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Theririal noise effects on the microwave-induced steps of a current-driven
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We study the effects of thermal noise on the microwave-induced steps of a current-driven Joseph-
son junction using the resistively shunted junction model for the junction. We generalize Stephen*s
method for calculating the width of the steps to the case of an underdamped junction, and to the
case of a subharmonic step, provided that there is no overlapping of different steps. In order to
treat the case of overlapping steps we introduce a new approach which enables us to calculate the
distribution of fluctuations about as well as the transition rates out of the steps. All our results are
usually in the form of explicit analytical expressions that facilitate a comparison with experiments.

method enables us to evaluate the width of the subhar-
monic steps approximately. %e compare these results
with a nuinerical solution of the Langevin equation,
both for the harmonic and for the subharmonic steps. We
find that the thermal noise has a stronger effect on the
smaller subharmonic steps.

In Sec. IV we consider the effect of thermal noise when
there is overlapping of different steps in the I Vcharac--
teristic. We derive approximate expressions for the distri-
bution of fluctuations about the zero voltage step and the
fundamental step, and for transition rates out of these
steps. The method we use is an extension of a method
that has recently been developed and has already been ap-
plied successfully to the problem of a dc-driven hysteretic
junction. ' Section V is a summary of the results.

I. INTRODUCTION

II. THE MODEL AND THE DYNAMICS
IN THE ABSENCE OF NOISE

Assuming that the impedance of the wave guide for the
microwave-induced radiation is much larger than the ef-
fective impedance of the junction, the induced radiation
acts as an ac current source. ' "lf we further assume the
RSJ model 9 for the junction, the response of the junction
to a microwave-induced radiation, while biased by a de-
current source Id„is given by

dV VC +—+Issin8=Id, +I„sin(co,„t),t R
(2.1)

where C, R, and Iz are the capacitance, resistance, and
critical current of the junction, respectively.

Following Refs. 17 and 19, we rewrite this equation in
the following dimensionless units:

8+G8+sin8=I+a sin(cot), (2.2)

where

According to the Josephson tunneling theory, ' mi-
crowave radiation will induce steps in the I- V characteris-
tic of the junction at voltages nfico, „/2e (where n is an in-
teger and co,

„

is the frequency of the incident radiation).
These steps, that were first observed by Shapiro, suggest
that the ac Josephson effect may be used not only for gen-
eration, but also for detection of microwave radiation.
The existence of subharmonic steps [namely, steps at volt-
ages (n/m )fico,„/2e] is important because it would extend
the high-frequency limit for these applications upwards
from 2h/A' to 2mb, /ih', i.e., into the far-infrared region.
The nonlinear response of the junction to an oscillating
driving source also suggests additional applications of the
junction as a mixer, modulator, and ac amplifier of
frequencies in the spectral range mentioned above.

Here we will use the RSJ (resistively shunted junction)
model ' for the junction with a purely sinusoidal
current-phase relation, and consider the case where the
microwave radiation acts as an ac current source. ' '"

It turns out that the various types of measured IV-
characteristics (e.g., those with and without subharmonic
steps, ' ' those of zigzaglike structure, ' with hysteresis
between steps, ' etc.), as well as chaotic behavior, ' ' can
be obtained from the same model that we have used, by
merely changing the Iiarameters of the junction and the
incident radiation. ' In Sec. II we present the model
and a summary of its dynamics in the absence of noise.

The sensitivity of the Josephson junction used as a mi-
crowave detector and the equivalent temperature of
mixers, modulators, or parametric amplifiers based on a
Josephson junction are limited by noise. Some of the ef-
fects of thermal noise on the fundamental step (at the
voltage fico,„/2e),i.e., the rounding or voltage width of the
step, have already been studied both theoretically and ex-
perimentally ' for overdamped junctions. In Sec. III
we present an approach similar to that of Stephen,
which enables us to generalize those results to the case of
an underdamped junction as long as there is no overlap-
ping of different steps in the I-V characteristic. This
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2eIJG:—(coqRC), coq —=
A'C

I=Id—,/IJ, a =I„/IJ, (2.3)

the periodic solutions [the aperiodic (chaotic) solutions are
discussed, e.g., in Refs. 17—19]; in general, the n/m solu-
tion can be written in the following way

~=—~ex/~J ~

n " . l
0(t) =0O+ cot—+ g atsin co—t+yt

PPZ m
(2.5)

and time is measured in units of co&
'

(co& is the Josephson
plasma frquency). This model can be used for low and
high frequencies as long as the RSJ m.odel is applicable.
For very high frequencies, which become comparable to
the gap frequency 6/fi, further effects such as frequency
dependence of IJ wi11 come in. 7'

A current step at the voltage V„~~=(n/m) V&, where
Vt is the voltage of the fundamental step

a [~(~2+G2)1/2] —I (2.6)

then at &&I for all the terms in the sum in Eq. (2.5).
When A is large and the external frequency is high, 0(t) is
given by

where the sum can usually be approximated by the first
few terms. In Refs. 17 and 19 it was shown that when the
amplitude of the microwave field is small, i.e.,

ex ~

2e
(2.4)

0(t) =- 00+ cot+A—sin(cot+p~ )
n

is due to an n/m subharmonic solution in which 0 ad-
vances by 2m.n during m periods of the microwave field.
Such digital numerical results' ' of harmonic (n/m =1
and n/m =3) and subharmonic (n/m = —,') solutions are
shown in Fig. 1. It can be proved that every periodic (in
0) solution is either harmonic or subharmonic, although
the solution is not necessarily unique, and overlapping of
different steps may occur. ' ' Here we shall discuss only

n/rn = I/I

8 RADiANS
=8

2.4-
(8& ———

Tex~I ~ I I I

0 20 40
(o)

b,Ii -=2Ji(A) (2.8)

obtained in the model of an ac-voltage source. In this

I+ g at sin cot +—yt
l (&m)

where a~ &&1 for all l. The sum in this equation may be
ignored to leading order, and the first correction is the
term l= 1 in the sum. For additional analytical approxi-
mations see Refs. 16 and 29.

For high frequencies (co,„~co& ) the height of the funda-
rnental step, bI&, agrees quite well with the Bessel func-
tion expression

n/rn = 3/0
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FIG. 1, Some typical steady-state solutions for 0 as a func-
tion of time. The insets show the phase-space trajectories. (a)
The fundamental step (n =m = 1) for I= 1.35, 6=0.7, a =0.8,
and cu = 1.76. (b) Subharmonic solution (n =3,m =4) for
I= 1.024, 6 =0.7, a =0.8, and co = 1.76. (c) The third harmonic
solution (n =3,m = 1) for I=0.95, 6=0.7, a =0.4, and
cu =0.25.
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FIG. 2. Some typical noiseless I-V characteristics. (a) For
6=2,~=1.76,a =1. (b) For 6=0.7 ~=1.76,a =1. (c) For
6=0.1,su = 1.76,a = 1. (d) For 6=0.3,co =0.25,a =0.8. (e)
The same as (b) on enlarged scale.
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case, for a small effective amplitude (A «1) bri is ap-
proximately equal to A. The heights of the 1/m steps
with I ~ 1, under the above conditions, are much smaller
but depend linearly upon A. The heights of the n/m steps
with n&m and n &1 are proportional to A . For high
frequencies and large effective amplitudes, the heights of
the harmonic steps (m =1) are given by

which can be shown to satisfy the following Langevin
equation (a detailed derivation of this equation is present-
ed in the Appendix):

X+GX+J,(A)sinX=M+W(t) {3.3)

when the constants tp, e,A are chosen appropriately. The
otheI quantities that appear are

b,I„=-2J„(A) (2.9) (3.4}

while those of the subharmonic steps can be written in
terms of products of Bessel functions of argument A, and
this leads to smaller steps. The same results are valid for
low frequencies, provided J„(A)«co(ai +6 )'

In Fig. 2 we show various types of I-V characteristics
obtained for different values of the parameters a, co, and
G.

We have found that the subharmonic steps have the
largest heigllts foi medium frequencies (co~„Q)g),6 1,
and a —1. The step size quickly decreases for complicated
n/m ratios. With further and larger numerical computa-
tions, more small steps are found [see Figs. 2{a) and 2(b)].
It thus appears that the I-V characteristic (for such values
of the parameters) contains a dense set of steps which
form a "devil's staircase"-like structure. However, we will
show in the next section that the smaller steps are easily
washed out by thermal noise. Thus these steps (mainly
those with a complicated nlm ratio) are usually not ob-
served experimentally. For high frequencies and an over-
damped junction (6 & 1}, the I Vcharacte-ristic has the
same structure but only the fundamental step is s1zable, as
confirmed also in experiments. In the limit of small 6
and low frequencies, heights of the steps were found to
approach zero (Fig. 2). Again the results are consistent
with experiments. '" ' We have observed overlapping of
steps, and thus hysteresis, for small 6 and high frequen-
cies (Fig. 2). In this case the thermal noise causes transi-
tions aInong the overlapping steps as will be discussed in
Sec. IV.

av/m, =G(X)
{in our units [Eq. (2.3)] the voltage in real units is given

by V=RIq68} and thus the quantity b, V/(M) the step—
rounding —can be easily obtained from Eq. (3.3), since this
equation is similar to that of a particle moving in a poten-
tial

U(X) = b,IX Ji—(A)cosX—. (3.6)

The forward transition rate r~ (these transitions tend to
increase the voltage V) out of the static states of the poten-
tial U(X} [for M & Ji (3, )] is given by

'

where the potential barrier AU is given by

aU(si)=2 [J,(W)' W']'"—

and Ji(A}=—,'A, which is a Bessel function of the first
kind. The quantity Ji(A) is one-half of the total height of
the fundamental step. In obtaining (3.3), use was made of
the fact that x fluctuates much more slowly than the driv-
ing frequency co. In terms of X(t), the average voltage
measured with respect to the step voltage fico/2e is given
by

III. THE NONHYSTERETIC CASE

In this paper we assuIne that the dominant noise is
Johnson noise due to the resistance R. Thus the dynamics
in the presence of noise is described by the following
I.aIlgcv1n equBtion;

and the attempt frequency 0, is given by

[J,(~)'—~']'"/2~6
2 1/2

+[J,(~)'—bl']'"
2

Gb U/T,

(3.9)

(3.10)

(3.11)

X(t)=8 cot y csin(cot+a)— — — (3.2)

8+68+sin8=I+a sin(cot)+W(t),

(W(t)W(t+r)) =26T5(r),
where T is the ternpeI'ature in temperature units of
filg/2ekii.

In this section we consider the case with no overlapping
of steps in the I-V characteristic. The thermal noise intro-
duces rounding of the steps via fluctuations about the
zero-temperature steady state. For the sake of simplicity,
we first calculate the rounding of the fundamental step.
(The approach is similar, but not identical, to the ap-
proach of Stephen. )

We define the slowly fluctuating variable

The total rounding of the step is then given by

AV(AI) =2~(r~ re) . — (3.13)

A con1paI'1soIl of th1s analyt1cal appI'ox1Illatlon with thc
results of numerical simulations of the I.angevin equation,
Eq. (3.1), is shown in Fig. 3. For comparison of a simi-
lar approach of Stephen with experiments see Ref. 23.

In experiments thc subharmonic steps arc falcly ob-
served. It has been stated in the past that this may be

foI' the ovcrdampcd, intermediate, a11d undcIdaIDpcd
states, respectively. The backward transition rate (these
transitions tend to decrease V) rii is given by

(3.12)
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FIG. 3. (a) Comparison of the numerical simulations {solid
circles) with the analytical approximation discussed in text
(dashed lines) for the broadening of the fundamental (1/1) step
and the 2 step by noise. In calculating the analytical results we

used Eq. (3.9) for the prefactor Q„replacing J~ (A, ) by the nu-

merically evaluated half-height of the 2 step in the absence of
noise. The solid curve is the noise-free I- V characteristic. The
parameters are G =2, a =1, and m=1.76. (a) The fundamental

step. (b) Step 2.

l.98—

due to a stronger effect of the thermal noise on the
subharmonic steps. We now proceed to give a qualitative
argument to substantiate that claim. In principle, we
would try to calculate the rounding of any step by analogy
with the treatment of the fundamental step. However, the
rigorous derivation of an equation analogous to Eq. (3.3)
for an n/m subharrnonic step is rather complicated, and
the effective potential U(X) apparently has additional
structure. Therefore we argue qualitatively as follows:
The amplitude of the cosX term in U(X) of (3.6) is &i(A, ),
which is half the height of the fundamental step. It is
reasonable to assume that in the analogous equation for
the n/m subharmonic step, a similar term will appear,
i.e., a cosX term with an amplitude proportional to the
height of the step M„/~. because the amplitude is small-
er for smaller steps, the potential barrier will also be
smaller. Thus the transition rates will be greater, and the
resulting voltage rounding (X) will be larger.

In Fig. 3 we can in fact see that the thermal noise has a
stronger effect on the subharmonic step —,

' than on the
fundamental step: The fundamental step can still be ob-
served at a noise level where the step —,

'
is completely

washed out. The thermal noise has an even larger effect
on the smaller steps (those with more complicated n/m

I

O. I
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I

Q3
I

o4 V/Rr

FIG. 4. A typical noiseless I-V characteristic with overlap-

ping steps. The parameters are G =0.1, a =1, and co=1.76.

ratio). Thus at finite temperature most of the small steps
are washed out.

IV. THE HYSTERETIC CASE

We now turn to discuss the case where the noise-free I-
V characteristic has overlapping steps, i.e., G « 1,
co,„&coq, and a &Iz. A typical I- V characteristic is shown
in Fig. 4. In the presence of thermal noise each of the
steps in the overlap region (regime A in Fig. 4) has a finite
lifetime. Outside this regime the thermal noise will only
cause Auctuations about the steady state. We are interest-

80 8 ep

(a)

asap

+so +so/'r

(b)

FIG. 5. (a) The truncated harmonic oscillator potential. (b)
Schematic picture of the phase-space trajectories. So is the
steady-state trajectory for amplitude a of the driving force. The
dashed curve is the trajectory for a =a„p,which is the one that
passes through H„p.
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ed here in the regime of overlap of steps. We start by cal-
culating the mean lifetime of the zero voltage step. II In
this branch the particle oscillates at the frequency
co (=co„/coq) in one of the wells of the potential U(8).
F1rst, wc approxiQ1atc thc potcnt181 well by 8 harmonic os-
cillator potential of unit frequency, as shown in Fig. 5.
For a given amplitude ao the steady-state solution is then

When the last two terms on the right-hand side of (4.4) are
averaged over S„weobtain a Smoluchowski-type one-
di c sio I diff i q t'o

(4.6)

1 —a) . Geo8o(t}= 2 aosin(cot) —
2 aocos(cot),

AP» (4.1)

We can check this equation by solving it for the stationary
distribution with zero diffusion current

+GT P (4.2)
c)8

The stationary solution of this equation ps which corre-
sponds to a vanishing diffusion current in phase space is

[8—80(t))2+[8-80(t)/2

Pg = CXP 2T
(4.3)

Howcvcl, th1s stationary dlstrlbutlon Is not sufflctcIlt for a
calculation of the escape rate. For that purpose, we need a
solution with a nonvanishing diffusion current. In order
to find such a solution, we fIrst derive a one-dimensional
Smoluchowski-type diffusion equation for p following
Refs. 25, 26, and 33.

%'e start with the observation that through each point
(8,8) in the basin of attraction of So there passes a trajec-
tory S, which is the steady-state solution for a different
value of the amplitude of the external force, namely
a =ao+ ha. In the absence of noise, a system that was in-

itially at (8,8) will decay to So, albeit very slowly if
6 ~~1 (since a is proportional to the energy which de-

cays slowly at this limit). Consequently, we can use the
steady-state trajectories S, as the basis of a new coordi-
nate system in phase space, in which a(8,8)—:ao+b,a is
the slowly varying coordinate, while the other coordinates
are fast. We now assume that p depends only on a, and
we rewrite the Fokker-Planck equation (4.2) in such a way
that the streaming terms will vanish when averaged over
S,

co =(1—co ) +6 co

In the presence of thermal noise, the probability density of
fluctuations about the steady-state trajectory in phase
space So can be obtained by solving the following
Fokkcr-Planck equation

Bp 8 c)

Bt i)8 c)8
(8p) — . I [apsin(cot) —8—68jpI

(ha) co

2TH~
(4.7)

This agrees with the form obtained earlier in {4.3). Fol-
lowing Refs. 31 and 33 we can obtain the transition rate

by solving Eq. (4.6) using the stationary diffusion ap-
proximation. ' %C thus obtain

Gn)

4(2m Tco„)'~
asep{asep ac }

(a„p—ao) co

2Th)»
{4.8)

Io(a) =Jo ( 2+ 62)1/2 for co ~pa . (4.9)

Therefore, a„~is determined by taking Io =I, i.e., by solv-
ing the following equation:

where a„pis the value of the amplitude whose trajectory
passes through 8„~,the position of the top of the barrier
(see Fig. 5). The value of 8„~is given by a a„~=co„8„„.

So far, we have calculated the transition rate in the
truncated harmonic oscillator approximation. In the real
potential [U(8}= I8 cos8]—the —fluctuations in the vi-
cinity of the steady-state So are as calculated before, but
farther away deviations will appear. The most serious dif-
ficulty is that the exit point from the basin of attraction of
So Is no loIlgcr 'tlIc poIIlt 8sep of Flg. 5. In gcncl'al, thc cxlt
should occur for the smallest value of a (again called a„~)
for which S, becomes unstable in the absence of noise.
We can calculate a„~(I)by noting that the height of the
zero voltage step Io(a) is given approximately by"'

Bp 8 ' 8 e

at
=

a8 (8p) — . I [(as+ha)sin(cot) —8—68]pI
I=PC(a„~/co(co +6 )' ) . (4.10)

8 +8 /co =a /co, ,

B cor8 B

c)8 & co a Ba

(4.5)

. [ha sin(cot)p]+GT
8 8 p (4A)

88 88
where we still have to use the following relations, obtained
from (4.1), to replace sin(cot ) and I)/c)8):

a sin(cot)=68+(1 —co 8),

In cases when this appfox11natlon canIlot bc Used, wc can
still determine a„~(I)by a numerical solution of (2.2)—
the noisdess equation of motion —to flnd where the zero-
voltage steady state becoIDes unstable. %c can now use
this value of a„~(I)in (4.8) to determine the transition
rate out of the zero voltage state.

We now turn our attention to the fundamental nonzero
voltage step. Again wc derive 8 onc-diITlcnsional
Smoluchowski-type diffusion equation. Here we must
choose a slow variable of a different type. The reason is
that for most values of I within this step, if we only



2026 E. BEN-JACOB AND D. J. BERGMAN 29

change the value of the ac current amplitude a, the aver-
age voltage remains unchanged. By contrast, if we change
the magnitude of the driving frequency to N+ AN, we get
a series of steady-state solutions that do not intersect, and

which appear to fill up all the relevant regions in the basin
of attraction of the steady state for co.

Using this idea, we rewrite the Fokker-Planck equation
as follows

c)p c) ' c)
(Bp)— . {[I+asin(cot+scot) —sinB —GB]pI+a . {[sin(cot+scot) —sin(cot)]pI+GT . , (4.11)

~ ~P
at

=
ae qg BO BO

a
0( t ) =cot + 2

slI1( cot + tp ~ ) +pp, (4.12)

where bco=bco(0, 0) is chosen so that the steady-state tra-
jectory of the fundamental step for external frequency
co+A, co passes through (0,0). According to Sec. II, these
steady-state trajectories are given approximately by

b Ui -=—,(co„p—co) (4.20)

The value of N at which the steady state becomes unstable,
co„~,is determined by equating M to one-half the size of
the fundamental step in the absence of noise [see the dis-
cussion following (3.4)]

and consequently we can write 0 in the form AI:I GNsep +J) a
2

Nsep
(4.21)

0=-co+f(0) (4.13)

where f(B) is periodic with period 2n Mor. eover, the
average of f(B) is very small compared to co for co &&a.
As before, we now assume that p depends only on the slow
variable co, and ave~ape (4.11) over the "fast coordinate"
(in this case co=- f BdB which is the action of the tra-
jectory and thus decays slowly for small dissipation). This
can be chosen in various ways, but the most convenient of
those seems to be 0, because then the Jacobian of the
transformation to the new coordinates is simply

1
N =N =—I—Jsep +=

G l
a (N (4.22)

and the minus sign leading to

This is an approximate relation, valid for N„p~&a. When
this approximation is inapplicable, co„„maybe found by
numerical solution of the noiseless equation of motion.

We note that there are usually two solutions to (4.21),
the plus sign leading to

c)(00) c)0

c)( Bco ) c)co e
(4.14)

1 a
Nsep N I+J]

N
)N . (4.23)

a sin(cot) =0+GB+sinB I . — (4.15)

Using (4.13), we can easily evaluate the average over 0 of
the right-hand side of (4.15) to get

2m'

a sin(cot)dO=Gco I= bI . — —
2m'

(4.16)

Consequently, the averaging procedure applied to (4.11)
results in the following Smoluchowski-type equation for p:

c)p(waco, t ) c) Bp
a

'
=Ga~ '"&+'gz (4.17)

This average makes the streaming terms of (4.11) vanish,
and from (4.14) we see that, in the remaining terms, c)/c)0
gets replaced by c)/c)co. It remains to calculate the average
of a {sin[(co+Aco)t]—sin(cot)]. This is accomplished by
noting that we can write

When the fluctuating frequency co+ 6,co reaches either one
of these values, a transition takes place to a new steady
state, the general character of which can be discerned by
considering a different type of experiment, where the
external driving frequency itself is varied. In that case,
when N is decreased down to N+, the system jumps to a
higher step (i.e., some subharmonic n/m ~ 1), while when
N is increased up to N, the system jumps to a lover
subharmonic step —usually to the zero-voltage step. We
thus conclude, somewhat paradoxically, that an exit by a
b,co & 0 fluctuation will take the system to a lower step —in
our case (where we assume that there are no overlapping
low-lying subharmonic steps) to the zero-voltage step—
while an exit by a b,co &0 fluctuation will take the system
to a higher step.

A similar approach can be used to calculate the transi-
tion rate out of any other nonzero voltage step.

ps -= const )& exp —(bco) /2T . (4.18)

Similarly, the transition rate out of the fundamental
nonzero voltage branch is given approximately by

1/2
6 AU&

7 $ 2 ~T e (4.19)

where

The distribution of fluctuations about the steady state is
now easily obtained from this equation

V. SUMMARY

We considered the effect of thermal noise on the mi-
crowave induced steps of a current-driven Josephson junc-
tion.

For the case of no overlapping of steps in the I-V
characteristic we generalized Stephen's approach to ac-
count for underdarnped junctions and the subharmonic
steps. The analytical results were compared with a nu-
merical solution of the I.angevin equation. We explained
why the thermal noise has a much stronger effect on the
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smaller subharmonic steps.
Our main contribution is the calculation of fluctuations

about and transition rates from overlapping steps.
First, we consider the zero voltage step, which is analo-

gous to the problem of a particle in a potential well in the
presence of an external oscillating field —a problem which
is related to many phenomena, e.g., multiphoton dissocia-
tion, laser assisted desorption, and chemical reactions in
the presence of radiation.

We found that the activation energy for escape over the
potential barrier is given not by the height of the poten-
tial, as in the absence of radiation, but accordance with
Eqs. (4.8) and (4.10).

The fluctuations about the fundamental finite voltage
step were found to be determined by Eq. (4.18), while the
transition rate out of that step is determined by Eqs.
(4.19)—(4.23).
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APPENDIX

In this appendix we will present a derivation of Eq.
(3.3). In the spirit of Ref. 20, we make the following an-
satz for 8~(t), the fundamental step solution of (3.1):

Ot(t) =cot+ted+A sin(cot a)+X(t), (A 1)

where y, a,A are constants to be determined in such a way
as to make x(t) slowly varying. We substitute this ansatz
in Eq. (3.1), and develop each term that has an explicit cot

dependence in a Fourier series. If we discard all terms
that involve frequencies greater than cot (i.e., 2cot, 3cot, etc.)

[this is justified when A «1 because the coefficients of
the discarded terms are Bessel functions B„(A)where
n ) 1], then we are left w'ith the following form for Eq.
(3.1):

dd = I Gco=—x—+Gx —J&(A)sin(y —a+x) —P(t)+ Jo(A)sin(cot+p+x)

—J2(A)sin(cot+2a —p —x)—(a cosa+co A)sin(cot+a), (A2)

where Jo,Ji,J2 are Bessel functions of the first kind. We
now choose 3 and a so as to make the last two terms van-
ish

A =a[co(co +G )'i j
sina = —G(co +G )

cosa = —co(co +G )

(A3)

This leaves us with a Langevin equation for X that still in-
volves the frequency co. These terms do not resonate with
X for

~

M
~

&J&(A), i.e., for I within the fundamental
step, but they will cause it to have a small oscillatory com-
ponent at the frequency co. This can be taken care of, in
principle, by making a different choice of A. However, if
a && jL, the change in A will be very small.

We thus discard the remaining oscillatory terms, and
are left with

X+GX—J
&
(A )sin(y —a+X)=M+ W(t) . (A4)

Finally, if we choose q&
—a=~ we obtain Eq. (3.3) for

X(t)
Apart from the random rapid fluctuations caused by

the noise term (t), the natural frequency cot for small os-
cillations of X(t) satisfies the following inequality:

2cof &2Ji(A) &A=-,i -—2(bI),„«I=Geo .
( 2+ G 2)1/2

(A5)
Thus, because we usually have G & cu, we find co& &&co, so
that X(t) is indeed slowly varying compared to 0(t).
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