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An exact, closed-form solution is presented for the propagation characteristics of an intense, arbi-

trarily polarized optical beam in an isotropic medium which is subjected to a dc electric field. The
related phenomena of dc-electric-field-induced optical rectification and second-harmonic generation

RIc examined Rs well Rs thc pI'opRgatloIl characteristics of a weak bcRIIl In Rn Isotrop1c mcdiuI11 In

the presence of both the intense optical and dc fields. One fundamental and noteworthy aspect of
the results presented here is that both the formalism and the resulting solutions for these third-order

nonlinear optical phenomena are given explicitly and entirely in terms of the set of real, observable

Stokes parameters rather than in terms of the electric field RIIlplitudes and phases.

I. INTRODUCTION

The optical Kerr effect (OKE), first unambigously
pr'edicted by Buckingham prior to the advent of the laser,
was one of the earliest nonlinear optical phenomena to be
observed experimentally. ' The OKE or nonlinear refrac-
tive index has since been and remains a topic of much in-
terest and study g1ven 1ts pract1cal and Important conse-
quences for laser propagation characteristics as well as
its use as the basis for a wide variety of applications.

It is noteworthy that the very first OKE observations,
reported by Mayer and cfires and by Maker, Terhune,
and Savage, offered a clear dehneation between two
characteristically distinct, almost dichotomous manifesta-
tions of the same effect. Thus, as demonstrated by the
former authors, propagating an intense, linearly polarized
opt1cal pulse with1Il an 1sot1op1c medium 1nduccs R tlansl-
tory birefringence which is formally and optically
equivalent to that of a (positive) uniaxial crystal with its
optic axis parallel to the polarization vector of the intense
"pump" beam. In such a configuration, which is literally
the optical electric field. analog of the dc Kerr effect, an
arbitrarily polarized, weak "probe" beam will have the
orlclltatloll allglc, sllRpc, Rild handedness of its polarlza-
tioil clllpsc Rltcl'cd by thc optically 11lduccd bircfrlngcncc.
However, as shown by Maker, Terhune, and Savage, an
elliptically polarized pump pulse propagating within an
isotropic medium induces a refractive-index change which
results in a continuous precession of the orientation angle
of the polarization ellipse while leaving its shape and
handedness (assuming no dichroism) unchanged. ' This
particular manifestation of the OKE is aptly referred to as
self-induced ellipse rotation (SIER). The form of the
refractive-index change induced by such an elliptically po-
1Rrlzcd puIIlp beaHl docs not, howcvcr, CQII'cspond to c11-
cular birefringence but rather, as will be shown in this pa-
per, to elliptical birefringence with the important conse-
quence that an arbitrarily polarized probe beam will, in
addition to reorientation, experience change in the shape
Rnd haIldcdncss Qf 1ts polarization ellipse. While thc opt1-
cal properties and their resulting effect on propagation

characterlst1cs have long been known and exam1ned 1n de-
tail ' ' for each of these morphisms of the OKE, the
more general case of simultaneous dc and optical Kerr ef-
fects has hitherto gone unsolved.

This paper presents a closed-form solution for the prop-
agation characteristics of an arbitrarily polarized, intense
optical beam within a nonabsorbing isotropic medium
subjected to an arbitrary dc electric field. This solution is
both general in that no restrictions are placed upon the
relative strengths of the dc and optical fields as well as ex-
act insofar as the resulting set of coupled, nonlinear equa-
tions describing the phenomenon are solved completely in
terms of known transcendental functions. This general re-
sult, which contains those for SIER, the linearly polarized
OKE, and the dc Kerr effect as special cases, reveals an
intimate and somewhat surprising coupling between the
diverse propagation characteristics of these individual
nonlinear optical phenomena.

Given the sparseness of exact, closed-form solutions to
general problems in the field of nonlinear optics, the mere
finding of this solution is in itself noteworthy. There is,
however, an ulterior motivation for possessing such a
solution which further enhances its value. It is a well-
established fact that, in media which have a center-
of-inversion symmetry and, in particular, non-optically-
active isotropic media, the (electric dipole) second-order
nonlinear susceptibility tensor is identically zero with the
conscqUcncc that phcnQIDcna such as second-harITloI11c
gcncrat1on Rnd Qpt1cal 1cctlf1catlon Rrc normally forbid-
den' in such media. The application of a dc electric field,
however, removes the center-of-inversion symmetry and
thus g1vcs risc to a nuIQbcr Qf dc-clcctric-flcld-lnduccd
noIll1ncar Optical phenomena, thc prlnc1pal Rnd Illost 1Il-

vestigated of these being the phenomena of dc-induced op-
tical rectification' (DCIOR) and dc-induced second-
harmonic generation ' (DCISHG). The necessary and
basic prerequisite to obtaining gener'al, exact solutions
describing these effects is precisely that solution which is
the subject of this paper. The equations describing
DCIOR and DCISHG in isotropic media will be formu-
lated and the nature of their solutions will be discussed
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with particular reference to previous experimental obser-
vations of these phenomena.

Section II deals solely with the formulation of the
relevant equations which govern the propagation of an in-
tense optical beam in an isotropic medium subjected to a
dc field as well as the related equations for DCIOR and
DCISHG. An essential and important feature of this
development is that the final set of nonlinear differential
equations are formulated not in terms of electric field am-
plitudes but rather in terms of a set of real, directly ob-
servable variables. Among the various candidates for such
a set, the particular variables adopted in the present work
are the familiar Stokes parameters. Section III presents
the solution for the propagation characteristics of an in-
tense optical wave in an isotropic medium subjected to a
dc field in the case where the nonlinear susceptibility ten-
sor components are strictly real. Several specific examples
are illustrated and the nature of the solutions is discussed
in some detail. Section IV examines the propagation
characteristics of a probe beam in the presence of the in-
tense optical field as well as the phenomena of DCIOR
and DCISHG. Section V concludes with a discussion of
the broader significance and implications of the solutions
presented here to other nonlinear optical studies and in
particular to the role played by the mathematical eigen-
functions described succinctly in Sec. III.

II. GENERAL FORMALISM

E
z=L

FIG. 1. Kerr cell geometry.

A. Fields and the nonlinear wave equation

The Kerr cell and coordinate geometry is illustrated in
Fig. l. A right-handed Cartesian coordinate system is de-
fined such that the optical beams propagate parallel to
and in the direction of the + z axis with the entrance and
exit faces of the cell lying in the z=O and z =I. planes,
respectively. The dc electric field is assumed to be uni-
form throughout the region 0(z (I, and, without loss of
generality, parallel to the x axis.

The real electric field within the cell, consisting of a dc
field, an intense pump beam of frequency co, and a weak
probe beam of frequency co', is expressed as

E(z, t)=Eox +Re[E(co,z)exp( ikz icot)—
+E(co',z)exp( ik 'z i co't) ], —

where k =k(co) =n (co)co/c, Eo is the dc field amplitude,

and where the Fourier spectral amplitudes E(co,z) and

E(co',z) [with
~

E(co',z)
~

&&
~

E(co,z)
~ ] are assumed to be

slowly varying with respect to the phase factors exp(ikz)
and exp(ik'z). Although only the z dependence is explicit-
ly expressed, it is permissible, within limitations, ' to
assume an implicit, slowly varying x,y dependence for the
spectral amplitudes. The reality of the electric field re-
quires that the spectral amplitudes obey the condition
[E(co,z)]'=E( —co,z).

The nonlinear wave equation for the electric field in a
nonmagnetic dielectric in the absence of currents or free
charges js

E(coq, z) = P (coq,z), (2)
Bz tt co c

where P (coq, z) is the spectral amplitude of the nonlinear
polarization. In isotropic media, the dominant nonlineari-
ty is the third-order, electric dipole polarization given by
the expression

Pc" (coq, z) =D~,Xf"'(coq,'co„co„co,)EJ (co„z)

XEk(co„z)Et(co„z)e'~~,

where

(3)

co&
——co„+co,+m, ,

hk =k, +k, +k, —kq,

and where the degeneracy factor D~, is

D„,=6+45 5„,5„—3(5 +5„+5„),

(4)

with D, =6, 3, or 1 according to whether none, two, or
all three of the frequencies are equal, respectively. With
the inclusion of this factor, it is implicitly understood that
expansion of Eq. (3) is to include only distinct combina-
tions of co„co„and co, and not their permutations.

The third-order nonlinear susceptibility tensor
X3(coq co cog cog ) obeys a reality condition'

[Xf"(coq', co„,co„co,)]*=X3'" ( coq; —co„,—co„—co—, ) (6)

and possesses an intrinsic permutation symmetry'
which states that its value is invariant under the 3! per-
mutations of the pairs jco„, kco„and lco, (this symmetry
may be extended to the 4! permutations which include the
pair icoq if and only if none of the four frequencies coin-
cides with a resonant frequency of the medium). In addi-
tion, the susceptibility tensor must conform to the spatial
symmetries of the medium it describes. Lists of the
nonzero and independent elements for tensor orders 1 to 3
in all crystallographic groups have been tabulated by
Butcher, ' Kielich, and Flytzanis. ' In isotropic media,
there are 21 nonzero elements of X3 of which only three
are independent. Degeneracy in the frequencies will fur-
ther reduce the number of independent elements to two in
the case of self-induced phenomena (co„=co,= —co, ) and
to one for the completely degenerate case of third-
harmonic generation (co„=co,=co, ). Detailed descriptions
of the third-order nonlinear susceptibility tensor which,
within a classical framework, delineate the nuclear and
electronic contributions to 73 have been given by Flyt-
zanis, ' Hellwarth, Owyoung, ' and by Kasprowicz-
Kielich and Kielich.
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8. Polarization and the Stokes parameters

The transversely polarized, complex Fourier spectral
amplitude at ~ is expressed as

E„»(co,z) =A„» (co,z)exp [ie„»(co,z)), (7)

where the functions A„, A», e„, and e» are strictly real and
where, with reference to Eq. (1), the phase angles are de-
fined positive with respect to kz cot.—The amplitude of
E (co,z) is defined as

A (co,z)= [ I
E„(co,z)I +

I
E»(co,z)I ]'

=[A (co,z)+A»{co,z)]'~

so that A(co, z) &0. When AD=A(co, 0) is &0, it is possible
to normalize the spectral amplitude components to their
values at z=o, i.e.,

E„»(co,z) /2 o =Q„» (cu, z)exp[i e„»(co,z)],
with Q„and Q» referred to as the normalized (dimension-
less) amplitudes.

An alternate representation for E(~,z), and the one
favored in the present work, is in terms of its normalized
right- and left-circularly polarized amplitudes given by

E,(~,z) l&o Q„(co,——z)exp[i e, (co,z)]

[E» (co,z) +iE»(co,z) ]/~o,
EI(co,z) /&0 Ql {co,z)e——xp[i eI (ccI,Z) ]

[E„(~,z) iE» (co,z)—]/Ao,

%'1th corresponding Unit vectors

e„=2 'c (x iy), —
I/z( ~+ .~)

so that

E(co,z) =E»(co,z)x+E»(co, z)y =E„(co,z)e„+EI(ro,z)el .
The normalized Stokes parameters of the optical wave

at frequency co are defined to be

sc(co,z) =Q» +Q» =Q„+QI

si (cg),z) =Q» —
Q» =2QqQIcos5,

sz(Q)~z) =2Q»Q»cosl =2QqQisIn5

SI(co,z) =2Q»Q»sln7'=QI —Qq

2 2 2 2
$0 $1+$2+$3 (14)

The polarization state, i.e., the shape, orientation, and
handedness of the polarization ellipse, is given uniquely
and simply in terms of the Stokes parameters. Thus the
polarization parameter defined as

I'(co,z) =sl lso, —1 &1' & +1
is & 0 for right-handed elliptical, & 0 for left-handed ellip-
tical, =0 for linear polarization, and + 1 and —1 for
right- and left-handed circular, respectively. The ratio of
the semiminor axis to the semimajor axis is given by

b/Q =tan( —,
' sin ' Isl/so I ), 0&5/Q &1.

The angle of the ellipse major axis, measured positive
from the + x axis towards the +y axis, is specified by

8(co,z) = —,5(co,z) = —,tan '(si/s I ), ——& 0 & +—
(17)

where the individual signs of s, and s2 must b«aken into
consideration in correctly evaluating the arctan function.

In the case where Ao ——0, Eq. (12) is used to define the
unnormalized Stokes parameters So, S~, Sq, and S3 by
simply replacing all the normalized a amplitudes with
their absolute A counterparts, noting that Eqs. (14)—(17)
are valid for either set of parameters.

C. Propagation of the pump @rave

The nonlinear polarization at co is composed of self-
lnduced contributions via X3(co;co,co, —co) which, for the
present, is allowed to be complex valued, and dc-induced
coIltIlbutlo118 via X3(co;c0,0,0) which is assumed strictly
real. Expanding Eq. (3) with cos =co results in

)'(co,z) =e» (cu, z) —e» (co,z),
5(co,z) =E('co,z) —EI(6)',z)

al'c tllc phase differences. OIlly thi'ee of the four Stokes
parameters are independent by virture of the identity

P»"'(m, z) =6XI' (co;co,co, —a))
I
E(co,z)

I E»(co,z)+3X3 '(m;co, co, —co)[E(co,z)] E(co,»z)

+ [6X3 '(co; co, 0,0)+3X3' (co;co,0,0)]EOE» (co,z),

I'» (co,z) =6X3 (co;co,m, c0)
I
E(co,z—)

I
E»(co,z)+3XI '(m;a), co, co)[E(co,z)] E—

» (co,z)

+3XI (co;co,0,0)EOE»(co,z)

which in turn, using the relation [E(co,z)] =2E„(co,z)EI(ro,z), leads directly to the expression

&,",'I(~,z) =6xI'"(~;~,~, —~)[ I
E„(~,z)

I

'+
I
EI(~,z)

I
]E'„,I{~,z)

+6XI '(c0;co,m, —co)
I
EI,(cd,z)

I
E„I(co,z)+3X3' (co;c0,0,0)EOE, I(co,z)

+3X3 '(co;co,0,0)EO[E,(co,z)+El(co,z)] .
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Since the effect of DCIOR on the magnitude of Ep is
negligible, the value of Ep is assumed constant in these
expressions. Note that alternate, equivalent expressions
for X3(co;co,0,0) are possible, e.g. , X3 '(co;0,0,co)

Also note the degeneracy X3
'

(co;co,co, —co)

=X3 (co;co,co, —co).1122

The first step towards obtaining differential equations
in terms of the Stokes parameters consists of substituting
Eq. (20) into Eq. (2) and then separating the results into
its real and imaginary parts for the amplitude and phase
functions defined by Eq. (10). This gives

Rp = X3 (co'co 0 0)EQ1221 . 2

n (co)c

R i —— Re[X3 (co;co,co, —co)]A p,
127TCO 2

n (co)c

R3 —— Re[X3 (co;co,co, —co)]A 0,
12'ITALO 2

n (co)c

R4 —— X3 (co;co,0,0)Ep,1122 . 2

n (co)c

Ji —— Im[X3 (co;co,co, —co)]Ap,
12m@ 2

n (co)c

(22)

a„(co,z) = —J3(a„+ai )a, —J&ai a„+—,
' Rpaisin5,

dz '

(21a)
d 2 2ai(co, z) = —J3(a, +ai )ai Jia, ai———,Rpa„sin5,2

(21b)

5(co,z) =R i(ai —a„)+—,'Rp(ai —a, )(cos5)/(a„aI),

(21c)

where the derivative is written as d/dz in place of the
strictly rigorous partial c)/Bz (i.e., the frequency is treated
purely as a parameter). Although not needed in the im-
mediate case, the equation governing the sum of the
phases, cr(co,z)=e„(co,z)+ei(co, z), is also given at this
point (this result is used for the DCISHG equations).

d 2 2

dz
sp(co, z) = —(Ji+2J3)sp+ Jis3 (23a)

Si (co,z) =—(Ji +2J3 )Sps i
—R &$2$3

dz
(23b)

d
dz

$2(CO, Z) = —(Ji + 2J3)S0$2+Rp$3 +R is iS3, (23c)

d
$3(co~z) = —2J3sps3 —Rps2

dz

J3 —— Im[X3 (co;co,co, —co)]AQ
127TCO 1212 2

n (co)c

have been introduced with the R s denoting terms which
contain the real or real parts of the susceptibilities and the
J s incorporating the imaginary parts of X3(co;co,co, —co).
The dimensions of the R and J coefficients are (length)

With Eqs. (21) in hand, it is a straightforward task to
derive the final nonlinear differential equations expressed
in terms of the normalized Stokes parameters of Eq. (12).
They are

d
cr(co,z) =R p+R4+(R i+2R3)(a„+ai )

2 2

dz

+ —,
' Rp(a„'+ai )(cos5)/(a, ai),

where, for notational brevity, the constants

(21d)

The detailed solution to this set of nonlinear equations in
the case of strictly real X3(co;co,co, —co) is dealt with in
Sec. III. It is both significant and encouraging that the
transformation of the nonlinear equations from depen-
dence on field amplitudes and phases to dependence on
the Stokes parameters is in fact a complete transforma-
tion.

D. Propagation of the probe wave

The nonlinear polarization at the probe frequency co' is given by

P„"I(co',z) =3(2 5„„)X3 (co', co'—,co, —co)
~

E(co,z)
~

E„I(co',z)

+3(2 5~~ )X3 (co—',co', co, —co)[E(co',z) E*(co,z)]E„I(co,z)

+3(2—5„„)X3 '(co';co', co, —co)[E(co',z) E(co,z)]Ei*,(co,z)

+3X3 (co';co', 0,0)EQE, I (co',z) +3X3 '(co';co', 0,0)Ep [E,(co',z) +Ei(co',z)] . (24)

The equations governing the propagation of the wave at
frequency co' are derived in a manner exactly parallel to
that outlined above for the case of the pump wave. The
final result takes the form

si ————,(Ji+J3+2J5)$0$'i p (Ji+J3)sisQ
dz

'

——,(R i +R3 )s2s3 ——,(R i —R3 )s3$2

$2 2 (Ji +J3 +~5 )$0$2 2 (Ji + J3 )$2$0

(25b)

sp = —
2 (Ji +J3 +2J5 )spsp + 2 (Ji —J3 )$3s3

dz
I——,

' (Ji +J3 )(sisi +s2s2), (25a)

+R0$3 + 2 (R i +R3 )Si$3 + & (R
&
—R3 )$3$ &

(25c)
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s3 ————,
' (J1+J3+2J5 )sos3+ —,

' {Jl —JI }slso
dz

'

where s =s;(co',z) and where the constants R and J«' are

g «12~co X1221( «. «0 0)E2
n (co')c

R 1
—— , (2—5„„)Re[XP'(co', co', co, —co)]Ho,

n (co')c

g' = (2—5„)Re[Xp (co;co «co« —co)j~o «

n (co')c

Jl ——— (2 —5~~ )1m[XI (co '«co «co«co) j~ 0 «

n (o«')c

Jl —— , (2—5~~ )Im[XP' (co';co', co, —co}]Ho,
n (co )c

,
—(2—5 „)1m[XI' (C0';co', co, —co)]Ho .

n (co')c

The degeneracy term (2—5 „)is included in these: defini-
tions to ensure that Eqs. (25) reduce to Eqs. (23) in the
111lllt of co =c«1.

E. dC-IQdQCCd 8CCGIld-hRMlomC SCIlCNt1M

The normally forbidden phenomenon of second-
hRrmOI11C gCIlCIRtIOIl 1Il RQ 1SOtI'OP1C IDCd1MH 1S IDRdC POS-
sible by the presence of the dc electric field and the non-
linear susceptibility XI(2co;O, co,co). The circular com-
ponents of the nonlinear polarization at 2co are given by

e ' P„«(2co,z) =2'~ 3XI' (2co;O, co,co)EoE„(co,z)E«(co,z)+2'~ 3XP '(2co;O, co,co)EoE„«(co,z)[E„(ro,z)+E«(co,z)],
(27)

rM =( 2co/c)[ n(co) —n (2co)j .

Taking X&(2co;O,co,co) to be strictly real and ignoring pump depletion, the nonlinear wave equation (2) at the second-
harmonic frequency 2co, when separated into its real and imaginary parts, leads to

[A, (2co,z)cos[e„(2co,z)] j = —Fl (z)= —Vla„sin(cr+5+ b kz) —( V1 + V2)a„a«sin(cr+ Akz),

[A„(2co,z)sin[@„(2co,z)] j =F2{z)= Vla„cos(cr+5+hkz)+( Vl+ V2)a„a«cos(cr+Akz),
dZ

d
[A«(2co,z)cos[e«(2co, z)j j = —FI(z) =—Vla«sin(cr —5+Akz) —( VI + V2)a„a«sin(cr+ hkz),2

(29a)

g9b)

(29c)

d
[A«(2 , co) zi s[en«(2co, z)]]=F4(z) = V«a«cos(o —5+hkz)+(Vl+ V2)a„a«cos(o+bkz),

dZ

Vl ——— XI (2co;O, co,co)E+o,2 127rco

V2 —— XI (2co;O, co,co)E+o .2 12'«76k

n (2co)c

In principal, Eqs. (29) may be integrated to give A„«(2co,z)
and e, «{2co,z) once the Stokes parameters as functions of z
and hence the functions FI F4 are known. —

Vd, 3LE+og (XI"—'—+XI' )—f so«

where g is factor dependent upon the ceil and beam
SCOmCtIy. ""-"

P. do-lnduCCd OPtleal rCCtlfleatioIl

TbC 11ltCIISC OPtlCRl %'RVC Rt Q) lIldQCCS R dC PO1RrIZRtlOIl

through XI(0;O,co, —co), here assumed strictly real, for
&hlCh thC COIQpOIlCIlt PRI'RllCl tO Eo 1S g1VCQ bY

&„"'(O,z) =6[X,""(0;0,~, —~)+Xp"(0;0,~, ~)]
XEoE„(co,z)E„*(co,z)+ 6XI (0;O,co, —co)

III. EXACT RESULTS PGR REAL g3(u;co, u, —m)

A. GCQCf 81 801QtgQQ.

transpal'ent Rt fl"eqllencles co Rllcl 2c«1«

then X3(co;co,c0, —co) 18 strictly real (Jl ——JI ——0) whellce
so(c«I«z) ls constant and = 1. Equations (23} simplify to

dz
S1(co«z)= —R 1$2$3, (33a)

XEo j E(co,z)
i

2 .
SlQCC thC bCRIQ Rt QP 1S R C%' SOUI'CC, AC ObSCIVCd dC VOlt-

Rge lesllltlllg floin 'tllls polarlzRtlon ls pl'oportloflR1 to tile
integral of Eq. (31), i.e.,

d
S2(co«z) =R IS ISI +RoSI

(33c)
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$)+$2+S3=12 2 2 (34)

2 =—(ZRQS( —R ($3 ) =0,
dz

that is,

ZRQ($) —$)0)=R)(S3 $3Q)
2 2

(35a)

(35b

where s;0 denotes s;(cQ,O). Together, Eqs. (34) and (35) re-

veal that only one of the three Stokes parameters of Eq.
(33) is independent. The following will work specifically
with s3 although an exactly similar procedure would be
followed for either s, or s2.

Squaring Eq. (33c) and invoking Eqs. (34) and (35) to
eliminate s& and s2 leads to the first-order, second-degree
nonlinear equation

An immediate consequence of Eqs. (33a) and (33c) is the
identity

2
&t =$3O

a2=S 30 —4( 1 +rs &p )/r 2

and (b) s20 ——0, s &0 & 0
2

A1 $30 ~

(43)

It may be assumed, without loss of generality, that r )0
(this point is discussed in more detail in Sec. V). It fol-
lows from Eqs. (38) that both a& and a2 are strictly real
and that 0&+~ &1 for all r)0. When $&o)0, then n] has
no local extremum but simply increases or decreases
monotonically from a~(r=O)=1 —$~0 to a~(r = co)=$30.
If $~0 &0, however, then a~ ——1 when r = —2$~0/(1 —s3Q)
for $30&1. The behavior of a~ is somewhat simpler with
a2(r=O)= —oo, a2(r =Do)=$30, and da2/dr&0 for all
r &0. Thus a2 is a strictly monotonically increasing func-
tion of r which changes its sign at r=2(1 + $~0)/$30 when
$30&0. One specific case which merits special attention is
that of s20 ——0 for which (a) s2p ——0, s &0» 0

where

$3 B1$3 B2$3+ 3
dz

(36)
a2=$3p —4(1+rsvp)lr, r & —1/s&p= 2 2

a~ ——s3Q 4(1+rs~p)/ r= 2 2

2a2 $30' r & 1/$10

(44)

2B)———,R ),
2 282 —Rp+R](Rps/0 TRjs30)

~3 Rp (Rpslp 2 R1$30)2

(37)

The following properties of these 8; coefficients are noted

noting in particular the "flip-flop" behavior of a~ 2 when

$&o &0
The solution for s3, which follows directly upon in-

tegration of Eq. (40) and the subsequent inversion of the
resulting elliptic int-gral, takes the form of the Jacobian
elliptic function ' cn [the sn solution is ruled out by
the condition (38a)]. Specifically, the result is found to be

r$3(Co, z) =2pkf cn(fRpz +c;m )(38a)B])0,
B2+4Bj B3 )-0,
B3 &0~B2 &0 .

(38b) where

f=[(1+rsvp) +r s20)'

m =a~/(a~ —a2) = —, +(r —1 —f )/4fThe second-order, first-degree nonlinear differential equa-
tion for s3 equivalent to Eq. (36) is

(45)

(46)

d
$3 = —2B($3—B2$3

dz
(39) —Re[Jan (m)] &c (+Re[%(m)], (47)

d = 2 2
$3 +1(s3 a 1 )($ 3 a2)

dz
(40)

where the roots o.
& 2 are

a),2= —(Jl2/zeal) )+[(&2/zeal) )'+(JJ3 I&( )]'~'

= [l $ 30 —2( 1+rs )0 )]/r

+(2/r )[(1+rsvp) +r $20]'~ (41)

and where the dimensionless ratio r is defined to be

r =R)/Ro
= [X3' '(CQ;CQ, CO, CQ)A 0]I[X—3"'(CQ;CQ, O, O)&Q] (42)

which illustrates clearly that the essential nonlinearity is
that arising from the R ~ term, i.e., the self-induced contri-
bution.

Factoring the right-hand side, Eq. (36) may be rewritten

with K (m ) denoting the Jacobian quarter-period,
k =m, p =+ 1=sgn(s3Q) and with the sign function
defined as sgn(x) = 1 for x & 0 and sgn(x) = —1 for x & 0.
As points of notation, note that the Jacobian elliptic func-
tions and periods are here expressed as dependent upon
the Jacobian parameter m (many authors write this depen-
dence in terms of the modulus k =+m '~ ). Secondly, al-
though deference to tradition requires that the symbol k
be used to represent both the wave number as well as the
Jacobian modulus, its meaning will always be clear by
context. The solutions for $~ and s2 follow immediately
from Eqs. (35b) and (33c) and take the form

rs, (co,z)=f [1—2m sn (fRpz+c;m)] —1,
rs2(cp, z)=Zpkf sn(fRpz+c;m)dn(fRpz+c;m)

(48)

(49)

so that the constant c is given in terms of the initial condi-
tions according to
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cn(c;m)=r ~s3o
~
/2kf

sgn(c)=sgn(ps, p) .
(50)

The propagation characteristics of the optical beam de-

pend critically upon the Jacobian parameter m which in
turn is dependent on the initial values of the Stokes pa-
rameters and the ratio r according to

22r s3p —2(1+rsip)

4[(1+rsip) +r s ]'

which, for small values of r, may be expanded as

m= —'(1—s )4 lo r 2»o(1 —sio —2$3o)r +2 1

(51)

(52)

conj(x;m) =cost j[am(x;m)] j,
sonj (x;m) =sin Ij[am(x;m)]

j=0,+1 +2 (53)

where am x;m) is the Jacobian amplitude function.
constitute an eigenfunction sequence which is

complete and orthogonal on L ( —2 Rer K (

[ ]) but, unhke its degenerate (m =0) tri-
~ ~

gonometric counterpart Icos(nx), sin(nx); n=0, +1,

It follows from the discussion above of the ai(r) and a2(r
dependences that m &0 for all values of r &0. However,
values o m & 1 do occur and it is for this reason that Eq.
47 stipulates the real part of the Jacobian quarter-peri d

( ). These solutions as given are valid for all initial
conditions and values of r for which m is defined; the only
instance for which m is not defined is the s ecial

m q. ] szp=O sip&0, r = —1/sip although, even
in this case, Eqs. (45)—(50) yield the correct (trivial) solu-
ion y taking the limit as r approaches —1/s . The

variation of thof the parameter m with r is illustrated in Fig. 2
s&o e

for ive di ferent initial polarization states. N t
icu ar, examples 4 and 5 in this figure which illustrate the

two cases where s2o ——0, Eqs. (43) and (44), respectively;
t e radically different m (r) dependences result from sim-

p y c anging the sign of sip (i.e., the initial polarization el-
lipse is rotated by m/2).

It is possible to express the solutions for the Stokes a-
rameters in a v

r e o espa-
s in a very concise form in terms of th

yshev-like (Jacobian) elliptic functions" (or CLEF)
con and son defined as

rs2(pi, z) =pf sonz((fRo/k)z+c;1/m ),
rs3(co, z) =2pkf coni(fRoz+c;m) .

(54)

The use of these functions amounts to much more than
simply a form of mathematical "shorth d." Pan . articular
elements of this CLEF sequence (j=O—3) have appeared
as solutions to problems in nonlinear optics (and, indeed,
in a number of other nonlinear studies) with the earliest
example being the general solutions reported b
Armstrong et a/. ' In addition, degenerate cases of the
CLEF m ost particularly when m=1, have also been "in-
vo e " in several studies including those concerned pri-
marily with soliton solutions to propagation problems.
Such results lend corroboration to the underlying belief
t at the CLEF defined in Eq. (53) may prove to play a
undamental and important role in describing nonlinear

optical phenomena. A detailed description of these special
unctions will be published separately.

The case of SIER only follows by allowing the parame-
ter r to approach op, with the result

s i (co,z) =2a~paipcos(5o —R i s3pz),

sz(co, z)=2a„oaipsin(5p —R is3pz),

s3(co,z)=sip,

(55)

inuicating, as stated in the Introduction, that the polariza-
tion e ipse or co is rotated uniformly without d' t rt'u is 0 ion.

e case of the dc Kerr effect only follows in the limit
r=0, with the result

si(cu, z) =sip,
s2 (co,z) =2a„pa7pcos(yo+ Rpz),

$3 (co,z) =2a„pa„psin( yp+ R pz)

(56)

orientation of the beam at co will be altered. A final spe-
rea s r as ar itrary butcial case considered at this point treats r a

assumes t at the incident beam is linearl 1
'

d,
'

s3o ——. For this particular initial condition the s 1

takes the form
i ion, e so ution

s i(pi, z) =sip+ (rsvp/2f 2)sd (fRpz;m) 7

I does not exhibit geometrically decreasing har
monic periods for its elements. In terms of the CLEF th
solutions given above may be reexpressed compactly as

rsi(pi, z)=f con3((fRp/k)z+c;llm) —1,

si(co,z) =s2pcd(fRoz;m)nd(fRoz, m),

$3 (co,z) = —
(s2p /f )sd(fRpz;m )

noting that 0(m & 1 when s3Q —0.

(57)

0-
p 5

FIG. 2. Jacobi nobian parameter m as a function of the r
p 'za ion states s~o, s20, and s30 of (1) 0,0,1; (2)

0,0.28,0.96; (3) 0.2,0.2,0.9592; (4) 0.8,0,0.6; (5) —0.8 0 0 6~ 7 7 ~ ~

B. Numerical examples

tio r with
Propagation c aracteristics for various values f thes o era-

(with RpL =2~) are illustrated in Figs. 3—9 for a

s =0 28
pump earn with an initial polarizatio t t

'
n sae s~p=0

2o
——. 8, and s3o —0.96 corresponding t

'
h -h

e iptically polarized wave having b/a =0.75 and an orien-
tation 0= + m/4 (the variation of th J b'e aco ian parameter
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S3
m = 1.70

(o)

0 z/L 1

FIG. 3. Stokes parameters and the polarization ellipse
descriptors as functions of z for the initial polarization state
s~o ——0, s20 ——0.28, and s3o —0.96. The dependence of m(r} for
this initial state is given by curve 2 in Fig. 2. In this figure, r=0
{dcKerr effect only) and Rol. =2m.

m with the ratio r for this initial state is given as curve 2
in Fig. 2). Each figure shows the variation of the Stokes
parameters with the dimensionless distance z/L, as well as
the variation of the orientation angle of the polarization
ellipse (more correctly, the value shown is the normal-
ized angle 25/m ) and the signed quantity +b /a
=(b/a)sgn(s3) describing both the shape and handedness

-1
0 z/L

FIG. 5. The same as Fig. 3 but with r= 3 and R~ =0.41.

of the polarization ellipse. All solutions were calculated
from the set of coupled first-order differential equations
(33) using a Hamming modified predictor-corrector algo-
rithm and then independently verified in all cases by the
direct calculation of the Jacobian elliptic functions using
the method of the arithmetic-geometric mean. ' With
the exception of the special case where m = 1 [for
r=2(1+ s~p)/$3p when s3p+0 or for r&1 when

s~p ———1], all of the solutions are periodic and may be
conveniently divided into two classes according to whether
m&1 or m~ l.

S3 m= oo

S S2

(o)

+b/a

-1
0 z/L

FIG. 4. The same as Fig. 3 but with r= 1.5 and R~ = 1.41.

(b)
-1

0 &/L 1

FIG. 6. The same as Fig. 3 but with r = ao (SIER only) and
R il. =2m.
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m =1.00

0 z/L
-1

0 z/L

FIG. 7. The same as Fig. 3 but with r=2(I +sip)/53p and
m=1.

Those solutions having 0& m & I may be qualitatively
interpreted as the "dc Kerr effect dominated" solutions in
that, in addition to a varying shape and orientation for the
polarization ellipse, the handedness will also vary between
right- and left-handed states. Furthermore, values of
m& 1 are generally (s3O-0 is the exception) the result of
relatively small values of r. Figure 3 illustrates the case of
the dc Kerr effect only, r =m=0, which is described by
Eqs. (56). A "period cell length" L(0) for the dc Kerr ef-
fect only is given by L(0) =2~/Ro, i.e., a retardation of

FIG. 9. The same as Fig. 3 but with r =2.20 and R~ =0.95.

one wavelength. When 0&m&1, then L(m)=4&(m)/
(fRo) so that the ratio of these period cell lengths is

Rz(m) =L (m)/L (0)=2K(m)/mf, 0&m & 1 . (58)

Generally, R& is & 1 when m & 1. Figure 4 illustrates the
propagation characteristics in the case where r=1.5 for
which m =0.52 and Rz ——1.14.

The solutions for which m & 1 may be qualitatively re-
ferred to as the "SIER dominated" solutions in that the
handedness is constant when m & 1. An example is illus-
trated in Fig. 5 for r= 3 with m = 1.70 and Rz ——0.41. The
expression for Rz (m) when m & 1 becomes

Rz(m)=L (m)/L (0) =E(1/m)/nkf, m & 1 . (59)

-'j
0 z/'L

FIG. 8. The same as Fig. 3 but with r=2. 15 and Rz ——2.04.

In the limit of SIER only, as described by Eqs. (55), the
shape as well as the handedness are constants and the
orientation angle varies linearly with distance as illustrat-
ed in Fig. 6. In general, Rz & 1 when m & 1 and note, as
Eqs. (54) indicate, that Rz is effectively halved when
m & 1 (the cn function with m & 1 transforms ' ' to the dn
function with a parameter & 1).

The special case of m =1 is of particular interest in that
,the polarization state tends asymptotically to a final state
rather than varying periodically as in the cases where
m&1. Figure 7 depicts this aperiodic case m= 1 for the
same initial polarization state as the previous figures. The
final state in this example corresponds to an optical beam
linearly polarized and orthogonal to the dc electric field.

The solutions having m —1 are also of particular in-
terest since very small changes in the value of r result in
pronounced differences in the propagation features. Fig-
ures 8 and 9 illustrate the solutions for values of r=2.15
and 2.20, respectively, with corresponding parameter
values of m=0.98 and 1.02. The solution "switches'*
from a dc Kerr effect dominated one with Rz ——2.04 to a
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SIER dominated solution with Rz ——0.95 for a change in
the pump intensity (taking the dc field constant) of only
2.3%. Note that, in both cases, the polarization state is
approximately constant over a substantial fraction of the
cell length.

All of the examples given thus far have shown the solu-
tions as functions of the distance z. It is also important to
consider the solutions as functions of r, i.e., to examine
the output polarization state at z =I. as the beam intensity
is varied. This dependence is considerably more compli-
cated since, in Eqs. (45)—(48), the argument and parame-
ter of the Jacobian elliptic functions as well as the multi-

plying factors in the solutions all depend upon the ratio r
To illustrate, Fig. 10 plots the Stokes parameters and the
polarization ellipse descriptors as functions of r for the
flip-flop case [Eq. (44)] of s ~o

———0.8, szo =0, and

s3p ——0.6. The corresponding variation of I (r) for this in-

itial state is shown by curve 5 in Fig. 2. Note in particular
the rapid changes which occur in the region
2(1 + s ~p )/s 3p (r & —1/s ]p.

IV. PROSE-BEAM PROPAGATION
AND dc-INDUCED EFFECTS

absence of a dc field is included within Eqs. (25) and is
here briefly considered.

Taking the nonlinear susceptibility to be strictly real
(thus so ——1) and Ep ——0, the Eqs. (25) describing the
Stokes parameters of the probe beam simplify to

s I ———R'+s2s3 —8' s3s2

sz =R+s)$3+R $3$(
dz

(60)

s', =—R'+(s, s', —s,s', ),
where R'+ ———,(Ri+R3), R' = —,'(Ri —R3), and s&, s2,
and s3 are the SIER solutions given by Eqs. (55). By in-
troducing the new variables

w ~
——2a,' ai cos(5' —5)=s

&
cos5+s 2 sin5,

wz ——2a,' a/ sin(5' —5) =s2 cos5 —s
&
sin5

(61)

which are the "phase-relative Stokes parameters" analo-
gous to s~ and sz, Eqs. (60) may be reexpressed in the
form

A. Propagation of the probe beam

As Eqs. (25) indicate, the general solution for the propa-
gation characteristics of the probe beam is considerably
more complex than that for the pump beam, even under

the assumption of a strictly real nonlinear susceptibility,
and will not be treated in the present work. However, the
effect on the probe due to the intense pump wave in the

d5
N2 =2R+a„pagps3 + R s3o-

dz dz

I I
s3 ———2R+a, yzIour& .

z

(62)

The shape and handedness of the probe polarization el
iipse will be ~o~stants (i.e., polarization mtation only as
with SIER) if and only if ds3/dz=() for all values of z.
This will be the case if the pump beam is purely circularly
pola6zed with either a,o or alp=0 (if the pump is linearly
polarized then s3 is constant only if
linearly polarized and either parallel or perpendicular to
the pump). However, for a pump beam which is strictly
elliptically polarized, the probe will, in general, experience
change in the shape and handedness as well as the orierita-
tion of its polarization ellipse, a consequence of the fact
that an elliptically polarized pump induces elliptical as op-
posed to circular birefringence. However, there exists two
eigenstates for the irutial polarization of the probe for
which it will propagate parallel to the pump and, like the
puIQp, cxpcricncc pure clllpsc Iotat1on. Thcsc two cigcn-
statcs arc glvcQ by thc rclatlons

N2=0 ~

2R+a, pa)os3p (Rt —R' )s3ow)o ——.
(63)

-1
0 I' 5

FIG. 10. Stokes parameters and the polarization ellipse
descriptors as functions of r for the initial polarization state
& &o = —O.8~ &20 =O, and &3o ——0.6 (right-hand elliptical with
b/0 =

3 and 5=m/2). The dependence of m(r) for this initial

state is given by curve 5 in Fig. 2.

Note that although the pump induces elliptical
birefringence, the nature of this birefringence is very dif-
ferent from the normal situation of a passive, linear ellip-
tical retarder. In the case of SIER, the two elliptical
eigenpolarizations are not fixed but rather rotate uniform-
ly (Fig. 6) thmughout the cell length. This is formally
equivalent to a passive elliptical retarder which is physi-
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cally twisted about its optic axis by an amount d5/dz per
unit length.

B. dc-induced second-harmonic generation

Denoting the integral of the functions F; of Eqs. (29) as

f; (z) = f F; (z)dz, i = 1—4 (64

then the intensity of the second-harmonic wave is given as

S02 =/I„2(2Ri, z)+A2(2~, z) =f', +f,'+f', +ff . (65)

Thus obtaining appreciable DCISHG requires that at least
one of the terms f; be large. However, since the value of
hk will be considerable in most isotropic media, e.g.,
hk ——5120 cm ' in liquid CS2 for a pump wavelength
of 1060 nm, all of the phase terms within the F, will be
rapidly varying so that the integrals f; will be -0 unless
one or more of these phase terms can be made constant.
Using the expressions for d5/dz and do/dz given by Eqs.
(21c) and (21d), one finds that it is not possible to make ei-
ther of the phases o'+5+ b.kz or o —5+6,kz constant ex-

cept in the trivial limit of r=O (for which the coefficients
Vi and V2 vanish). However, it is possible to make
d (cr+ 4kz)/dz vanish by satisfying the conditions

—26k =2AO+A )+483+284,

2sio=r(sio —1) .

Although the DCISHG will be a maximum when these
two conditions are met, in practice they are disadvanta-
geous since they can be satisfied only for one particular
optical intensity. Ensuring that d(o+hkz)/dz=O is sim-

ply the condition for achieving phase-matched DCISHG,
in this case principally by using a strong dc electric field
to largely cancel the dispersion Ak and by selecting the
polarization to exploit the combination of dc- and optical-
ly induced birefringence in the medium. This is not, how-

ever, the only possible approach to realizing efficient
DCISHG. Alternate approaches include that based upon
phase matching due to anomalous dispersion and/or suit-
able mixtures of different gases ' as well as the concept
of "periodic phase matching" using a sequence of dc elec-
trodes having alternate polarities.

C. dc-induced optical rectification

Assuming an incident linearly polarized pump beam
which has the solution given by Eqs. (57), and denoting
a„=cosg and a~ =sing, then the induced dc voltage given

by Eq. (32) takes the form, using s,o=2cos P —1 and
s 20

——sin(2$ ),

(y) 6L~ g2 X1122+(Xllii X1122) 2y+(Xiiii X1122)
4fROLf (1—I)

fRoLf cn (x;m)dx —s n(fR Lo; m) cd(f ROL; I) (67)

Siilcc thc last term oII tlic right-hand side of this cqliatioII
vanishes as r approaches 0, the first two terms constitute
the zero-order approximation by effectively treating sio as
constant throughout the cell [i.e., the dc Kerr effect only
solution given by Eqs. (56)]. Two important parameters
which were recently measured by Ward and Guha are

Vd, (0)—Vd, (~/2) =6LEOA(g(XI' —XI ),
(68)

V,(p) 6LE Hog X" +(X'"'—X" )

sin(2R oL )
X

2E.OI

V. DISCUSSION

(69)

Vd, (0)/Vd, (m/2) =Xi" /XI

Most significantly, these values are independent of the
value of m. However, in general, measurements of Vd, (P)
for angles other than 0 or Ir/2 must be interpreted with
tlic Rid of Eq. (67) wliciicvci' III is non-ncghg1blc. Foi' tlic
results reported by %'ard and Guha, particularly since
the liquid used was nitrobenzene with its extremely large
dc Kerr coefficient, the value of r was almost certainly
-0 and their assumption of the zero-order approximation
accordingly correct. If r is small (and hence m is small
since sM ——0), then the last term in Eq. (67) may be ex-
panded in ascending orders of r with the first-order ap-
proximation taking the form

In defi»ng th«ati« in Eq. (42), it was stated that r
could bc assumed &0 without loss of generality. Howev-
ci, tlic icRdci fRIIiiliai' with thc dc Kerr effect wjii
aware that, 1n some media, thc dc Kerr cocff1clcnt and
hence the denominator in Eq. (42) can be negative. This
would appear to demand that negative values of r be con-
sidered as well. A careful examination of the solutions
described by Eqs. (45)—(50), however, reveals that the only
odd power of r which occurs is the first, and only then ei-
ther as rsio or a simple factor for each of the s;. Thus a
negative value of r yields exactly the same solution found
by using

I
~

I
Rnd ~ega~i~g the functions ~ I, ~2, and si (in-

cluding their initial values) so that, as stated, r may be
taken as positive with no loss of generality.

Thc pr1nc1pal thrust of this paper has bccn thc for1l1ula-
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tion and the presentation of an exact, closed-form solution
describing the propagation characteristics of an intense,
arb1trarily polarized optical beam within a lossless, isotro-
pic medium subjected to a dc electric field. The nature of
the propagation, as illustrated in Pigs. 3—10, is highly
diverse in character, exhibiting a mixture of those proper-
ties associated with the dc Kerr effect on one hand and
with the phenomenon of SIER on the other. The precise
form of the solution depends upon both the ratio r defined
in Eq. (42) as well as upon the initial state of polarization.
This general solution is the prerequisite for exact studies
of several related nonlinear optical effects and, in particu-
lar, the phenomena of dc-induced optical rectification and
second-harmon1c gencrat1on as well as thc natulc of thc
propagation of a weak probe beam have been described in
light of this solution, albeit in somewhat less detail than
that accorded to describing the propagation of the pump
beam. It should be noted and emphasized that the nature
of the pump propagation problem considered here and
hence of its solution has immediate applicability to other,
very similar propagation problems with a principal exam-

ple being that of pulse transmission in an optical fiber ex-

hibiting, e.g., strain-induced birefringence.
A basic and important feature of the analysis and re-

sulting solutions given in this paper has been the use of
the Stokes parameters as the fundamental variables rather
than, as is more customary, the complex electric field am-

plitudes. This approach in turn has led directly to the
concept of the Chebyshev-like elliptic functions con and
son defined succinctly in Sec. III in terms of which the

solutions are expressible in a compact and logically or-
dered manner as particular members of this eigenfunction
sequence. While it cannot be expected that all other non-
linear optical phenomena will so readily admit exact solu-
tions merely by reformulating in terms of the Stokes pa-
rameters (or some other, equally suitable set of real, direct
observables), this approach is attractive in that, whenever
intractability forces the necessity for some degree of ap-
proximation, such approximations are applied directly to
final, real observables and not to inherently unobservable
electric field quantities from which one must then derive
the desired set of measurable parameters by quadrature
andfor algebraic manipulation. Furthermore, as men-
tioned briefly in Sec. III, there is some reason to suggest
that it may be possible, for certain classes of nonlinear
problems which appear unamenable to exact solution, to
arrive at accurate and compact analytic approximations
through the combination of formulating the problem en-
tirely in terms of some set of direct observables such as
the Stokes parameters and the use of the generalized Jaco-
bian functions of Eq. (53) as an eigenfunction basis in
terms of which the real solution is expressed either as a
generalized Fourier series or transform.
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