ )/Tr(e ~ )

according to the rule [cf. (2.16)]

1—J h(p(r), q(r))dr=((A ))

(3.2a)

(3.2b)

which holds for large T. Here p(r), q(r) denote solutions
of the 2NM coupled, complex Langevin equations (2.19)
or (2.22).

The numerical solution of coupled Langevin equations
(i.e., of coupled stochastic differential equations) is a prob-
lem that has been studied for some time. We have utilized
the second-order, Runge-Kutta scheme systematically de-
rived by Helfand and by Greenside and Helfand. ' This
approach has the virtue that not only is the deterministic
part of the solution given correctly apart from terms
O(h ), but the first two moments of the stochastic part of
the solution are correct save for terms O(h ) as well.
Here h denotes the discrete time step h~, and we have
used both h =0.1 and 0.01 in our work. The value of P
chosen has varied between 1 and 16, while e has generally
been chosen as —,', . This means that N, the number of
thermal-time steps, has been taken as large as 256. For
four particles this has resulted in as many as 2048 cou-
pled, complex Langevin equations to deal with in a single
run. The value of T, the upper limit of the v. variable, was
frequently taken as large as 100. The most involved runs
took up to 40 min of Cray-1 time. A good fraction of this
time was spent in evaluating the determinants and the lat-
tice sums involved in computing the forces and energy
pertinent to this problem.

We have studied the quantized Hall effect for both dis-
tinguishable and indistinguishable electrons. The energy
levels are typically lower for the former case, as expected.
The energy has been studied as a function of the filling
factor v, which in our notation is given by v=2mM/8;
when 0(v & 1 it represents the fraction of the first Lan-
dau level that is filled. Experimentally '" one observes a
plateau in the Hall conductivity at v= —,

'
(and certain oth-

er fractional values) due to a special ground state and
enhanced excitation gap for that value of v. This behavior
is now interpreted as the consequence of a novel quantum
liquid which is analytically described by an approximate
ground state proposed by Laughlin. " At the level our
studies were made we are unable to shed any interesting
light on the special phenomena that take place at v= —,'.
We shall comment further on this point below.

As a preliminary to a full presentation of our data we
first list some selected data for distinguishable particles
and discuss the results. In Table I we show typical results
of an evaluation (here and elsewhere in units of e /l) of

Averaging
time T

10
11
12
13
14
15
16
17
18
19
20

Energy per particle

—0.354
—0.351
—0.348
—0.345
—0.346
—0.347
—0.349
—0.351
—0.355
—0.359
—0.362

the energy per particle

TI h(p(r), q(r))dr

based on (2.19) for several T values. Over the time inter-
val shown there is remarkably little statistical fluctuation
in the data. This is probably to be interpreted as due to
some very slow relaxation times in the problem. As noted
in Sec. II the time constant for the decay of correlations
may be as long as e ', or 16 in our case. From this point
of view 20 is not a very large value for T. Hence the
resultant value at 20 is still inAuenced by the initial value
at r=0 Recogniz. ing this fact we have opted to choose
our initial configuration at or near to minimum energy
classical configurations thus avoiding the prohibitively
long relaxation time that starting from a random configu-
ration entails. In Table II we show the results for a run
similar to that in Table I except for a random choice of
the initial conditions. Here the results are dominated by a
large amplitude, under damped component, which is
largely absent in the case of an ordered start as in Table I.

TABLE II. Energy per particle for various averaging times T
for the distinguishable particle case. (Parameters chosen as in
Table I save for a random start rather than an ordered start. )

Averaging
time T

10
11
12
13
14
15
16
17
18
19
20

Energy per particle

—0.324
—0.328
—0.333
—0.340
—0.346
—0.352
—0.358
—0.365
—0.371
—0.378
—0.384

TABLE I. Energy per particle for various averaging times T
for the distinguishable particle case. (Parameters chosen so that

1 1P=g, e= «, v= ~, h =0.01, along with an ordered start. )
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TABLE III. Energy per particle for different P and averaging
times T for the distinguishable particle case. Compare also
Table I. (Parameters as in Table I save for change of thermal
time P.)

TABI.E IV. Average energy for harmonic oscillator for
several different P and averaging times T. Correct values are
also listed. (Parameters chosen so that e=P, h =0.001, and
vanishing initial values. )

Averaging
time T

Energy per particle
P=4 P=12 P=16

Averaging
time T

Energy
P=2

10
11
12
13
14
15
16
17
18
19
20

—0.353
—0.350
—0.347
—0.345
—0.345
—0.346
—0.348
—0.351
—0.355
—0.358
—0.361

—0.354
—0.350
—0.347
—0.345
—0.345
—0.346
—0.348
—0.351
—0.354
—0.358
—0.362

—0.354
—0.351
—0.348
—0.345
—0.346
—0.347
—0.349
—0.351
—0.355
—0.358
—0.362

—0.353
—0.350
—0.347

0.344
—0.344
—0.344
—0.346
—0.348
—0.352
—0.356
—0.360

25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0

Correct value

0.56S
0.472
0.434
0.521
0.612
0.546
0.476
0.491
0.460
0.428
0.379
0.582

0.106
0.0978
0.0879
0.109
0.108
0.0818
0.0878
0.0971
0.111
0.107
0.0791
0.157

0.0121
0.0188
0.0273
0.0274
0.028S

0.0196
0.0282
0.0280
0.0338
0.0334
0.0275

0.0187

In all cases the long time average excludes about 25% of
the run in an effort to minimize the effects of the initial
conditions.

Another and more striking feature of our results for the
average energy is their dependence, or better, their lack of
dependence on the parameter p in (3.2). Table III shows
the results of a run similar in all respects to that of Table
I except that the values of P are 1, 4, 12, and 16 (rather
than 8 as in Table I). This remarkable insensitivity to
changes in p over the range studied could arise for a suit-
ably special density of states. In fact it was hoped to
probe the density of states by studying the p dependence
of the average energy (for another example, see below).
However, it is unlikely that the density of states for the
problem at hand is so special as to cause the insensitivity
to p that was observed. ' A more plausible explanation is
that the averaging time T was simply inadequate to per-
mit the various features of the Hamiltonian to leave an
imprint on the solution to the coupled Langevin equa-
tions. Moreover, for small e (large 1V) the effect of the
Hamiltonian may simply get lost in the numerical solution
at our level of precision.

Harmonic oscillator: To study further the question of p
dependence we have also investigated the elementary ex-
ample of a single harmonic oscillator for which 1M = 1 and
lt = —,

'
(p +q —2). In Table IV we show the average ener-

gy at p= 1, 2, and 4 as a function of the averaging time T.
The correct value of I/(e~ —1) is indicated for each case.
While these numbers show significant fluctuations they do
illustrate that the method we propose here is indeed sensi-
tive to the variable P, at least in principle. In order to ob-
tain more accurate results much longer averaging times
are needed. Table V lists the average energy at p= 1 over
much longer averaging times and shows a tendency for
the values to settle down to the correct value of 0.582.
For a harmonic oscillator with unit frequency the relaxa-
tion time is approximately unity. In order to achieve an
accuracy of l%%uo in the average energy it is necessary to
average over roughly 10 independent time units. Thus it
is not surprising that it takes T=5000 in order for the
average energy to be given to about two significant fig-
ures.

It is important to remark that the harmonic-oscillator
examples were studied with an improved action. Since it

TABLE V. Average energy for harmonic oscillator for a variety of averaging times T for P= 1

(correct answer equals 0.582). Compare also the first column of Table IV. (Parameters chosen so that
e=P=1, h =0.001 for T (300 while h =0.01 for T ~ 300, and vanishing initial values. )

Averaging
time T

150
165
180
195
210
225
240
255
270
285
300

Energy

0.514
0.520
0.549
0.527
0.523
0.509
0.526
0.550
0.552
0.559
0.537

Averaging
time T

SOO

550
600
650
700
750
800
850
900
950

1000

Energy

0.562
0.566
0.563
0.555
0.541
0.574
0.594
0.587
0.601
0.593
0.584

Averaging
time T

2SOO

2750
3000
3250
3500
3750
4000
4250
4500
4750
5000

Energy

0.592
0.591
0.592
0.586
0.581
0.583
0.588
0.591
0.589
0.586
0.582
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TABLE VI. Average energy for harmonic oscillator for vari-

ous thermal-time steps N and averaging times T for p=1
(correct answer equals 0.582). Compare also the last column of
Table V. (Parameters chosen so that e=P/N =1/X, h =0.01
and vanishing initial values. )

Averaging
time T

2500
2750
3000
3250
3500
3750
4000
4250
4500
4750
5000

0.586
0.593
0.606
0.614
0.611
0.609
0.606
0.607
0.600
0.592
0.596

0.560
0.553
0.553
0.530
0.538
0.527
0.540
0.525
0.540
0.559
0.565

Energy
N=4

0.589
0.555
0.545
0.553
0.562
0.576
0.584
0.575
0.560
0.567
0.573

0.504
0.551
0.572
0.602
0.597
0.603
0.602
0.592
0.589
0.584
0.575

0.402
0.416
0.446
0.432
0.422
0.412
0.444
0.457
0.456
0.448
0.438

follows that

e P~— ePe 'I' '"&'+& ' p q p q (3.3)

holds as an exact relation' when Pl'= —,'(P +Q —1), it

follows if we use (3.3) in place of (2.6} that there are no

0(e ) errors and consequently no need to decompose the
thermal time p into a large number N of small steps e.
The results quoted above for the harmonic oscillator were
all obtained for N =1. Table VI illustrates the N depen-
dence of the average energy where (3.3) has been used N
times for a p value of p/N. These results tend to show

decreasing accuracy as X increases, as could be expected.
In each solution the initial values were taken as

qo ——po =0 which may help explain why the average ener-

gy for N =25 lags well behind that for N & 5, not only be-

cause the relaxation time is longer but because the Harnil-
tonian has a harder time making itself felt.

Indistinguishable harmonic oscillators: As another test

case we have examined the example of two uncoupled har-
monic oscillators (M =2), h = —,

'
(p, +q & +p 2+q2 —4),

that obey the exclusion principle. This example permits
us to study the validity of the set of equations (2.22) for a
soluble problem. The exact average energy in this case is
given by

1 2

In our numerical study of this problem we have again
used the exact relation (3.3}, and therefore all choices of
thermal-time steps N should be exact, at least in principle.
In Table VII we present the resulting average energy ob-
tained for two p values and two N values as a function of
averaging time T along with the correct values. The ap-
proximate validity of the results for this model lend
credence to the applicability of (2.22) to more general
problems.

Quantized Hall effect: Based on the results of our study
of the harmonic-oscillator test cases we are forced to con-
clude that our present study of the two-dimensional quan-
tized Hall effect suffers from too short an averaging time,
a problem aggrevated even further by the need to divide
the thermal time p into many N factors of short duration
e. This latter feature could be helped by an improved ac-
tion, but this has yet not been done. Also additional com-
puter time could be devoted to this problem, but we have
chosen for the present not to do so. The need for exten-
sive computation to achieve reliable answers is well recog-
nized in usual Monte Carlo studies as well. '

Having stated the shortcomings in our results, we
proceed to enumerate in Table VIII a list of the energy
values for different v values for both the distinguishable
and indistinguishable cases. For the distinguishable case
the data all refer to an averaging time T =80, P=2,
e= —,', , and h =0.01. For the indistinguishable case the
data all refer to an averaging time T =100, p=8, e= —,', ,
and h =0.1. In each run the same set of random numbers
was used (results were not too sensitive to this choice).
The overall statistical accuracy of these data is less than

TABLE VII. Average energy for two uncoupled harmonic oscillators that satisfy the exclusion prin-
ciple for various thermal-time steps N and averaging times T (Parameters c. hosen so that Ne=P=0. 5

or Ne=P=0 3and h =0.1.).

Averaging
time T

Energy (P=0.5)
N=1 N=4

Energy (P=0.3)
N=1 N=4

5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000

Correct value

3.65
3.64
3.60
3.57
3.59
3.62
3.60
3.61
3.63
3.64
3.64

3.71

3.94
3.88
3.74
3.81
3.86
3.80
3.73
3.73
3.74
3.75
3.76

6.06
6.09
6.03
5.98
6.00
6.05
6.00
6.02
6.06
6.09
6.10

6.53
6.44
6.26
6.26
6.28
6.17
6.02
6.03
6.04
6.00
6.00
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TABLE VIII. Energy per particle for various filling factors v for the classical, distinguishable (dis),
exact, and indistinguishable (indis) cases. (Parameters for the dis case are T =80, P=2, e= «,
h =0.01, and an ordered start; for the indis case the parameters are T =100, P=8, e= —,6, h =0.1, and

an ordered start. )

Filling
factor v Classical

Energy per particle
dis exact indis

0.3125
0.3333
0.3542
0.4167
0.5000

—0.435
—0.450
—0.463
—0.S03
—0.550

—0.408
—0.430
—0.445
—0.487
—O.S30

—0.398
—0.413
—0.420
—0.442
—0.468

—0.283
—0.299
—0.309
—0.341
—0.379

2%, a fortuitous feature of this model. For comparison
we have also included the minimum classical energy per
particle values as well as the exact quantum-mechanical
ground-state energy per particle values (including the ex-
clusion principle) obtained by Yoshioka et al. '

Several remarks regarding the data presented are in or-
der. First we observe that the energy results obtained in
the distinguishable particle case lie above the classical
minimum energy of (3.1) and below the exact quantum-
mechanical ground-state resul)s. For example, at v= —,

'

the minimum classical energy per particle is —0.45, our
result is —0.43, while the exact quantum-mechanical
ground state is given by —0.41. However, our indistin-
guishable particle data all lie well above the exact
ground-state results. This behavior could represent the re-
sult of an average over a suitable density of states, howev-
er, the lack of dependence of such data on P tends to belie
this fact. We believe the discrepancy of our indistinguish-
able data arises because of two factors: (i) an insufficient
averaging time T, and, perhaps more importantly, (ii) the
need to use a step size h =0.1 in the numerical solution of
the coupled Langevin equations. Note that for the distin-
guishable particle case we were able to choose h =0.01, a
factor of ten better. It is interesting to add that for rela-
tively short averaging times T (T(10), the energy per
particle values for the distinguishable and indistinguish-
able particle cases more nearly agree with each other as is
to be expected for this example, particularly near v= —,'.
This result suggests that the error in the indistinguishable
particle case accumulates, more or less coherently, for
larger averaging times T, indeed, due to the larger time
step h. This situation could be improved, of course, by us-
ing significantly more computer time, but we have chosen
not to do so.

To study the behavior at and near v= —,, the average en-

ergy per particle was measured at v= 4, , —„,and 4, . It is

amusing to note that in both the distinguishable and indis-
tinguishable cases the values at v= —,

' are slightly lower
than the average of the two neighboring values (relative
energies may possibly be more accurate here than absolute
ones). The exact results listed in Table VIII also show a
slight dip at v= —, . Such a cusp in energies at v=

3 not
present classically, is exactly what one anticipates on the
basis of the Laughlin quantum-mechanical ground state
and which provides the energy gap needed to have a pla-
teau in the Hall conductivity. At the very least our data is
not inconsistent with that picture.

IV. CONCLUSION

We have presented a first-effort study of the application
of coupled, complex Langevin equations to evaluate aver-
age energies of an involved system, namely, that of the
two-dimensional quantized Hall effect. Our results are
not unreasonable given the modest averaging times prof-
fered to the seemingly insatiable beast that is at the heart
of all statistical approaches. In the future we intend to
apply the experience gained here to the study of quantum
spin systems by means of associated Langevin equations,
the form of which has already been presented else-
where. "'
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