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Macroscopic theory of electromagnetic fluctuations and stationary radiative heat transfer
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For the macroscopic description of thermal electromagnetic fluctuations two methods are fre-
quently used: (i) linear-response theory and the fluctuation-dissipation theorem (FDT of the first
kind) and (ii) Langevin theory, i.e., stochastic electrodynamics (FDT of the second kind). The two
methods are compared. The identity of both theories in global thermal equilibrium is proven. This
identity is expressed by relations between the imaginary and real parts of the Green functions on the
one side and volume integrations over products of two Green functions on the other side. The
correct treatment of infinitely extended vacuum regions with respect to these integrations is dis-

cussed. The local interpretation of the two methods in open systems leads to different results: The
Poynting vector calculated by the FDT of the first kind vanishes identically, whereas the FDT of
the second kind results in a nonvanishing radiative heat transfer. The basic assumptions which are
responsible for the different results are extensively discussed. Simple examples are dealt with to
make contact with the phenomenological theory of radiative heat transfer.

I. INTRODUCTION

The basic ansatz for the macroscopic description of
thermal electromagnetic (EM) fluctuations was developed
by Leontovich and Rytov. ' In this approach it is assumed
that the macroscopic and classically interpreted EM fields

(E,H) are driven by external stochastic forces, i.e., by a

fluctuating current distribution ( j ) or, alternatively, by

fluctuating polarization and magnetization fields (P,M).
Therefore, the Maxwell equations become Langevin equa-
tions.

It is obvious that the spectra of these forces must be
determined by the thermal motion of the atoms or mole-
cules out of which the condensed matter system is built up
(temperature T). Consequently, on a macroscopic scale
the correlation length of the force correlation functions
may be set equal to zero [-6(r—r ')] if the doininant
atomic interaction range is of the order of the atomic dis-
tances. The fluctuation strength is found by the require-
ment that the condensed matter system should radiate in
accordance with Kirchhoff 's radiation law.

The above sketched theory is a macroscopic (the matter
is characterized by the conductivity o or the electric and
magnetic permeability e and p) semiclassical theory: The
EM fields are described by the classical Maxwell equa-
tions, whereas the spectra of the fluctuating forces are
considered as ensemble averages with respect to the equi-
librium density operator of the condensed matter system
alone.

Consequently, in the original theory of Rytov~ there are
no quantum electrodynamical (@ED) vacuum fluctuation
parts in the correlation functions of the random forces.
This interpretation is only possible if the quantities o., e,
and p are mainly determined by the short-wave com-
ponents of the EM field, i.e., the components for which
the retardation may be neglected (i.e., A, (a, where a
denotes the interatomic distance) and which cause the for-

mation of the condensed matter system out of its atoms
(see Ref. 3, Secs. 75 and 80).

Starting from Rytov's theory Polder and Van Hove
and Caren calculated the radiative heat transfer between
closely spaced media (metals) of different temperatures.
In these works the assumptions on which the local equi-
librium interpretation of Rytov's theory is based were not
fully discussed.

A quantum electrodynamical theory must consider the
EM fields, the matter, and their interaction quantum
mechanically; therefore, it is obvious that in thermal
equilibrium such a theory cannot produce any radiative
heat transfer. The macroscopic QED theory for the
description of thermal EM fluctuations was given by Case
and Chiu in the special case of cavities with perfectly re-
flecting walls and, more generally, by Agarwal and Lan-
dau and Lifschitz (Ref. 3, Sec. 76). The main point in this
procedure which avoids an explicit quantization of the
EM fields is the interpretation of the Maxwell equations
as linear-response equations: The expectation values of

the field operators ((E),(H)) respond to the external
forces P and M. The perturbation Hamiltonian is

given by H& ——J d rIE.P+H MI.
Therefore, the Green functions (tensors) of the Maxwell

equations are interpreted as the commutators of the EM
field which are averaged with respect to the equilibrium
ensemble. This interpretation is possible due to the c-
number properties of the commutators in the linear re-
gime. Via the fluctuation-dissipation theorem ' (FDT)
the averaged commutators are connected with the aver-
aged anticommutators, i.e., with the correlation functions.
The thermal equilibrium is characterized by the density
operator po-exp( Ho/ktt T). The Hami—ltonian Ho con-
sists of three parts: The condensed-matter part (HM), the
long-wave (A, &&a) radiation part (Htt ), and the interac-
tion part (H;„,). Detailed balance exists everywhere in the
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system and, consequently, there is no radiative heat
transfer. (Applications of this theory can be found, for
example, in Refs. 7 and 11—20.)

In this macroscopic theory the averaged EM-field com-
mutators are expressed by the quantities e, p, or o. If we
think of the microscopic (e.g. , graph theoretical) calcula-
tion of these quantities, in principle all field components
and not only the nonretarded short-wave (A, (a) com-
ponents must be taken into account.

In a earlier edition of the textbook of Landau and Lifs-
chitz ' the zero-point vacuum fluctuations are included in
Rytov's theory (neoclassical theory, FDT of the
second kind) and this extended theory is connected with
the inverse formulation of the FDT (FDT of the first
kind). It is stated that both formulations —in our notation
we refer to Kubo's definition of the first and second FDT
(Ref. 26)—lead to identical results.

In a recent paper we already emphasized that identical
results are only obtained if the correct succession of opera-
tions is observed. The identity of both methods excludes
the possibility of calculating any radiative heat transfer
via the second FDT.

So far as we know there exists no detailed analysis of
the interrelations between both methods and of the as-
sumptions on which they are based. Therefore, it may be
useful to discuss in this paper these interrelations and to
stress the involved different interpretations of the macro-
scopic Maxwell equations. In our discussion spatial
dispersion and anisotropy of the electric (magnetic) per-
meability will be included.

Our paper is organized as follows. After the formal
definition of the Green functions and after the discussion
of their symmetries and their completeness relations we
will sketch in the third section the FDT of the first kind.
In Secs. IV and V the FDT of the second kind is formu-
lated and the identity of both theorems in inhomogeneous
bounded systems is proven. In open inhomogeneous sys-
tems this equivalence implies the correct succession of
limiting processes and the demand for global thermal
equilibrium. In Sec. VI the local meaning of both
theorems in inhomogeneous systems is discussed. "Local"
means that the temperature is only defined inside the dis-
sipative part of the system. The reason of different results
which are obtained in open systems is dealt with. In Sec.
VII a theory of stationary radiative heat transfer is pro-
posed and the basic assumptions are discussed. By this,
the calculations made by Polder and Van Hove and
Caren get their reasoning. As a simple example we con-
sider in Sec. VIII the dielectric half-space. We will espe-
cially stress the question if Kirchhoff's radiation law is
also valid for freely radiating bodies, i.e., for bodies which
are not in thermal equilibrium with the surrounding radia-
1on 28 30

V &&H(r, co) = — D(r, co), (2.2)

V'.D(r, co) =0,
V B(r,co)=0.

(2.3)

(2.4)

We include temporal and spatial dispersion and we as-
sume that the external forces are represented by polariza-
tion and magnetization fields.

In the linear regime, to which we will restrict ourselves
in this paper, the constitutive equations take the following
form:

D(r, co)= f d r'V( rr ', co) E(r ',co)+41rp(r, co),

(2.5)

B(r,co) = d r'p( rr ', co) H(r ',co)+41rM(r, co) .
V

The inversion of (2.7) and (2.8) yields

P(r, co)= f d r'[[9' (r, r ', co)] 'E(r ', co)

+[9 (r, r ', co)] 'H(r ', co)J, (2.9)

M(r, co)= f d r'[[9' (r, r ',co)] 'E(r ', co)

+[9' (r, r ', co)] 'H(r ', co)j .

(2.10)

In consequence of the principle of microscopic reversibili-
ty the linear-response theory postulates the symmetry rela-
tions:

EE EE
y(HH)(-, -, ,

) y(HH)(-, , -, )

EH HE
g (HE)( ~ +t

) y (EH)(~i-

[[y HH (p ~&i )]
—

1~ tg (HH)(p& ~
)]—1]

(2.11)

(2.12)

(2.13)

The particular solutions of (2.1)—(2.6) with respect to the
appropriate boundary conditions are determined by the
Green functions:

E(r,co)= f d r'[9 (r, r ', co) P(r ', co)

(r, r '
co) M(r ', co)], (2.7)

H(r, co)= f d r'[9' (r, r ', co).P(r ', co)

(r, r ',co).M(r ', co)] . (2.8)

V &&E(r,co) = B(r,co),
C

(2.1)

II. MAXWELL EQUATIONS AND GREEN FUNCTIONS

The Fourier-transformed Maxwell equations are basic
for both theorems:

(2.14)

Furthermore, for all Green functions (2.11)—(2.14) the re-
lation

9'( r, r ', co ) =9 *(r, r ', —co ) (2.15)

is valid (the time-dependent fields are real). The insertion
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of (2.9) and (2.10) in (2.7) and (2.8) leads to completeness
relations of the Green functions.

By the comparison of (2.1) and (2.2) with (2.9) and
(2.10) we can read off the inverse Green functions directly:

In the following we will assume that the considered sys-
tem consists of spatially dispersive dielectric (magnetic)
regions (volumes, V1;) which are separated by sharp boun-
daries from vacuum regions ( V2):

[y HH(~ ~r
)]

—1 ~(~ ~g
)

4~
1e

I [y EH(~r ~ri )]
—1j

47Tco

I[& '(r r'~)] 'jik ~gk
4Tlcp c}x1

(2.16)

(2.17)

(2.18)

(2.19)

eIk'( r, r ', to) for r, r ' H V1;,
i =1,2, . . . , N

(2.23)5(r —r ') for r, r 'E V2

0, otherwise

(we omit the analogous expression for the magnetic sus-
ceptibility).

E;k( 1,1',CO),
4m.

( I[@HH(p ~rr )]
—1j+ I[™yHH(~gr ~r )]

—1j )

(2.20)

p k(r, r ',co), (2.21)

—(I[9 (r, r ',co)) 'j';k —I[9 (r ', r, co)] 'jk;)=0 .

(2.22)

The relations (2.11)—(2.14) may be interpreted in a dif-
ferent manner. The symmetries of e and p;k(r, r ', co)

=ok;(r ', r, co) and p;k(r, r ', co)=pk;(r ', r, co) (generalized
susceptibilities) —and the structure of the Maxwell equa-
tions cause the relations (2.13) and (2.14) and, consequent-
ly, the relations (2.11) and (2.12) are also valid.

The expressions (2.18) and (2.19) are purely imaginary
while (2.16) and (2.17) are complex. Therefore, we find

III. FLUCTUATION-DISSIPATION THEOREM
OF THE FIRST KIND

The electric and magnetic fields in (2.7) and (2.8) are in-
terpreted as mean values. These mean values vanish if the

external forces P and M are absent [E—+(E)p——tr(ppE),
pp-exp( HplkI1 T—)]. For nonvanishing forces we obtain

the linear response equations (2.7) and (2.8) ((E)=tr(pE),

p-exp[ —(Hp+H1)/k11T] H1= I d P(E'P+H M)).
V

A comparison with the linear-response theory reveals
that the Green functions are considered as commutators
of the EM field which are averaged with respect to the un-
disturbed density operator po. In our case the linear
response is the exact response. Therefore, the commuta-
tors are e numbers and the averaged commutators are in-
dependent of the temperature.

The FDT connects the symrnetrized correlation func-
tions with the averaged commutators and we obtain

( —,IE;(r,t), EJ(r ', t') j ):EJ(r, r ',r=t —t')= — e ' 'Acoth Im9', J (r, r ',co),2' 2kB T
(3.1)

r

tJ» 2 2k T tj (3.2)

B
(3.3)

All higher correlation functions can be reduced to the
quadratic correlation functions (3.1)—(3.3).' This decom-
position is characteristic for a stochastic Gaussian process
and is caused by the e-number property of the field com-
mutators.

The relation (2.15) allows us to define the spectra in
(3.1)—(3.3) with respect to the positive frequency part:

E,J ( r, r ', v ) = cos(toe)fi coth
ddt %co

o B

H J(r, r ', v) = cos(cur)Acoth'
~ dN %co

B

dN %co
M;.(r, r ', w) = sin(cov)1}icoth

B

(3.5)
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As a consequence of (3.6) the averaged Poynting vector
VRQ18hCS:

(S;(r))= ej„Mj„(r,r, v.=O)
~J J

[P(r, to)],„=[M(r,a))],„=0,

[Pt(r, co)IJ(r «6) )]««y=@coth E«j(r, r, co)
8

X5(to+co ), (4.2)

X[ i Re—9';~ (r, r„~)j . (3.7)

For v =0 the positive frequency (+m) contributions can-
cel with the negative frequency ( —~) contributions in the
spectrum of (3.3) (detailed balance).

For lossless systems the calculation of (3A)—(3.6) must
also include the fundamental requirement of causality
(Kramers-Kronig relations for the generalized susceptibili-
ties). This requirement can be achieved if we assume dis-
sipation and take the limit e"—&0 (and/or p"—+0) in the
SUitCd CXPICSSlOQS. ThlS 1S nothing CISC bUt thC iQSCltiOQ

and extraction of the famous dust particle.

IV. FI.UCTUATION-DISSIPATION THEOREM
OF THE SECOND KIND

Here the EM fields are interpreted as stochastic vari-

ables which are driven by the Langevin forces P and M.
These forces describe a stochastic Gaussian process, i.e.,
the knowledge of the quadratic force correlation functions
18 cIloUgh to dcscrlbc thc PI'occss complctclf. Gcncrallz-
ing the formulas of Landau and Lifschitz ' we can write

[~(r,~)~j(r', co')j,„=ficoth itq'(r, r', ro)
8

(4.3)

[P~(r,co)M~(r ",ra')],„=0. (4 4)

[For the symmetries of (4.2) and (4.3) see the remarks fol-
lowing Eq. (2.16).]

We form the expression

E (~ t)E (~« t«) —l«««f —««««f

2m' 2n

XE;(r,~o)E,(r ', to')

and inset ln thc right-hand side thc PMticUlar SoIUtioQS
(2.7) of the classical Maxwell equations. We average with
respect to the stochastic process (4.1)—(4.4) and use (2.15}.
WC Obtain

[E;(r),t)Ej(r2, t')],„—=[Ej(r), rz, r)],„

The same procedure takes us to the formulas

[H~(ri, t)Hj(r2, t')]„=—[Hj(r&, r2, ~)]„

X [9p( r («r «co )Ekl ( r «r « to )9j~g ( r 2, r «67 )

+9«.k (r)«cor)«pkt( rr««co)9jt (r2«r «co )] ~ (4.6)

X [9;k ( r ~, r, co )0kt ( r, r, 6) )Ã jt"(r 2, r, 6) )

[E,(r „t)H,(r„t')]„=[M,,(r, , r„~)],„
+S;k (r), r, a))pk't(r, r ', co)Spent (r2, r ',a))],

X[8;k (r~, r, to)ek't(r, r ',c0)9'jt (r2, r ",c0)

++«'k (rl«r«~)itkt(r«r «~)+Jt (r2«r «to)] ~ (4.8}
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The left-hand sides of (4.6)—(4.8) have to be real and the frequency integration range can be restricted to the positive
Part, 1.C.,

ce Co

[A;(rl, t)8i(rz, t')],„= e '" f(rl, rl, c»l)= Re[e '"'f (rl, rz, a))] .
2'7T

The relation (2.15) guarantees the condition f(r „rl co) = —f'(r, , rz, —c»l) in (4 6)—(4 8).
The averaged Poynting vector can be written in accordance to (3.7):

(4.9)

[S;(r)],„= c;ik[Mik(r, r,T=O)],„

der' d r'Vi coth [Sii (r, r ', co)ei' (r ', r ",co}Sk (r, r ",co)
4m 'J —~ 2m' 4m Ii T

In contrast to (3A)—(3.6) the T dependence of (4.9) cannot
bc dcscrlbcd by R pUrc cos1nc or s1nc behavior. Only thc
imaginary and real parts of the Green functions have a
well-defined parity with respect to the frequency and not
the products of Green functions appearing in (4.6)—(4.8).

The application of (4.1)—(4.4) has to be taken with care.
In j.ossless systems or in systems with unbounded vacuum
rcglons, 1.c.~ thc dlstancc bctwccn vacuum I'cglons Rnd dls
sipative regions becomes infinite, the limit of vanishing
dissipation in the vacuum regions must be taken after the
integration over the vacuum regions has been performed
in (4.6)—(4.8). If the vacuum regions are bounded (e.g.,
by perfectly conducting walls) and if dissipation is possi-
ble in the system the imaginary parts of the permeabilities
e and p may be set equal to zero in these regions from the
bcg1nn1ng. To discuss th1s problem 1n morc cletail wc stRrt
fl'0111 (2.23). Wc split up t1lc voluIIlc llltcgl'Rtlolls ill

(4.6)—(4.8) in two parts ( g,. Vl; ——Vl, V = Vl + Vz ):

+:p: =I) +I2 ~

++j~l (r«r «c0)Rim(r «r «)+k«««(r«r»co)] .

(4.10)
t

(For simplicity we omitted the irrelevant arguments and
notations. ) In the Green functions in (4.11) for which all
r and r ' are elements of Vl [first part of (4.11)] e' ' and

p IHay bc sct equal to zclo.
In (4.11) we can distinguish four different cases.

(i) Homogeneous systems with dissipation'

II+0, Iz ——0, V=VI .

(ii) Homogeneous systems without dissipationlz'6

Il ——0, II&0, V= Vz .

(iii) Inhomogeneous bounded systems

II&0, Iz ——0, V=VI+VI .

(iv} Inhomogeneous unbounded systems

II+0 V = VI+ Vz .

I, = d'r d'r'j9(r„r)V'" (r, r'):&* (r2, r')

y —» -») ~(I)"(—» —»»).g 4 T(~ ~»)
]

(4.12)

I,= lim J d'r je"'"&(rl,r):&* (rl, r)
~(2)~ y p(&)~ ) 2

+p'z'9(rl, r):9'*T(rl,r)] .

The application of the FDT of the second kind has the
advantRgc that thc contributions to thc correlations can bc
distinguished with respect to their origin from different
dissipative regions of the system. %C have mentioned
above that this interpretation must be handled with care.
Once more we want to emphasize that in (4.6)—(4.8) the
Green functions signify the classical particular solutions
of 'thc lllhoIIlogcIlcolls Maxwell cqllRtlons. Fol' t1lc dlsclls-
sloll of llonIIlagIlctlc sys'tcIIls wc SIIIlply may I'cplacc S
and S E

by zero in the formulas (4.6)—(4.8) and (4.10).
In Appendix B this procedure is justified extensively.

V. FDT'S IN GLOBAL THERMODYNAMIC EQUILIBRIUM

Ill thc global tlMITnoclyIlallllc cqlllllblllllll (l.c., Rt cvcl'y point of t1lc systclrl thc salllc tclnpclatulc T ls cleflllccl) wc ex-
pect that both theorems lead to identical results. By comparison of (3.1)—(3.3) with (4.6)—(4.8) we find the conditions
(the factor A'cothlric»I j2kii T can be written in front of the volume integrations):
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Im9',
z (rr, rz, co)= d r' d r"[8;k (rr, r ', co)ekI(r ', r ",co)g~l (rz, r ",co)4a

+S;k (r], r ', co)pk'/(r ', r ",co)9'j~l (rz, r ",co)], (5.2)

i—Rest(r„rz, co)= d r' d r"[S;k (r], r ', co)E(/(r ', r ",co)SJ~/ (rz, r ",co)4~ v v

The relations (5.1)—(5.3) can easily be proven.

(i) We replace ek and p,"k by the inverse Green func-
tions according to (2.20)—(2.22).

(ii) We use the completeness relations among the Green
functions, which are obtained by inserting (2.9) and (2.10)
in (2.7) and (2.8).

(iii) We use the symmetry relations (2.11)—(2.15) and we
note that the inverse Green functions (2.18) and (2.19) are
purely imaginary.

+$ k ( 1' ~, 1,co )p g~ ( r, r, co ) 8 j~~ ( r z, f,co ) ] . (5.3)

This proof is explicitly performed in Appendix A. (For
nonmagnetic systems see Appendix B.)

We split up the right-hand sides of (5.1)—(5.3) in the
two parts (4.12) and (4.13). In general, both parts will be
complex. The expressions (5.1) and (5.2) are purely real
while (5.3) is purely imaginary. Therefore, we obtain the
following relations (for simplicity we restrict to nonmag-
netic media):

Im f d r' f d r"9';k (r&, r ', co)ek'&(r ', r ",co)Sz& (rz, r ",co)4m. I

= —Im lim d r'8;k (r &, r ',co)e"(co)9~q (rz, r ',co), (5.4)
4m z o v2

v ~ v~~ 'k r] r ~&/] r r ~ J'$4m. 1

= —Im lim f d r'8;k (r„r ', co)e"(co)Pj~k (rz, r ',co), (5.5)4m ~" o

Re f d r' f d r"9'$, (r&, r', co)ekI(r', r",co)Pz~ (rz, r",co)4m. 1

= —Re lim f d r'9;k (r&, r ',co)e"(co)9'g (rz, r ', co) . (5.6)4w e- o v2

Since no confusion is possible we have omitted in
(5.4)—(5.6) the upper indices of the dielectric function.
The limit e"—+0 in (5.4)—(5.6) corresponds to the limiting
process performed in (4.13).

Only in case (iv) of Sec. IV the relations (5.4)—(5.6) are
nontrivially fulfilled; nontrivially in the sense that the left-
and right-hand sides of (5.4)—(5.6) are different from zero.

t

Po-exp( Haik& T) where—

HQ —HM+HR +Hint ' (6.1)

The condensed matter part, which includes the short-wave
(nonretarded) components of the EM field, is represented
by H~. The free parts of the EM fields are given by H~.

(6.2)

VI. LOCAL INTERPRETATION OF THE
FLUCTUATION-DISSIPATION THEOREMS

A. FDT of the first kind

The commutator-anticommutator relation is caused by
the special form of the equilibrium density operator

The interaction Harniltonian H;„, describes the interaction
of the long-wave (k&&cc) EM field with the condensed
matter. On the macroscopic level this interaction is ex-
pressed by the susceptibilities e and p.

Up to now in our considerations the integration in (6.2)
was performed with respect to the total volume V
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( V = V|+Vz). If we omit the integration over Vz in (6.2),
we obtain a density operator p 0. The independent internal

variables are now the E(r) and H(r) fields with r E V&.

Consequently, the perturbation Hamiltonian H, refers
only to Vi and via the linear-response theory and the FDT
we only can calculate the EM field fluctuations inside the
condensed matter, e.g.,

E;J(r, r ', co)=A'coth ImÃ, z (r, r ',co),
2k' Tp

J

(6.3)

where r, r 'E Vi. The temperature To is only defined in
Vi.

With the aid of (5.1) we may write (6.3) in an alterna-
tive form (nonmagnetic media provided):

r

E,&( r|,rz, co) =If coth f d r' f d r"9'P(ri, r ', co)ek'I(r", r ",co)9~( (rz, r ",cg)
2k' TO 4' . 1 1

+ lim f d r'9';k (ri, r ', co)e"(co)9'z~ (rz, r ', co)
e"~0 2

(6.4)

where r i, rzE V&. Starting from the stochastic interpretation of the Maxwell equations we can write, on the other hand,

[E,z(ri, rz, co)],„=f d r' f d r"9;k (ri, r ',co}9'ii (rz, r ",co)[P;&(r ', r ",co)],„ (6.5)

with

[P;(r ', co)PJ(r ",co')],„=[PJ(r', r ",co)],„5(co+co') . (6.6)

We want to find out the explicit structure of (6.6) which
reproduces (6.4). If the second term in (6.4) vanishes the
(constant) temperature need not be defined in Vz. The
comparison of (6.4) with (6.5) yields

[P,J(r, r ',co)],„

ficoth e'J'(r, r ',co) for r, r 'E Vl
8 0

(6.7)

We used the two different interpretations of the
Maxwell equations: In (6.3) S,J is considered as an aver-
aged field commutator which is initially defined only for
r, r 'E Vi. The extension of the validity of (6.4) to the
whole system was made possible by the identity (5.1)
which in turn represents a relation between classical Green
functions. We can conclude that in bounded systems the
two FDT s are identical and that it suffices to define the
temperature only in the condensed matter part of the sys-
tem.

Let us now assume that the second term in (6.4) does
not vanish. In this case the validity of (6.3) in the whole
system can be achieved only if we define in Vz specific
properties. It is obvious that the specification

where at this stage of our considerations zl(co) denotes an

arbitrary and r-independent function of co. Alternately,
we can start from (6.7) and calculate (6.5) for r, E V&

and/or rz6 Vi. This procedure leads us back to (6.4) with

ri6 Vt and/or rzE V&. The expression (6.4) agai~ can be
written in the form (6.3) even for r, 8 V| and/or r z 6 Vl.

Therefore, in inhomogeneous bounded systems it is
completely arbitrary whether the Hamiltonian (6.1) con-
tains the second part in (6.2) or not. The character of a
bounded system and the stationarity of the process au-
tomatically guarantees that the condensed matter is sur-
rounded by its thermal equilibrium radiation.

g(co) = coth
Acu %co

2 2k' To
(6.8)

B. FDT of the second kind

We insert (6.7) in (6.5):

leads to the global validity of (6.3). Therefore, the as-
sumption (6.8) is equivalent to the consideration of the
second integral in (6.2) and corresponds to the prescription
in Sec. IV of how to apply the FDT of the second kind in
the case of global thermal equilibrium.

[E,J(r, rz, co)],„= coth f d r' f d r"S;k (ri, r ', co)—ek'i(r ', r ",co)9ji (rz, r ",co)
2

+q(co) lim f d r'8;k (ri, r ', co) e"(co)9'i~ (rz, r ', co) . —
4m ~" 0 N

(6.9)

From now on we give up the demand that (6.9) should
reproduce (6.3) in the total system, i.e., the function g(co)
no longer has the global equilibrium form (6.8).

From a quantum electrodynamical point of view it is
evident that the polarization fluctuation (6.7) should

I

nevertheless represent the long-wave zero-point Auctua-
tions in the vacuum. Therefore, we set

(6.10)
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To for r&V&T(r)= .
0 for rEV2.

(6.11)

The expression (6.11) suggests a simple interpretation of
the second FDT as a neoclassical macroscopic theory. It
is assumed that —independent of the state of the long-
wave (A, »a) EM field the dist—ribution over the states
of the condensed matter system (including the short-wave
parts of the EM field) is the equilibrium distribution with

respect to To [in (6.1) H~ and H;„, are omitted, semiclas-
sical theory].

Taking into account the zero-point contributions (neo-
classical theory ) this equilibrium distribution of the

Starting from (6.9) and using (6.10) we can no longer
reproduce (6.3) in open systems. It can easily be seen
however that the second term in (6.9) vanishes if the dis-

tance of the points r
&

and r2 ( E V~ ) to the boundary layer
is sufficiently large, i.e., if the points ri and r2 are deep in
the interior of the dissipative part of the system. In this
case the Green functions in the second term of (6.9) will
vanish. If, on the other side, the points r~ and r2 are ly-
ing in a surface layer or even in V2, both parts of (6.9) will
contribute to the correlations.

It follows that (6.7) with (6.10) is no longer equivalent
to the local FDT of the first kind of (6.3) ("local" with
respect to Po). Furthermore, it is obvious that the local
FDT of the first kind cannot be valid for open systems be-

cause it implies a thermal equilibrium between matter and
radiation up to the sharp surface of the condensed matter.
This assumption cannot be correct if we do not define the
global equilibrium from the beginning. For example, we
can calculate the averaged Poynting vector (3.7) with
respect to the density operator p o. It is clear that this vec-
tor will also vanish at the surface of the condensed matter.
On the other hand, this open material system must radi-
ate. But due to the continuity of the Poynting vector this
is impossible.

The polarization fiuctuations (6.7) with the function
(6.10) are equivalent to a local temperature distribution in
(4.2) and (4.3):

condensed matter system leads to the polarization fiuctua-
tions (6.7) with (6.10) and these in turn lead via the classi-
cal macroscopic Maxwell equations to the correlations
(4.6)—(4.8) with the local temperature distribution (6.11).
We have seen that in bounded systems and far inside the
dissipative regions of open systems the thermal equilibri-
um of the matter leads to the thermal equilibrium radia-
tion (global thermal equilibrium). In surface and vacuum
regions of open systems the EM radiation field must
differ from its thermal equilibrium properties.

Crucial for the applicability of the local FDT of the
second kind in open systems is the validity of the assump-
tion that the distribution over the material states is the
equilibrium distribution even near the boundary layers.
The short-wave additive parts of the EM field mainly
represent the binding energy (apart from the nonadditive
van der Waals forces) of the condensed matter system and
determine the heat contact. Therefore, the long-wave
components of the nonequilibrium radiation in the surface
regions cannot essentially disturb the equilibrium distribu-
tion of the matter. (One could correct this approximation
by introducing a material-dependent effective temperature
To which must be smaller than To.)

We just stated that the local interpretation of the second
FDT does not take into account the back-reaction of the
free radiation on the matter. On the other hand, we have
seen that in bounded systems this back-reaction is includ-
ed in the same formalism (equivalence of the first and
second FDT). This fictitious contradiction is caused by
the two different interpretations of the Maxwell equations.
In bounded systems the Green functions may be interpret-
ed as field commutators averaged with respect to po. The
density operator po describes the global thermal equilibri-
um and consequently the back-reaction is included (de-
tailed balance).

This interpretation implies that a microscopic calcula-
tion of 7 and p principally must include all field com-
ponents [see (2.16) and (2.17)] whereas the local interpreta-
tion of the FDT of the second kind implies that only the
short-wave components contribute to 7 and P. Therefore,
the local interpretation of the second FDT in open sys-
tems is based on the premises that e and p are only deter-
mined by the short-wave components of the EM field.

VII. STATIONARY RADIATIVE HEAT TRANSFER

We refer to nonmagnetic media. We insert (6.11) in (4.10) and transform (4.10) to the positive frequency part [see
(4.9)]. The relation (5.6) allows us to write the Poynting vector in the form

[S;(r)],„= e;Jk fuu exp-c ~ Qco

4~ " k~ To

II
—Re llm f d1 Bj~~(1 1 co) 3g~ (r r co)

4m ~" o ~z N

(7.1)

Owing to (5.6) the zero-point contributions canceled out.
The Poynting vector (7.1) makes sense if a finite and

connected condensed matter system (V&, To) is embedded
in the infinite vacuum or if the radiation of an infinitely
extended dissipative region ( V&, TO) which lies completely
in the half-space z ~0 is considered. In a strict manner

only the latter case should be treated by (7.1). Here, the
dissipative matter acts as a heat reservoir. Nevertheless,
we may assume stationarity for periods in which the radi-
ated energy can be neglected compared to the internal en-

ergy of the dissipative matter. In this sense also the first
case can be treated by (7.1).
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(7.2)

The Poynting vector can no longer be written in the
form (7.1} if the system consists of different connected
dissipative regions Vi; (i =1,2, . . . , N) with different
temperatures T;. In this case we start from (4.10) and use
tbc tcmpcratul c dlstr1butlon:

T; for rEVi;T(r)=.

In any case the relation (5.6) guarantees that there are no
zero-point contributions in the Poynting vectoI'.

I.et us now consider two infinitely extended dielectric
half-spaces with arbitrary macroscopic surface structures
which are in the regions z&0 (Vii, Ti) and z&0 (Vi2, T2),
respectively. For this system the right-hand side of (5.6)
vanishes and we obtain

[~«(r }la.= e«jk
AQ)

8 I

XRe d r d i +Jr (r»r»~} ei«««(r «r «~}+k«««(r»r»~} ~

4w
(7.3)

The local interpretation of the second FDT can be extend-
ed to systems in which externally imposed temperature
gradients are present. This extension is possible since the
Hamiltonian HM of the condensed matter is purely addi-
tlVC.

In each case the temperature function must be given by
a solution of a macroscopic transport equation in which
the transport coefficients are determined solely by the
short-wave components of the EM field. Furthermore, we
bavc to demand that the length scale on wh1ch thc tem-
perature changes must be much larger than the coherence
length g of all possible field correlations inside the matter

[g can be calculated with the aid of the first FDT; replace
T0 by T(r ) in (6.3); r, r 'H Vi]:

T (7.4)

In spatial dispersive media also the "coherence length" of

I

the permeabihty e must fulfill the inequality (7.4).

We assume that the temperature depends only on z and
that the electric permeability has the simple form

e;k(r, r ', co) =e(z, co)5~J5(r —r ') .

The considered system is invariant with respect to transla-
tions in the x-y plane and therefore all Green functions
can be expanded in terms of two-dimensional plane waves:

P(r, r ',co)= e'q'i' i' '9'(z, z', q, m), (8.2)
(2m )

where p =(x,y).
Owing to the symmetry the heat can only be transferred

along the z direction [see (4.10) and (5.6)]:

00 459
[g,(z}],„=J d~ e,~&

dzVico exp
0 iiT z

HE*
+Re 2 JI Z«Z «q«QP 6' Z «6) p( Z«Z «q«Q)

(2m. )'
(8.3)

As a further consequence of the symmetry it suffices to solve the Maxwell equations for partial waves of the form

9 (z,z', q, ru)e'~'"

[In Ref. 19 the differential equations for the partial waves (8.4) of the Green functions are given. ] Here, we will discuss

thc thermal radlat1og, of a dlclcctr1c half-space 1.c.

e(a)) for z &0
e z«co

1 forz&0,
(8.5)

Ta foi' z &0T z =.
0 forz&0.

(8.6)

In the considered system the Poynting vector (8.3) does not contain any evanescent contributions (i.e., contributions

for which q & oP/c ) and we may introduce the substitution q =(co/c)sine. We obtain

[S,(z)]„=cI dcoE„(z) .
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In (8.7) we defined the quantity:

CO fico
E~(z) = I d Q cos8 fico exp

(2~) C B 0

0 c EEX R—e dz' e—"(co)e,~k ÃJi [z,z', (cole)sinH, co]8 f& [z,z', (cole)sinH, co]4' 2 ,

'—00 N
(8.8)

We emphasize that the solid angle integration in (8.8) only
extends over the half-space z )0.

Finally, the solutions of the Maxwell equations lead to
the result

l

about the validity of the local FDT of the second kind.
For a black body (R~~

=—Ri—:0) Eq. (8.7) leads to the
famous black-body radiation law:

E (z)= f dQcosHB„(8), (8.9) [S,],„= (kii To)4 .
60c A

(8.13)

where

N ficoB (8)=, fico exp
K C B 0

—I[1—R~((co,H)]~[1—Ri(co, H)jj .1 I
4w 2

Starting from (7.3) we can calculate the radiative heat
transfer between two black bodies. I.et us assume two
dielectric half-spaces separated by a vacuum gap. If the
distance of the half-spaces is very large compared to all
relevant wavelength we may use the Green functions for
the dielectric half-space in (7.3) [see (8.8) and (8.10);
R

~~

=R j =—0]. We find the well-known result

(8.10)

In (8.10), R~~ and Rq represent the reflection coefficients
for waves which are polarized parallel and perpendicular
to the plane of incidence, respectively (incident angle 8):

2

[~,].,= ka(Ti Ti } . —
60c A'

IX. SUMMARY

(8.14)

[e(co}—sin 8]'~ —e(co)cos8

[e(co)—sin 8]'~ +e(co)cosH
(8.11)

[E(co)—sin 8] —cosH

[e(co)—sin 8]'~ +cosH
(8.12)

We have written our result in the form (8.9) to make con-
tact with the quantities which are usually used in the
phenomenological theory of radiation. ' B„(r,H) and

E„(r) are denoted as "radiance" and "radiant emittance, "
respectively.

The expression (8.10} represents Kirchhoff's radiation
law: The spectral emissivity divided by the absorption
coefficient A = —,

' [(1—R~~)+(1—Ri )] yields the spectral
emissivity of the black-body radiation. Usually, the law
(8.10) is derived for bodies which are in thermal equilibri-
um with the radiation. In global equilibrium the integra-
tion in (8.9) formally extends to the total solid angle 4n. .
This extension is due to the second part in (4.11) and due
to the condition (6.8) for global thermal equilibrium.
Consequently, (8.9) vanishes and (8.10) represents the
principle of detailed balance. In principle, we have to dis-
tinguish between the meanings of the reflection coeffi-
cients for local equilibrium on the one hand and global
equilibrium on the other hand (we refer to the remarks at
the end of Sec. VI).

The problem of the validity of Kirchhoff's radiation
law for freely radiating bodies has been discussed in litera-
ture. Based on considerations completely different
from ours, &einstein stated that Kirchhoff's law is valid
for freely radiating bodies as long as the distribution over
the material states is the equilibrium distribution. This
statement is in complete agreement with our assumptions

In this paper we discussed and compared the two
methods for the macroscopic description of EM fluctua-
tions. In bounded systems the application of the first
FDT is correct in the sense of quantum electrodynamics.
The Green functions are interpreted as commutators of
the EM field operators which are averaged with respect to
the global equilibrium distribution (matter and radiation).
%e proved that in bounded systems the stochastic electro-
dynamic theory which we called the second FDT is
equivalent to the first FDT and, consequently, the second
FDT is nothing else than the corresponding Langevin
theory which can always be constructed to the usual linear
response result. This equivalence is also valid for infi-
nitely extended systems with open vacuum regions if glo-
bal thermodynamic equilibrium is postulated from the be-
ginning.

We saw that the first FDT cannot be applied locally to
open systems (local in the sense that thermodynamic
equilibrium is postulated only in the material part of the
system). This is due to the fact that equilibrium in the
sense of the first FDT includes the long-wave radiation:
The Hamiltonian in the corresponding density operator,
on which the proof of the first FDT is based, must in-
clude all internal variables of the system. The assumption
of thermal equilibrium between matter and radiation up to
the sharp surface of the condensed matter leads to a van-
ishing Poynting vector although an open system should
radiate. This contradiction can only be avoided by postu-
lating global thermodynamic equilibrium from the begin-
Qlng. .

Furthermore, we proposed a local interpretation of the
second FDT in open systems which represents an exten-
sion and new interpretation compared with the above stat-
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ed equivalence with the first FDT. This new interpreta-
tion at least must include the following assumptions:

(i} A separation of the short-wave and long-wave radia-
tion is possible.

(11) Tllc back-reaction of thc lollg-wave radlRtloll ollto
the matter can be neglected.

(iii) The form of the polarization fluctuations is unal-

tered although it is assumed that this form is based on an
ensemble average with respect to the condensed matter
part alone.

(iv) Only the short-wave components of the EM field
are relevant in the microscopic calculation of the suscepti-
bilities e and p.

In this local interpretation it can formally be assumed that
T=o in the vacuum part and T=TO in the condensed
matter part of the system (i.e., the notion temperature is
only related to the condensed matter). Nevertheless, we
showed that in bounded systems this assumption leads via
the Maxwell equations to the equilibrium radiation term-

peratuxe To in the whole system. This result is a conse-
quence of the c-number properties of the field propaga-
tors: The Green functions cannot be distinguished with
respect to the density operator on which they are based.
In open systems, in which there is no equihbrium between
matter and radiation, no true equilibrium temperature of
the radiation exists. '"

We insert the relations (2.20) and (2.21) in (5.1) and note the symmetries (2.11) and (2.15):

9'&,E'(r„r„~) SEE(r—„r2,~)

f d3 t' f d3 tt[+EE(» i )gEE(« ii )(I[g EE( ii «t )] 1
j Ig EE( i «ii

The linear equations (2.7)—(2.10) lead to the completeness relations:

v
~ ~I~

~r ~

~
~ ~~

~
~ ~

~ ~

~r ~ ~ ~ ~

~~
«l~~

~ ~r ~

~
~ ~~

~
~ ~

~ ~

~r ~~ ~
~~

~~
~I~

~r ~~rd3 i(y EE (»»t
) I [@(EE)(»i «tt )]

—1
j +y EH (»»i )I [@' (HE}(»t «tt )]

—I
j ) $ $(» «ii)

v
~ i~1k

~ ~r t
~r j~

~ ~r ~

~r ~ ~ ~
~~ r

~
~~ ~

~ ~r t
~
~ t ~

~ ~r 1

~r t

~HEI EE
I HHI HE

d3 i(y EE (»»i )Ig (EII}(«t «ii )]—1j +y EH (» «i
)Ig (HH}(»i «tt )]

—I
j

From (A3) we obtain the formulas:

f d3 tgEH(»»i )IP HH(»i «ii )]
—1j f d3 tyEE(«»i )I[y EH(«i »ii )]

—1
jV V

JI~

~ ~r ~7

~r ~ ~
~ ~

~ ~

~r t
d3 ttgEH (» «it )I[g HH(«i »ii )]

—le
j d3 ttgEE*(» «tt )I[@EH(»ii «i )]

—1
JI 27

V

We put (A4) and (A5) in the second part of (Al) and use (2.13):

9~j~i' ( rzt rltCO)- 9I~j~(1 It I »CO)

(A2)

(A3)

r' d r"; r, , r ', co r, r ",m r ', r ",m

g EE(» «i
)
+EE*(««ii

) I [y EE(»ii «i )]
—I+

j

yEE(»»i )I [y EH(»i »it )]
—1

j
@EH (»»ii }

+ @EH(» «i )gEE (» «ii
) I [p EH(«ii «i )]

—1

f d3r' f dr"[w~ jj(r2, r ",a))(9;k (r„r ',a))I[9' (r ', r ",a))]

9';k (rl, r ', co)(9'—(~i (rl, r ",ro)I [9E (r ",r ', a))] '
jlk

+ I[+EH(«i «ii )]
—lj @EH (» «ii ))]

In the bold parentheses of the second expression for (A6)
we collected the first and fourth and the second and third
terms of (A6), respectively.

If we now note that (9' )
' and (S )

' are
plllcly lmag1nary Rnd Rl'c connected by (2.14), wc call llsc

(A2) and reproduce the left-hand side of (Al). The proofs
of (5.2) and (5.3) are carried out in a completely analogous
manner.

Implicitly, in this proof the correct succession of opera-
tions was used (see Sec. IV). If we split up (Al) according
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to (4.13) we are not allowed to omit the second part for
open systems. In this case the validity of (A2) and (A3)
demands the integration over the total volume whereas in
bounded systems the integration over Vl suffices.

00

E~l(r, r ',r=t —t')= e '"'E;.(r, r ', co) (89)
2m

where

APPENDIX B: NONMAGNETIC SYSTEMS

1. FDT of the first kind

P' (V.E+4irP) =0 . (82)

Equations (81) and (82) define the Green function:

E,(r,~)= . d'r'P, k(r, r ',co)P„(r ', co),
V

Pk(r ', co)= f d r"
I [9(r ', r ",co)] 'IklEJ(r ",co) .

(83)

In (2.6) we assume that M =0 and p = 1. The perturba-

tion Hamiltonian is given by H~ ——— d r E P. The

independent internal variable is only the E field. In Ho

the free components of the 8 field are omitted.
The Maxwell equation (2.1) connects the electric field

operator and its mean value with the magnetic field opera-
tor and its mean value, respectively. We insert (2.1) in
(2.2) and obtain the equations which are interpreted as the
linear-response equations in the sense of the QED pertur-
bation theory:

2

V X( V XE)= (V E+4~P), (81)
C2

E~l ( r, r ', ~)= e
—i cot —i co't'

2' 00 277

X [E~l(r, r ', co)5(co+co')] .

(811)

It is now clear, that (Wiener-Khinchin theorem for sta-
tionary randoin processes)

( —,
'

I E; ( r, co),E ( r ', co') I ) =E;l ( r, r ', co)5(co+co') . (812)

If we now use the operator relation (2.1), i.e.,
H;(r, co)=(c/ico)e;kl(B/dxk)El, we immediately can write
down the spectra of all other correlation functions:

H~l(r, r ', co) =A'coth e;kie12k' T

ImSlp(r, r ',co),
c)xk t)x

(813)

Ez(r, r ', co)=iilcoth Im9;('r, r ', co) . (810)
2 liT

In order to obtain all other correlation functions we write
(89) in the form

The comparison of (84) with (81) yields

(84) T

Mz(r, r ', co) =A'coth ACu IC 8
kl2k' T co ~+k

[[9'(r,r ',co)] 'J;k = — elk(rir ', co)
4m Xlm/;l(r, r ',co) . (814)

e2 c)2+'
BX;c)Xk

—5kb, 5(r —r ') .

8;k(r, r ', t t')= —e(t —t')([El—(r, t),EI(r ', t')]) . (86)

(85)

The symmetry relation (2.11) can be derived from (85)
(here, the symmetry relation for 7 must be presumed) or,
alternatively, from the identification

Naturally, the results (810), (813), and (814) must coin-
cide with the results of Sec. III. This can easily be shown:
The determining equation for S,z [insert (83) in (81)]
coincides with the determining equation for S,z [insert
(2.7) and (2.8) in (2.1) and (2.2), respectively]:

T

—5;kb, 9k (r, r ', co)
xi Bxk

2

f d r"e;k(r, r",co)9'k (r",r', co)
C2 y

Furthermore, we find the completeness condition

k r, f,co r, r, Q)

2
=4m. 5; 5(r —r ') .&m (815)

= 5' 5( r r ") (87)—Furthermore, the "full" Maxwell equations (M&0, p = 1)
lead to the relations

and the relation

—.([H(r r ' co)] '
I 'k I [&(r ' r co)] 'Ik )

21,

ek(r, r ', co) . (88)
4m

9;k ( r, 1,co ) = — e,&t 9 ik ( r, 1,co),
Q) Bx&

Sik (r, r ', co)= —Sk; (r ', r,co),

9;k ( r, r ', co) = —4ir5;k5( r —r ')

(816)

(817)

Since (85) differs from (2.16) by a purely real term, (88)
and (2.20) have identical forms.

The FDT connects (86) with the correlation function:

2 2
C EE ~~t+ 2 eljl&kpm, +1m(r, r, CO) .
co BxjBxp

(818)
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2. FDT of the second kind

[P;(r,co)P&(r ', ro')],„=Rcoth
2kII T 4IrThe Maxwell equations (2.1)—(2.6) with M—:0 and

p=1 are interpreted as classical stochastic differential

equations. The fields are driven by the stochastic force P
which describes a Gaussian stochastic process:

&&a;J(r, r ', co)5(nI+co') . (820)

[P;(r,o))],„=0,
Tllc pRrtlclllRI' sollltlo11S of tllc classical Maxwell cqlla-

(819) tions (81) and (82) directly lead to the spectrum [see (89)]'

[EIJ(rl, rl, nI)],„= der' d r'Vi coth 9;k(rl, r ', ro)ek'I(r ', r ",co)9"~((r2, r ",nI) .
4~ 2kII T

(821)

A11 other spectra are again obtained bg using the %1ener-
Khinchin theorem:

[E;(r,co)E (r ', co')],„=[E;(r, r ',co)],„5(nI+aI')

and Eq. (2.1) with p =1.
If we replace in these results the spatial derivatives of

Ã;~ (S;J=S,J. ) by 8;~ according to (816), we are led

back to thc cxpl cssloIls (4.6)—(4.8) II1 wlllcll tllc Gl'ccI1

functions 9 and 8 formally have been set equal to
zero. The identity of (821) with (810) can again be prov-
en if global thermal equilibrium is presumed: We replace
ek'I in (821) by (88), use the symmetry relations of the in-
verse Green function (89), and the completeness relation
(87).
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