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A numcncal solution Rnd Rnalytlc approxlmatlon RI'c obtaIned foI' thc Illcan-field contInuum
equations corresponding to diffusion-controlled aggregation. For d &2 an asymptotic solution is
found with the density of the cluster varying as the inverse radius, which suggests a Hausdorff di-
mension D =d —1.

In the Wttten-Sander model ' of diffusion-controlled
aggregation, particles assemble to form» lndefl»«iy
large cluster by diffusing one by one from a large distance.
The model was developed «describe agg«ga«s of dust
soot, and other random objects, and it is potentially appl-
icable to any growth process in which diffusion of some
substance is the rate-limiting step. Some types of spinodal
decomposition, flocculation, and dendritic crystal growth
appear to fall into this category. Diffusion-limited aggre-
gates have a strikingly tenuous, wispy appearance, which
reflects a fundamental scale-invariance property. This
scaling may be seen in the density-density correlation

(p(ri )p(r2) ), where the average is taken over an ensemble
of very large aggregates. Computer simulations' show
that this correlation function falls as

~
rl r2

~

", wher—e
A=d/6 for dimension d =2—6. It can be shown that
density profiles of tllis form have a "Hausdorff dimen-
sion" D =d —A. This means that the cluster may be con-
sidered for certain purposes as a fractal. These universal
power laws have yet to be explained. Recently, Muthuku-
mar has given a formula for D based on a coherent-
potential approach. Tokuyama and Kawasaki have ar-
rived at this formula by treating the aggregate in analogy
with a self-repelling polymer. The formula is quite con-
sistent with the simulations, but it is based on several as-
sumptions which we find questionable.

In the paper we investigate a smoothed-density or
mean-field approximation to the exact growth equations
for the local density p(r). We find that the incan density
at a distance r varies as 1/r, corresponding to D =d —1

for all spatial dimensions d ~2. The amplitude of this
power law is independent of the initial density. For d =3,
these results have been obtained from a straightforward
numerical solution of the continuum equations starting
with a spherically symmetric seed (see Fig. 1). We
describe below how this behavior may also be understood
analytically.

The VA'tten-Sander model generates a disordered, con-
nected cluster of particles on a lattice' of lattice spacing a.
The lattice is truncated beyond a large enclosing sphere of
radius R. Initially the cluster is a single particle at the
cclltcl of tllls sphcl'c. A sccolld particle ls llltlodllccd at
random far from the origin, and it walks randomly until it
reaches a site adjacent to the center. There it is adsorbed:
it stops moving and becomes part of the cluster. Then
another random walker is introduced; it too moves until it
is adsorbed next to the cluster. This process continues un-
til an indefinitely large cluster has been formed. Clearly
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FIG. 1. Numerical solutions of the continuum equations.
Curves at left are density profiles, differing only in the initial
density of the "seed." Curve at right is the diffusing field u.
Scales are logarithmic. Inset shows the scaling functions f(z)
Rnd g (z), Eqs. (15) and (16), for the case a =O.
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this model simulates the growth of an aggregate by the
RdsorptloIl of Browlliail partlclcs.

One may analyze the ensemble of such aggregates by
giving the probability per unit time that a given cluster
gains a particle at the site x. Growth occurs only if x is a
perimeter site—adjacent to a cluster site, but not itself
one. Growth at a perimeter site at time step t occurs only
if the random walker is present. For this treatment we
suppose that the walker is adsorbed with a "sticking prob-
ability" 8. Then the probability of growth at x and at
time step t is Bu (x, t)P(x), where I'(x) is defined as 1 on
perimeter sites and 0 elsewhere. %'e may represent the
cluster itself by a field p, which is 1 on aggregate sites and
0 elsewhere. The average increment in p(x) during a time
step is the adsorption rate at x:

&~p), = &p(x, t+1) p(x, t)—&,

=BU(x, t)P(x) .

The actual change of p is of course either 1 or 0, and is
distinctly different from this average. The probability u

obeys a diffusion equation:

Au =a V u —BuI' .

Here a V' is the lattice Laplacian, i.e., the average of u

over sites adjacent to x, minus u(x). The probability u is
normalized to unity in the enclosing sphere, and is con-
stant over this sphere. On perimeter sites diffusing parti-
cles are removed at the same rate BuP at which they are
added to the cluster. The probability field u for a particu-
lar cluster is given exactly by this equation. In the limit of
a very large enclosing sphere the u field attains a steady
state and the time derivative Au goes to zero.

It is the density correlations defined by these equations
which are believed to obey the universal power laws men-
tioned above. Since these power laws hold even over dis-
tances indefinitely greater than the "lattice length" a, the
essence of the equations should be expressible in a contin-
uum limit, in which a is indefinitely small. To construct a
continuum formalism we average the fields in the
problem —p, u, and P—locally over space, i.e., over many
lattice sites, but a small fraction of the cluster. The P
field can be expressed in terms of the p field:

P (x)=p(x) +a V' p+0 (p ) .

In the continuum approximation each p is to be replaced
by its local average. Since the p profile is a fractal, the lo-
cal average decreases indefinitely as the size of the averag-
ing region increases. %C are thus led to neglect the terms
of order p in Eq. (3). Using this approximation for I', it
is natural to postulate the following continuum approxi-
mation to Eqs. (1) and (2):

Bt
—u (p+a V p)

0=7 u —u(p+a V' p) .

Here we have rescaled the fields to eliminate coefficients.
We have also neglected the stochastic noise in Bp/Bt dis-
cussed below Eq. (1). Since the fluctuations of bp(x)
from its ensemble average &hp(x)), are independent at

every site, these fluctuations are reduced indefinitely upon
Rvclaglllg ovcl' Illally sltcs. Still 111 Ilcglcctlllg tllcsc flllc-
tuations altogether, we clearly oversimplify the problem.
But the resulting deterministic system has many features
of the exact equations, and it may readily be analyzed.

In these equations p has dimensions of inverse length
squared, and u has dimensions of inverse time. Note that
any overall time-dependent factor multiplying u can be
compensated by changing the time scale. Thus we can
confine our discussion to boundary conditions where u is
at infinity constant in time. The single length parameter a
can also be eliminated by rescaling radar and p —+p/a,
but we have retained it to exhibit the singular behavior of
the limit a —+0. In the case of spherical symmetry, p and
u are functions of radial position r and time t only, and

8 (d —1) 8
Qp p' ()7'

The appropriate initial conditions specify the cluster den-
sl'ty po(r) Rt t =0, while for d + 2 tllc boundary colldltlolls
for all times are

=0 Rild u ( ce, t)=u

where u 1s a constant. FoI' convcnlcncc wc shall sct
u = l.

We seek an approximate analytic solution of these equa-
tions for large t. If initially the p field is too small to lead
to any appreciable absorption, the u field is virtually con-
stant, and Eq. (4) is essentially a diffusion equation for p.
After sufficient growth has occurred, the density profile
assulIlcs a GausslaIl shape:

poexp[t r /(4a t)—J
(4 2t )1/2

At fixed r, p grows exponentially in t, and the absorption
of the u field eventually cannot be neglected. The density
profile is no longer "transparent" to the diffusing field.
Then we expect u to vanish and p to approach a static
limit p(r). The distant u field is that of R perfect absorber
of soIIlc radius 8:

u (r) =1—[R (t)/r]

We may bracket the behavior of the u fidd using two
extreme models. In the first we imagine that the p field
continues to grow transparently, as in Eq. (7). This great-
ly overestimates p in the strongly absorbing region. As-
suming this p field, it is straightforward to find the corre-
sponding u field using the Schrodinger equation which is
the second half of Eq. (4). The u field grows exponential-
ly with r for small r. The decay length g(r), defined by
(V' u/u) '/, varies as [p(r)] '/. The boundary of the
stI'oIlg absorption rcglon 1s thc po1nt at which thc spat1al
variation of p over a distance g beomes appreciable. La-
bcllng this boundaI'y by P'I, wc IIlay cxpI'css th1s condit1on

=IP(rl)]'" .
P df'

y =y)
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=S(d)(d —2)R
dR dt

(12)

where S(d) is the area of the unit sphere in d dimensions.
Since dR/dt is a constant v the solution for N(R) is a
simple power law:

S(d) d —2Rg
v 8 —1

(13)

i.e., the mass scales with absorption radius as in a fractal
object with D =d —1. We note that if the mass N arises
from a time-independent density p(r) for r &R(t), then
p(r) =(d —2)/(vr). This argument is valid only for d & 2
because we have assumed that u approaches a constant as
r —+ oo ~

We now discuss how the p and u fields interpolate be-
tween the outer, transparent solution and the inner, static
one, giving further arguments that the growth velocity v is
a constant. In the intermediate region r -at, our strategy
is to seek an approximate solution of Eq. (4) which can be
asymptotically matched to the solutions in the opaque and
in the transparent regime. In this transition region we set

Using Eq. (7) for p, this gives

[ri/(2a2t)]2=po[4a t] "~ exp[t r—i/(4a t)] . (10)

The exponential controls the time dependence of ri. Up
to logarithmic corrections,

rl ——2at .

The effective radius R i appearing in the distant u field is
equal to ri up to a factor of order unity. In the actual
growth the p field is everywhere smaller than in this ex-
ample. Thus the u field is larger than this estiinate, and R
should be smaller than RI. This example shows that R
can grow no faster then linearly with time.

An opposite limiting case can be constructed by consid-
ering the radius r2 at which absorption first becomes ap-
preciable at large distances. For very large distances the
absorption length g(r) is exponentially large; for smaller
distances it diminishes. The absorption must be negligible
as long as g(r) is much greater than any other length. The
absorption must thus become negligible beyond rz such
that g(r2)=r2. Thus p(r2) ' =r2. We now choose a
density profile given by Eq. (7) for r & r2 and constant for
r &r2 Again. , in this case r2-at. This profile is "mar-
ginally opaque;" that is its effective radius R2 is a fraction
of r2. But this profile is everywhere smaller than the ac-
tual one, except for r & r2, where the absorption is negligi-
ble anyway. The u field should thus be larger in this ex-
ample than in the actual case. Thus we expect the actual
R to be greater than Rz. This example shows that the ac-
tual R grows no slower than linearly with time. Together
the two examples indicate that the effective radius R is

some fixed fraction of 2at
Given that R (t) is proportional to t, we may show that

p(r) attains a power-law form for r «R. For this, we use
the mass conservation implicit in Eq. (4): Since
Bp/Bt =V' u, the growth rate of the cluster mass dN/dt is
equal to the flux of the u field from infinity, f Vu ds.
Using Eq. (8) for the distant u field, we obtain a relation
between N and R

V =8 /Br in Eq. (4) and require that p and u depend on
r and t only through the single variable

(14)

where R (t) and A,(t) are undetermined functions of t. On
dimensional grounds such a "kink" solution must have the
form

p= 2 f(z)1
(15)

and

u =—g(z) .U
(16)

Substituting these expressions in Eq. (4) and neglecting
terms proportional to A, /A, , which we assume to become
small for large t, we obtain two ordinary differential equa-
tions for f (z) and g (z),

dg
Qz

df o2 d2f
dz

(17)

(18)

We seek a solution of Eqs. (17) and (18) subject to the
boundary conditions

lim [1—f (z)]= =0 .dg (z)
z~ —00 Gz

For a =0 we can integrate these equations, to obtain

g = [2(f—1 —inf)]'~

and

(19)

lim f(z)=Ae
Z~ 00

where A =0.366, and for large negative z

lim f (z) =1—Be',

g (z) =Be*,

(22)

(23)

where 8 =0.661.
For general z we obtain f (z) and g(z) by numerical in-

tegration; see the inset of Fig. 1. For the case a&0, this
solution is applicable for z&A, /a, but for Z~A, /a the
function f becomes oscillatory and is given asymptotically
by

8 . A,f=—sin —z+P
z~ a

(24)

where p =1/2a . We presume that Eqs. (17) and (18)
cease to be applicable before these large-z oscillations ap-
pear.

f
)
1/2

~0 g(g —1 —in')"
The integration constant fo determines the location of the
origin z=0. We choose this for convenience so that
g (z) —z~O for large positive z. In this case we have
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We must now match this kink solution for z &A, /a to
the d-dimensional asymptotic solution for the p in the
transparent region, Eq. (7). In this domain the diffusion
field u satisfies the free Laplace equation and has the
form of Eq. (8). Expanding Eq. (8) in powers of
x =r —R, we have to order (x/II )

Comparing Eq. (25) with the asymptotic form of the kink
solution for u, Eqs. (16) and (22), we find

(26)
u (d —2)

To ObtR111 R 111Rtclllllg colldltloll fol p, wc liow Rpploxl-
mate u by setting

U
2

u=- x for x&
A,

2

Hence the solution for p in the transparent region, Eq. (7),
remains valid down to r=R+A, /U, where it must be
joined to the asymptotic kink solution, Eq. (22). Equating
the arguments of the exponential terms, we obtain the
condition

(X+A, /U)

4a t

This relation together with Eq. (26) determines R and A, as
a function of time. We find

R =Ut and t(, =U(pt)'i

2a(l+p/2)I~'
(I+P) (31)

p= I/(d —2) Since ~/~= I/2t, this justifies
a po&«riori neglecting terms of this form in deriving Eqs.
(l7) and (Ig). N««hat the location of the matching

point x =A. /2a corresponds also to the limit of the range
beyond which the kink solution becomes oscillatory, Eq.
(24).

These features have been confirmed by a direct numeri-
CRl Illtcgl'Rtloll of Eq. (4) fol' tllrcc dlmcnslons. FlguI'c I
shows the p and u profiles after they have reached their
ultimate form. Two initial p fields of step-function form
were used —one of small amplitude and one of large. It is
clear that the initial amplitude does not affect the ultimate
power law or its amplitude. The u integration was done
starting from the origin, taking u (0) and its r derivative
equal to unity. The first and second derivatives were
represented numerically as first or second differences.
Three distinct spatial regions are evident in the p profile.
In the opaque region of small r the growth has ceased and

p is well approximated by the power-law dependence

p P', Th1s 1cg1OIl 1s bounded by a narrow transition I'c-

gion, where p falls off and u increases rapidly. Beyond
this region, p vanishes and u is practically constant.

The mean-field equations appear to be a promising
starting point for understanding diffusion-limited aggre-
gation, wltll its spRtlR1 flllc'tllatloils Rnd llolltrlvlal powcl
laws. Even this simplest continuum treatment of
diffusion-hmited aggregation shows why the average den-
sity of the aggregate declines indefinitely as its size grows.
To these equations the effects of fluctuations can be sys-
tematically added to improve the description. These fluc-
tuations must be treated in order to investigate the local
correlations of the density and demonstrate scale invari-
ance of the structure.

Other refinements of the present treatment have ap-
peared since this work was completed. A systematic treat-
ment of the kink region confirms the qualitative picture
given here. The effect of nonspherical initial conditions'
has been shown to be important, as suggested above.

We are specially indebted to S. Alexander for many
fruitful discussions and suggestions throughout the course
of this work, and to L. Sander for suggestions on the
manuscript. This work has been supported by National
SC1cncc Foundation Grant No. PHY-77-27084.

1T. A. %'itten and L. M. Sander, Phys. Rev. Lett. 47, 1400
(1981).

2T. A. %itten and I.. M. Sander, Phys. Rev. B 27, 5686 {1983).
3P. Meakin, Phys. Rev. A 27, 604 (1983).
48. Mandclbrot, The Fraetal Geometry of feature (Freeman, San

Francisco, 1982).
~M. Muthukumar', Phys. Rev. Lett. 50, 839 (1983).
M. Tokuyama and K. Kawasaki (unpublished).

7See R. Ball (unpublished).
8A preliminary account of this work was reported by T. %itten

at the Workshop on Dynamics of Macromolecules, Institute
foI' Theolet1cal Physics, Santa Ba1ba1a, CA, Decembel 1982
[J. Polym. Sci. (to be publishedl].

9M. Nauenberg, Phys. Rev. 8 28, 449 (1983).
IoInstitute for Theoretical Physics (Santa Barbara) Report No.

NSF-ITP-1983-92 (unpublished).


