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Effects of laser-field fluctuations on the intensity correlation of resonance fluorescence
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The effects of amplitude, phase, and frequency fluctuations in the exciting laser ~ield on the in-

tensity correlation of resonance fluorescence from a single two-level atom are investigated. Numeri-

cal results are presented for both weak and strong excitation with narrow-band and broadband laser

fields having Lorentzian or Gaussian line shapes.

I. INTRODUCTION

Although the triplet spectrum of the light scattered by a
two-level atom excited by a strong resonant radiation field
has been predicted theoretically' and verified experimen-
tally for almost a decade, considerable activity persists at
present in the investigation of the properties of resonance
fluoreseenee. With refined experimental techniques, mea-
surements of higher-order field correlations have demon-
strated interesting features of the scattered radiation, e.g.,
the photon antibunching effect. Recent theoretical inves-
tigations, on the other hand, have focused on the influence
of different statistical properties of the exciting radiation
on the scattered light. ' Not only are such investiga-
tions important from the standpoint of understanding the
effects of realistic, nonmonochromatic laser fields on the
dynamics of the two-level atom, but they also pose a chal-
lenge in developing a theory that is applicable in the entire
region of parameter space, i.e., for arbitrary strengths and
bandwidths of the field. Exact results for the intensity
and the spectrum of the scattered light have been obtained
for the cases when the exciting field fluctuations have
been described by the phase diffusion model (PDM) with
Lorentzian line shape, ' the extended phase diffusion
model with a non-Lorentzian line shape, ' the chaotic
field, 9 "and the real Gaussian field. '"

For a complete description of the scattered light,
knowledge of correlation functions of the field to all order
is desired. %Nile the spectrum yields information about
the second-order correlation, higher-order correlations
such as the intensity correlation demonstrate interesting
features like the photon antibunching that are fundamen-
tal to the emission of light by an isolated two-level atom.
It is well known that the intensity correlation of the light
scattered by a two-level atom is proportional to the two-
time atomic dipole correlation' '

6"'(t,r) =(&»(t)&»(t+r)&»(t+r)&»(t) )

= ( &2](t)&22(t +&)&]2(t)),
where &;~ =

~

i ) (j ~, i,j =1,2 are the slowly varying parts
of the atomic density-matrix operator. Angular brackets
in the above equation denote quantum averaging. Several

authors have demonstrated the factorization property of
the dipole correlation in (1) that enables us to rewrite
G(2)(t )
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where (&22(t+r
~

t,
~

1))) denotes the population of the
upper level

~
2) at time t +r with the constraint that the

atom was in state
~
1) at t. This particular form of

G' '(t, r) displays an important property of the fluores-
cence light from a single two-level atom: that of photon
antibunching which is due to the fact that an isolated
atom cannot emit two photons at any given time.

If the exciting field is monochromatic, Eq. (2) can be
used to calculate the intensity correlation of the scattered
field. However, if the atom interacts with a nonmono-
chromatic incoherent field, G' '(t, r) in Eq. (2) becomes a
stochastic function in time and hence it must be averaged
over the fluctuations. Such averaging is nontrivial due to
the nonlinear coupling of the atomic dynamics with the
exciting electromagnetic field. Earlier treatments of the
effects of field fluctuations (laser line-shape effects) on the
intensity correlations have either been restricted to a limit-
ed range of parameter space or have been for the simplest
model describing the fluctuations; the phase diffusion
model 5777 127 13721

In this paper we present a theory that describes the
behavior of the averaged intensity correlation

& G"'(t r) & =« & (t) &(& (t+r
~

t,
~

1&)&),
where the bold outer angular brackets denote the averag-
ing with respect to the field fluctuations, which is valid
for arbitrary excitation strengths (Rabi frequencies), band-
widths, and line shape. The fluctuation field will be treat-
ed either as a chaotic field, or as a field with fixed ampli-
tude but the frequency undergoing fluctuations analogous
to the velocity fluctuations of a particle performing
Brownian motion. The phase diffusion model with
Lorentzian line shape that has been widely used in dis-
cussing finite bandwidth effects will emerge as a special
case of the latter model in the limit of extremely fast fre-
quency fluctuations. Owing to the memory effects in-
herent in the dynamics of the two-level atom, the correla-
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tion function in Eq. (3) cannot, in general, be decorrelated
into ((&»(t)) )((&»(t+~

~
t,

~
1) ) ) ) except in the case

of the PDM with Lorentzian line shape. Thus, although
the factorization of (1) holds true at the level of quantum
averaging that leads to (2), factorization of (3) with respect
to averaging over exciting field fluctuations will, in gen-
eral, not be correct.

Starting from the Bloch equations describing the evolu-
tion of a two-level atom, we shall develop in the next sec-
tion equations that describe the averaging procedure for

I

chaotic field and the extended phase diffusion model. Re-
sults of numerical calculations are presented in Sec. III.

II. THEORY
The dynamics of a two-level atom with ground state

~
1) and excited state

~
2) that are separated by an energy

co2i and are coupled by an electric dipole transition (ma-
trix dement p, i2), are described by the following equations
of motion for the quantum averaged slowly varying
density-matrix elements a;J = (&;J ),

a»(t)
aii(t)

dt o'i2(t)

a2i(t)
,'icog (—t) ,' ice~—(t)

,
'

icosi (t)——,' i cote (t)—

,'i cote (t—)

& ECOg (t)

&
l Q)g (t)

,'icot—i(t)

a»(t)

a i2(t)

oui(t)

In the above equation I denotes the spontaneous decay
rate of state

~
2) and A=coo —co2, the detuning of the

center laser frequency c00 from resonance. The parameter
mz{t) =2k 'p, 2e(t) is the stochastic Rabi frequency with
e(t)=V I(t)e'~'" denoting the complex amplitude of the
fluctuating exciting field. The root-mean-square value of
cog(t), cog 2R 'pi2—~—Iq& will be referred to as the aver-

I

age Rabi frequency.
In order to analyze the behavior of the intensity correla-

tion function G' '{t,r) the equation of motion for two-
time correlation functions o»(t)cr22(t +~

~
t,

~
1)) is need-

ed. This in turn is coupled to other two-time correlation
functions of the type cr»(t)o,z(t+~

~
t,

~
1)). These corre-

lation functions obey, for r & 0,
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~
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a»(t)o.»(t ~~( t,

)
1)), (5)

where the 4&(4 matrix on the right-hand side is identical
to that in Eq. (4).

It should be noted at this point that although Eq. (5)
looks siniilar to that used in calculating the spectrum of
the scattered light [see, e.g., (38) of Ref. 14] Eq. (5) differs
from the latter. Firstly, quantum two-time correlation
functions of the type (&2i(t)&iJ(t+~)) are required to
calculate the spectrum of the scattered hght while the
products of quantum averaged density-matrix elements
are needed to calculate the intensity correlations. Further-
more, the initial conditions in the two cases are different;
in the former

(t,1 )= rcr»(t) —rf ( t,r ) —i [rdtc g (t,—1 ) COIc h ( t, 7 )], —

dg (t, r)
d1

r t~~f {t~)
ib, —g(—t ~)—

2 '
2

(6a)

{6b)

(6c)

I

tions in (5) can be eliminated. Equation (5) can then be
rewritten as

(&2i(t)&;,(t)) =(&2,(t))&;i,
while in the present

o»(t)crii(t
~
t,

~
1))=o22(t),

and all other product correlations are zero. These differ-
ences in the initial conditions lead to drastically different
features in the solutions in the two cases [as„e.g., the ex-
istence of antibunching in the solutions of Eq. (5)].

Using the property cr»(t)+aii(t) =1, one of the equa-

where

f(t, r)=a»(t)[o»(t+v.
( t, ( 1))—cr»(t+v

) t, ( 1))],

g (t,~) =o»(t)cri2(t +~
~
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~
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ii (t,~)=a»(t)o„(t +~
~
t, ( 1) ) .

{7a)

{7b)

(7c)
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G' '(t, r) is then calculated from the solutions of (6) with
the initial conditions f(t, O) = —o»(t), g (t,O) =O=h (t,O),
and using the relation

G"'(t, r) = —,
' cr»(t}+ ,' f (t—,r) . (8)

Note that Eqs. (6)—(8) are stochastic equations due to
the fluctuating Rabi frequency and, as such, have to be
averaged over their fluctuations in order to calculate ob-
servable quantities. In what follows this averaging pro-
cedure is briefly sketched for the case when the field fluc-
tuations correspond to those of a chaotic field and for the
case when the amplitude of the field remains fixed while
its frequency undergoes fluctuations analogous to the
velocity of a free particle performing Brownian motion.
In both subsections we shall work within the Fokker-
Plank formalism.

+—L+Q(I,Q) (I,f, t)=0,a

and then using the relation

(X(t))= f dI f dPX(I, P, t) . (12)

L appearing in (11) is the Fokker-Plank operator for the
model described by Eq. (9) and has been discussed in de-
tail in Ref. 22 along with its eigenvalues and eigenfunc-
tions. The initial condition for solving Eq. (11) is

X(I,P, t =0)=(X(t=0)}Ppp(I,P), (13)

variables of the system and Q(I(t),P(t)} describing the
coefficient matrix, then the averaged quantities (X(t)}
are calculated by first solving the partial differential equa-
tion

A. Chaotic field model

In the chaotic field model, the electric field
e(t) =~I (t)e'~'" described as a complex Gaussian process
whose real and imaginary parts [e(t)=e,(t)+ie2(t)] are in-
dependent and satisfy X(I,P, t)= gX „(t)P „(I,P), (14)

with Ppp(I, P) denoting the stationary probability distribu-
tion that satisfies LPpp ——0.

Expanding X(I,P, t) in the complete biorthonormal set
of eigenfunctions P „and 4& „of L (LP „=A „P „,

@an Aan @an }

,'ye;(t)+—F—;(t), i =1,2 (9a)
the expansion coefficients

X „(t)=f 4& „(I,P)X(I,P, t)dIdg
where the forces F;(t) are Gaussian 5-correlated stochastic
variables with zero mean, i.e.,

(F,(t)) =o

satisfy the infinite set of coupled differential equations

dt
—+A „X„+g (@„~Q(IP) ~lP }X =0,

and (9b)

—+Q(I (t), P(t) ) X(t)=0,d
dt

(10)

with X(t) denoting a vector containing the dynamical
I

(F;(t}FJ(t')) = ,
'

5,,yIp5(t —t') . —

Io in the above equation denotes the average intensity.
The spectrum of the field described by the above model,
which is the Fourier transform of the correlation function

(e (t)e(t ) ) Ipe
—r I

' —'
I
»

is a Lorentzian of full width at half maximum (FWHM)
f n

Calculation of the averages for the field undergoing
fluctuations described by Eq. (9) has been described else-
where. " Briefly, if the stochastic differential equations
are written as

n, m =0, 1,2, . . . , a,a'=0, +1,+2, . . . . (15)

Although the summation in the last term above is over the
whole range of a' and m, only a few terms are nonzero
due to the specific dependence of Q on I and P and the re-
cursion relationships involving various eigenfunctions. In
Eq. (15)

A „=y +n
2

denotes the eigenvalue of the Fokker-Plank operator L.
The averages (X(t)} are then given by the solution of (15)
for a=n =0, i.e., (X(t))=Xpp(t)

Applying the above technique to Eq. (6) one obtains, us-
ing the definition co~ 2R 'p&2V Ie' "——' and the recursion
relation described in Ref. 22, the following equations for
the evolution of the expansion coefficients f „(t, r),
ga„(t,r), and h „(t,r):

fp„(t,r)= —«2q(t) —(I +Ap, }fp,(t r}—«z«+1)' '[gi (' r) —h-in(t r}]
d7

+itptin '
[gi~„ i~(t, r) —h i~„ i)(t,r)], (16a)

g,„(t,r) =(id —,
' I' —A&„)gi„(t,r) ——,' itoii (n + 1)—[fp„(t,r) —fp(„+i)(t,r)],7. (16b)

h, „(t,r) =( id, —,
' I —A i„)h,„(t,r)+—, ic—oq(n +1)' [f „(t,r) —fp(—„+,)(t,r)], n =0, 1,2, . . . .

7
(16c)
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foo{t s)= g Bi ( 3k+)(I)ra 2(2t)
Ok

k=O
(19)

B;J(t) in the above equation is, in turn, expressed in terms
of eigenvalues A, and eigenvectors Vk(m) and recipmcal
eigenvectors Wk(m) as

BJ(t)= g V~(m) 8~(m)
r

(20)

At this point, knowledge of (Tzz(t) is needed to complete
the calculation of foo(t, ~) and (G' )(t,~) ). Realizing that
0'g (I)=032(t) —'0'I i(t), (TII(t), and 0'21 (I) obey silllilar
equations of motion as those obeyed by fo„(t,r), g(„(t,r),
and h I„(t,~), Eq. (16) with the inhomogeneous term in
(16a) replaced by —I 5o„, 022 (t) can be expressed as

~O»k(t)
1 Ok(t)+

The averaged intensity correlation is calculated using the
relation

«("(t,~) &=-,' (0 (t))+-,' (f(t, r) &

=—,
' ~»(t)+ —,

'
fOO(t, ~) .

Rewriting the infinite set of coupled Eq. (16) in a compact
form as

dx(t, ~) =Ax(t, I.) I I—',
d'7

with

x =col(foo, glo, h I(),foi,gii, h

I'= [(TI2(t),0,0, (T32(t),0,0, . . . ],
and A denoting the coefficient matrix that follows from
(16), a formal solution for foo(t, ~) with the initial condi-
tion f „(t,O)=0»(t), g „(t,O)=h „(t,O)=0 can be written
in the form

~ =v(t),

dv
dt

Pv—(t) +F (t),
(23)

For yD «P, the spectrum is a Lorentzian with FWHM
yD and has a cutoff at P, while in the other limit
P~O, ya~ oo with the product PyD remaining finite, the
spectrum becomes a Gaussian with FWHM 2{ln2PyD)IT2.
In the limit P~oo the frequency fluctuations become 5
correlated and the phase diffusion model widely used is
recovered. In this paper we shall refer to both P finite and

P infinite cases as the phase diffusion model with the
understanding that earlier model is a special case of the
present extended version (P—+ ~ ).

Performing the averages of f(t,w), g (t,r), and h (t,~} in
Eq. (6) proceeds along similar lines as done in Sec. II A for
the chaotic field model. Defining g(t, r) =e g (t,z) and
h (t, T)=e'~h (t,r), Eq. (6) can be rewritten as

df{t &) (i)
d'T

= —I 022 I"f(t, r) —ir)II [g(t,—~) —h(t, ~)], {26a)

dg(t, ~)
dv'

=(ib , I )g(t—, T} —iv(w)g(t,~—) , icoI(f (t,—~), —

where the force F(t) is, again, a Gaussian random variable
satisfying

(F(t))=0, (F(t}F(t ))=y P'5(t —t') . {24)

The spectrum of the field is given by the Fourier
transform of the correlation function

(e*(t)e(t+~) ) =I (e'I'"+' &'"})

7D e
—PI ~l

=I,exp—
2

1 1= 2B3k+I, I{t}+25k, o (21)
(26b)

1+ 4 g Bl,(3k+I)(+)B(3k+I) 1{t}'
k=0

(22)

Note that the antibunching property of (G' )(t,~)) fol-
lows from (22) since BJ(t =0)= —51 and 022( t)
= —,+ —,'Bii(t). Numerical results are obtained by trun-
cating the system of Eq. (16) up to a certain value of n
and solving the resulting set of coupled linear equations
using matrix methods.

B. Phase diffusion model

In this model the amplitude of the exciting field
remains constant while its phase P(t) undergoes random
fluctuations that are described by the following stochastic
differential equations

Finally, combining (17), {19),and (21}, (G' )(t,~) ) is writ-
ten in the form

d'T

.S——,'r}h(t, )+ ( )h{t, )+-,'-,f(t, ),

(26c)

where all the coefficients except v(t) are constants as a
function of time.

Following Ref. 2S, we expand f(t, r), g(t, I.), and h(t, ~)
in terms of the complete biorthonormal eigenfunctions
$„(v),P„(v) of the Fokker-Plank operator that satisfy
LP„=A„P„=n PP„and I. {}„=(A„g„sa

f(t,r) = g f„(t,I-)P„(v),

g(t, r)= gg„(t,~)P, (v),

h(t, r)= gh„(t,~)P, (v) .

The expansion coeKcients in the above equation can be
shown to satisfy
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f„(r,r) = —I o22 —(I +nP)f„(t,r)
d7- "

ic—o~ [g„(t,r) h—„(t,r)], (28a)

in the limit p~ ac, f„,g„,h„~O for n&0 .However, the
terms

i(pyD) gi(r~r)~ —2~ yDgp(t, r)

and
g„(t,r) =(i b. ,' —I —n—p)g„(t,r) ,—iso—~f„(t,r)

d7 + ,'i—(py~)'~ hi(t, r)~ ——,yDhp(t, &),

,'i(py—nn)'~ g„ (i, r), (28b)

and one recovers the PDM equations for Lorentzian line
shape that has been discussed in several places in the
literature.

h„(t,r) =( i 5 —,' I ——np)h—„(t,r)+ ,'incog f„—(t,r)

+ ,' i [p—yD(n +1)]'"h„+,(t, r)

+ —,
'

i(pylon)' h„ i(t, r) . (28c)

+ 2 g B1,3k+ I(r)B3k+ i 1(t)
k=0

(29)

where BJ(t) is given by Eq. (20) with the eigenvalues and
eigenvectors of the matrix A that follows from Eq. (28).

Before closing this section, it should be pointed out that

Since Eq. (28) can be cast in the form of (18) with

X =col(fp gp hp f] g& h
&

. . . ),
Y=(022,0,0,cr22, 0,0, . . . ),

and the coefficient matrix A being derived from the above
equation, it follows from the analysis leading to Eq. (22)
that the intensity correlation can again be expressed as

(G"'(t,r)) =
2 cr»(r)+ —,'B»(r)

III. NUMERICAL RESULTS AND DISCUSSION

To illustrate the effects of laser line shape as well as the
effects of the amplitude fluctuations on the intensity
correlation {G' '(t, r)), we present in this section results
of numerical calculation of (G' '(t, r)) for the chaotic
field (CF) and the extended diffusion model (EPDM) dis-
cussed in the preceding section. The results of each model
will be compared with those for the phase diffusion model
(PDM) with a Lorentzian line shape (p=ao) for three
values of bandwidths (FWHM) y=0. 1I, I, and 10I.
The FWHM for CF is characterized by the parameter y
defined in Eq. (9) while ya defined in Eqs. (23)—(25)
characterizes the FWHM for the PDM. Since the line
shape in the EPDM depends on yD and P, we have deter-
mined, for a given P (finite) three values of ya such that
the effective FWHM y is 0.1I, I, and 10I . For p= 1,
these values of yD are, respectively, 0.1I, 1.153I, and
42.551. Although, according to laser theory, p&yD, we
shall discuss cases p&yD as a mathematical model for
Gaussian line shapes.

In Fig. 1 we have plotted the intensity correlation (IC)
(G' '(t, r) ) of the scattered light under steady-state condi-
tions (t~ 00) when the two-level atom is excited by a weak

10 '— = 0.1

'Y = 1r

10
'y

r = 10

10 '
0

I I

5r 7
l

8

FIG. 1. Intensity correlation (IC) of the scattered light under weak excitation. The Rabi frequency is co~ ——0. 1I and, for all values
of laser bandwidths, , phase diffusion model (PDM); —-——,extended phase diffusion model (EPDM); and ————,the
chaotic field (CF).
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(co~ ——0. 11 ), resonant incoherent field. The IC is seen to
decrease with increasing bandwidth irrespective of the
type of fluctuations, amplitude, and/or phase. This is due
to the fact that as the laser bandwidth increases, the exci-
tation probability and, hence the emission probability de-
creases. Another remarkable feature common to all the
three models is that the photon antibunching time, defined

—1as the time delay r required for the IC to reach (1 —e )

of the maximum value, is independent of the nature of the
fluctuations (which determine the absolute value of the
maximum) and depends only on the bandwidth. Further-
more, this antibunching time (-2.9, 2.1, and 1.1 for
y=0. 1, 1, 10) decreases with increasing bandwidth. This
does not mean that a broadband field speeds up the emis-
sion, but means simply that the two-photon counting
probability reaches a reduced maximum value earlier as
the increased laser bandwidth damps the transients and
reduces the atomic response.

Comparing PDM and EPDM results, we see that the IC
for the two models is the same for narrow bandwidth of
the fluctuations while EPDM value is larger than the
PDM one for larger y. To understand this, note that the
strength of a weak excitation depends on overlap of the
field spectrum with the atomic line shape. For y =0.1I,
the laser line is narrower than the atomic line and hence
the atom responds to the total intensity of the field which
is same in both models. For y~&I the power at the
center of the spectrum in EPDM is larger than that in
PDM. This increase in the power gives rise to a larger
two-photon counting probability as seen in the figure.

Several interesting features are seen by comparing the
CF results with the PDM results. For narrow bandwidth
fields (y =0.1I )

(6 (r 7))cp 2(6 (r~r))pDM

which is a manifestation of the 2! enhancement of the
two-photon process implicit in the measurement of the in-
tensity correlation. With increasing bandwidth, the differ-
ence between the CF results and the PDM results de-

creases. This is due to the decorrelation of the IC when
the field fluctuations are sufficiently fast. It can be shown
that, under such conditions, (6' '(t, r))cF
=(G' '(t, r))PDM for r satisfying yr&&1.

When the exciting field becomes strong, the IC becomes
sensitive to the complete line shape as multiphoton transi-
tions become important. In Fig. 2 we have the intensity
correlation for strong excitation (coR ——101 ) by a chaotic
field and by a PDM field. It is seen that at all band-
widths, the Rabi oscillations in the IC for CF are washed
out due to the amplitude fluctuations. Furthermore, the
steady-state (I r&&1) value of (6' '(t, r)) for CF is small-
er than that for PDM. This is a manifestation of the less
effectiveness of CF in saturating a two-level atom. The
clamping of oscillations in (6' '(t, r))pDM as well as the
reduction of the overshoot peak in (6 (t, r))cF with in-(2)

creasing bandwidth is a result of faster fluctuations of the
field, the time scale of which is given by y '. This obser-
vation raises the question of whether, if the fluctuations
can be made slower while keeping the FWHM fixed, the
Rabi oscillations in the broadband excitation case would
become more pronounced. The EPDM, in which the fluc-
tuations are characterized by two parameters yD and P,
allows one to vary the rate of fluctuations by changing
P y while keeping the FWHM constant. The results areD

(2)illustrated in Fig. 3 where we have plotted (6 (t,r)) for
PDM (P= oo) and EPDM (P= 1) for three values of effec-
tive FWHM y=0. 1I, I, and 10I . For narrow-band ex-
citation, the results of the two models are essentially iden-
tical implying the insensitivity of the dynamics to the line
shape which appears monochromatic. With increasing
bandwidths, however, the Rabi oscillations in (6' '(t, r))
are seen to remain more pronounced in the EPDM com-
pared to those in PDM. Viewing the problem in the time
domain, reduction of I3 slows down the fluctuations which
in turn reduces the damping of the Rabi oscillations. In
the complementary frequency domain, this effect can be
understood by realizing the fact that reduction of P
suppresses the wings of the spectrum compared to the

0.25

0 0.5 1.0 1.5 2.0 2.5 ' 3.0 3.5
0.

4.0

FIG. 2. IC under strong excitation by finite bandwidth chaotic field (dashed line) and the PDM field (solid line) mean Rabi fre-
quency is co+ ——10I . Effective FWHM (y) of the field are indicated against each set of curves.
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