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Symmetry-breaking instabilities under nonclassical bifurcation conditions
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We analyze the bifurcation of spatial-temporal dissipative structures beyond a hard-mode insta-
bility in open reacting systems operating far from equilibrium when a symmetry group (isomorphic
to Z2) acts on the diffusion space. The transversality condition which we study is not the classical
Hopf bifurcation situation: Let us denote Ol(v)+i82(v) the eigenvalues of the linearized reaction-
diffusion problem that cross the imaginary axis for certain v=v, (v is the bifurcation parameter)
and for certain critical spatial wave number. Then our transversality condition reads Ol(v, )=0,
d el(v=v, )/dvj=0, and d'61l(v=vc)/dv'&0, 2(j &I, while in the Hopf picture we had ei(v, )=0,
and d(9l/dv(v= v, )&0. The system is assumed to have reflection symmetry. If the wave number is
odd, the bifurcation diagram presents an additional nonthermodynamic branch which is not present
in the Hopf case. The three possible bifurcation diagrams are investigated. Several laws of motion
are derived from the restriction that the bifurcation equations should be covariant with respect to
the action of the symmetry group.

I. INTRODUCTION

Oi(v, )=0,
dO)(v=v, ) +0.

The aim of the paper is to prove that under the
transversality condition

Oi(v, ) =0,
dO)(v=v, )

— —=0, . . . ,dv

d'Oi(v=v, ) =0,
dv'

The classical picture of Hopf for the onset of
symmetry-breaking instabilities was investigated in con-
nection with reaction-diffusion systems and the oc-
currence of dissipative spatial-temporal organizations by a
number of people. ' Sattinger, ' applying group repre-
sentation methods, studied the existence of Turing insta-
bilities when a symmetry group (the reflection group on
an interval consisting of two elements, isomorphic to Z 2)

acts on the diffusion space and established the covariant
nature of the bifurcation equations with respect to this
symmetry group. (See also Ruelle. )

Our reaction-diffusion system is assumed to be subject
to no flux boundary conditions and the diffusion space en-
dowed with reflexion symmetry. To fix some notation,
8~(v)+i 82(v) are the conjugated eigenvalues of the linear-
ized diffusion-reaction problem that cross the imaginary
axis for a critical value v=v, of the bifurcation parameter
and for a certain spatial wave number n, The rest of. the
eigenvalues live in the left half plane for all v in a neigh-
borhood of v, . The Hopf bifurcation condition is

only one restriction; we assume that the bifurcation pa-
rameter v is an analytic function of the amplitude a and
also that 8& is analytic in v. This is a mild restriction
which is given as thesis in the classical Hopf picture '

and it is assumed in the mean-field Ginzburg-Landau
theory of chemical kinetics under critical regimes where
the bifurcation equation has the form

—(v —v, )et+pa =0

(a is the amplitude).
The covariant nature of the bifurcation equations im-

pose certain laws of motion that are not present in the
standard Hopf picture.

II. COVARIANT BIFURCATION EQUATIONS

Consider the general formulation of the reaction dif-
fusion problem:

B2-
X=F(X)+D X, yC[0, P]y'

(p is the length of the reactor, D is the diffusion matrix,
and F is the kinetic map smoothly dependent on the bifur-
cation parameter v),

X«2[0, p]XL 2[0, p]

with no flux boundary conditions:

zx ax =0, t&0

The degeneracy of the thermodynamic branch for n, odd
is bigger than in the case of a Hopf bifurcation from a
hard mode instability. This degeneracy is lifted by
symmetry-breaking perturbations. Our derivation has

and an homogeneous steady state X=Xo.
The reflection symmetry group acting on L2[0, p]

XL [0, P] operates as follows.
The nontrivial operation g is
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Then we can define the representation Tg on
L [0, P] &(L [0, P] simply by

poses restrictions on 8:
8( —a,v)= —8(a,V) . (14')

82
Tg. Tg F+D 2

82
F+D Tg .g (7)

It is also true, therefore, that Ts commutes with the
linearized operator

&(F) - +D
Xp gy2

J(F)
)

is the Jacobian matrix of F at Xo. Therefore, it
Xp

is possible to define an action on each eigenspace E„ofW
given by

n& n~E„= 'vlcos y, v2cos yP
'

P
(9)

where vl and v2 are eigenvectors of

T,f(y') =f(gy») =f(P y—) . (6)

Clearly the operator F+DB /By is covariant with respect
to

Consider problem (3) restricted to the space tangent to
E„. After we perform the translation X—Xo=Y, there

exists a linear transformation to convert this probletn into
Poincare normal form. The change of variables is

Y„=OZ,

O=[Rev1 Imv1] .

After these two linear transformations, the problem (3)
reads (in complex variables)

z = [81(v)+i 82(v)]z+
2&i+j&M

(16)

)
4'k

Z&i+j &M
(17)

The matrix g,i(v) can be made diagonal via the Ruppelt-
Schneider transformation (the reader can consult Ref. 9
for details)

2 2

J(F)) —,D=W„.
Xp

(10)
XJ =0 for i =j+1. The restriction to (3) to the attractive
mode g reads now

This action is
[M/2]

(=[81(v)+i82(v)]/+ y pJ(v)g) g) ". (18)

nm nm
Tsv cos y= v cos (P—y) The amplitude a of the bifurcating solution (18) is derived

fromn~vcos- y for n even

n&—vcos y for n odd.
or

d
)
a

)

' d(g')
jg gdt dt

(19)

Suppose that at v= v, the conjugated eigenvalues
81(0)+i82(0) of W cross the imaginary axis for n =n„
then the spatial-temporal locally attractive solutions (trav-

eling waves) tangent at Xo to E„will have the form7 8

da
dt

Therefore, we get

=2g 81(v)+ g [Rep, (v)](g)J =0 .

X(y, t)=XO+aRe e"~'icos y (12) 81(v(a))+ g I [Repj(v(a))]a2JI =0 . (21)

Tgcx = '
a if Tgis the identity on E„
—a otherwise

(13)

o. is the amplitude of the nonthermodynamic branch, ~ is
the period of the wave [to a first approximation
v=2m/82(v, )]. The representation Tg on E„ induces one

on the o. space given by

In order to derive the bifurcation equations we shall im-
pose the additional mild restriction that v is analytic in o.
and 8& in v (cf. Refs. 8 and 10). That means

v=v + g vjaj,
j=l

81——g [81'(v, )(v —v, )']

cz if n, is even

—a 1f nq 1s odd .

r

OI'(v, ) g v~.a~
j=l

(23)

8(Tsa, v) =TgB(a, v) . (14)

Relation (14) is trivial for n, even but for n, odd it im-

Assume a is given in terms of v —v, =V by the equation
B(a,v)=0, then since F+DB /By is Ts covariant, the
following covariant relation holds: '

Equation (22) multiplied by a can be regarded as the bi-
furcation equation once the coefficients vj are evaluated.
The equation should be multiplied by a to allow for the
solution a—:0 corresponding to the thermodynamic
branch.

Equation (21) allows us to derive the coefficients vi. By
substituting (22) and (23) in (21), we get
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8"(v, )
8i(v, ) g viaj+ g via~ + +[Repi(v, )]a +[Rep'(v, )] g vicIJ a

j=l J =l j=l
. +[Rep2(v, )]a + . =0. (24)

Hi'(v, )

2
'

VI+ Repl(v, )=0 . (26)

When n, is odd, the relation (14') holds, therefore, the
bifurcation equation is

—vox+ g VIJ'cf =0 ~ (25)
j=l

That is, v; =0 for i odd.
Obseruation: From Eq. (24) the condition (2) cannot

1101d for k )2 cxccpt ln tllc spcclal case Rcpl(v )=0 (slIlcc
wc gcf, tllls 1Rst 1'clatl011 Rt older II ). Wc sllall cxaII1111c
therefore, tllc CRsc k =2 111 colldltloll (2).

At O(a ) in (24) we get the relation

RepI(v, )=0 for n, odd.

At O(a ) in (24) we obtain

I 8"(v, )
vl +[Repi(v, )]V1+Repl(v, )=0.

2
(2&)

Therefore, disregarding in (25) infinitesimals of order
higher than a we obtain two bifurcation equations in-
stead of one as in the classical Hopf picture, one for each
root of Eq. (28):

BI(a,v) = —va+ VI la'=0

Rc}pi (v, ) I [Rep'I (v, )] —281'(v, )Rep2(v, ) J
'

=—V|2'+ — „+ cx =0,
81'(v, ) 8,"(v, )

81(a,v) =—Va+ V2 la =0

Repl (v, )= —VCR+
81'(v, )

I [Rep'1(v, )] —28I'(v„)Rep2(v, ) I
'i

81'(v, (30)

The bifurcation diagram presents two nonthermodynamic
branches except in the case (degenerate) Rep'& (v, )

=28I'(v, )Repl(v, ) or in the case Repz(v, ) =0. If

0(281'(v, )Repl(v, ) ( [Repl (v, )]

both branches appear for v & v, .
When sgnRep2(vl)&sgn81'(v, ) one branch bifurcates

for v ~ v, and the other one appears for v (v, .

III. FLUCTUATIONS

(6Ã)11 and the thermal fluctuations (hN), h,

(~&)D =[V VIVE, l V'vivl I]—X,U; V,

N, is Avogadro's number, U; is the ith component of vec-
tor v [cf. Eq. (12)],

(b,N ),h; ——QX,Xp;V,
Xp is the ith component of the steady-state vector. Then
the preference H increases as the bifurcation parameter
departs from the critical value v, according to

Consider again the case in which the degeneracy of the
thermodynamic branch 1s doubled, that 1s

o (281'(v, )Rep2(v, )([Repl(v, )]

(hN)~;
(~&)th,

l /2 l /2 2 1/&
X,U;V

for n, odd. A symmetry breaking perturbation lifts the
degeneracy and two nonthermodynamic branches bifur-
cate from the homogeneous steady state. The system will
preferentially evolve to the nonthermodynamic branch
corresponding to the smallest amplitude Qv/V2 I.

In order to rigorously define the meaning of the term
"preferentially" in the preceding paragraph, one should
consider each component x; of the reaction mixture in a
fixed volume V of the open system. An estimation of the
preference can thus be given by taking the quotient be-

tween the difference in population of the two branches

IV. CONCLUSION

We have demonstrated that the control parameter for
thc onset of hard mode 1nstabi11tlcs 1n open reactive sys-
tems operating far from equilibrium is an analytic func-
tion of the amplitude of the bifurcating solution only in
two cases:



(a) the classical Hopf picture,
(b) under the transversality condition

Hi(v, )=0, Hi'(v, )&0 .

We have studied in detail case (b) to derive that the degen-

cracy of the thermodynamic branch of the system is
higher than in case (a) except if an unstable solution
(whose amplitude is proportional to +

~
7

~
) exists when

the homogeneous steady state is asymptotically stable. In
this last case only one nonthermodynamic branch appears
beyond the symmetry-breaking instability.
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