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A quantum-mechanical formulation for the generation of third-harmonic radiation in an atomic
medium undergoing three-photon resonant multiphoton ionization is given. The generation of the
third harmonic is treated as a cooperative emission and its pressure dependence is shown to be in
agreement with experiments. The formulation is general enough to include both transient and
steady-state phenomena and includes both traveling-wave and standing-wave cases. A comparison
of the results of the present theory with those of Jackson and Wynne is given.

I. INTRODUCTION

Aron and Johnson while working at pressures higher
than 1 Torr some years ago observed' the absence of
three-photon resonant, five-photon ionization mediated by
the 6S excited state of Xe atoms. The experiment was re-
peated by Miller et al. , who not only confirmed the ob-
servation of Aron and Johnson but also showed that at
low pressures, the resonant multiphoton ionization dom-
inates whereas at high pressures the third-harmonic gen-
eration is dominant. Further evidence for the competition
between the third-harmonic generation (THG) and multi-
photon ionization (MPI) was provided by Glownia and
Sander who used circularly polarized counterpropagating
beams to suppress the third-harmonic generation. Jackson
and Wynne very recently also demonstrated the presence
of the resonantly enhanced multiphoton ionization signal
even at high pressures provided one used standing waves
in the experiment. Several theoretical models have
been proposed to explain the results of the observations
some of which make use of the cooperative behavior of
the system (along the lines of superfluorescence) whereas
others consider the interference in the two channels in-
volving the pumping process and the reaction back of the
generated third harmonic. The approaches used so far ap-
pear to be completely disjoint. In the present paper we
present a unified formulation which is sufficiently general
to include all the collective effects and which in the steady
state can lead to the results obtained by using the formula-
tion of nonlinear optics. Our formulation follows very
closely the one used in connection with the quantum
theory of superfluorescence.

In Sec. II we derive the basic quantum dynamical equa-
tions which describe the behavior of an atomic system
under three-photon resonant pumping and the condition
that the photons at 3~ can be generated once the atoms
have been pumped into the excited state. The process of
the third-harmonic generation has been treated as a
cooperative process. The basic equations can be used in a
number of situations and under a variety of initial condi-

tions. In Sec. III we solve the dynamical equations of Sec.
II under steady-state conditions. Using these solutions we
study the competition between multiphoton ionization and
third-harmonic generation. We consider both traveling-
and standing-wave cases. The connection of our results
with those of Jackson and gwynne is given.

II. DYNAMICAL EQUATIONS
FOR THIRD-HARMONIC GENERATION

UNDER THREE-PHOTON RESONANT PUMPING

Consider a system of X multilevel atoms interacting
with a field 8'(x, t),

g ( t) g +( )et(kx a&t)+ g —
( )e t(k—rxot)

+p g ( )e
—((kx +cot)

+p g (r )el(kx+cot) (2.1)

The field is considered to have spatial variation in one di-
mension. The frequency co and the wave vector k inside
the atomic medium will be related by

2

k = E), E( =E(co), 'Q)

C
(2.2)

where e(co) is the dielectric function of the atomic vapor~+
at the frequency co. In Eq. (2.1), 8' represent the slowly
varying envelopes of the input fields. The subscripts R
and I. represent, respectively, the waves traveling to the
right and to the left. The arguments rz, rL represent,
respectively, the local times, i.e., r~ t x lv, rl- ——
=(t +x/v). The superscripts + represent the positive and
the negative frequency parts. The form (2.1) is appropri-
ate for both traveling and standing waves, for example
p=0 (p= 1) represents traveling (standing) waves. Let
the two atomic levels ig) and

i
R) be nearly resonant

with three photons of the incident laser light, i.e.,
co~ -3'. The resonant three-photon process between the
levels

~
g ) and

i
R ) and going through a series of virtual

levels can be described by an effective two-level Hamil-
tonian" (or by optical Bloch equations)
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H, tt=ifikRg 5'+5'+8'+ ~R)(g
~

+H.c. , (2.3) The unperturbed atomic Hamiltonian will be

where kRg is a tensor of rank three given by

1
kg ——— (d )R, (d )P(d ),g

(cojg —2co)(co,g
—co )

(2.4)

and where (d ) ti, as usual, represents the dipole matrix
element. The Bloch equations can be obtained by intro-
ducing the spin angular momentum operators S&,S& for
each atom:

H~ ——fd x ficoRg J,(x ) =g ficooS'&, cot3 c——oRg . (2.8)
P

We next consider the generation of the third harmonic
in the Al = + 1 transition. I.et ET be the quantum-
mechanical third-harmonic field generated by the medi-
um. The interaction of this field with the medium is
given by

S„'=-,' (
/

R )„„(R/

—
/ g)„„(g /

),
[S~+,S, ] =2S'„5„„, [S'„,S„]+5„g—„— .

(2.5)

J~(x )= QSq5(x —xp),
P

[J+(x ),J (x')]=25(x —x')J, (x ),
[J,(x ),J+(x')]=+5(x—x')J+(x ) .

(2.6)

(2.7)

Since eventually we will go over to a continuum descrip-
tion it is convenient to introduce the current density
operators and their commutation relations

IIT=((d )Rg'ETIA'IR)(g
~

+H c )) t'RdRg ———dR

(2.9)

While studying the competition between the multiphoton
ionization and the third-harmonic generation, we will

have to treat ET+' as a dynamical variable, i.e., we have to
incorporate the possibility of ET reacting back on the
medium. We will see that the conditions under which this
reaction is important, would precisely be the ones for
which the interference between MPI and THG is strong-
est. Since the field ET is generated by the resonant ab-

sorption of three photons from the field (2.1) it is clear
that ET will have the structure

ET(x t) —g R+ (x t)et(3kx —3t0t)+ g —
(x t)e

—t(3kx —3mt}+ g + (x t) i(3kx—+3tot}

+iLC g I 3 (X t )e + t}+iu g R
+

i (X t )e t (&—3t0t }+ g —
( X t )e i ( kx 3t0t}-—

+@g + (X t)e —tikx+3~t}+p g —
( t) i(kx+3t0t} (2.10)

The appearance of the terms involving e+-' +-""should

be noted. Such terms will contribute in an important
manner in the standing-wave case.

The interaction Hamiltonian of the atomic system and
the fields will now be sum of (2.3), (2.9), and (2,8). By us-

ing these and the definition of the current operators, the
Heisenberg equations for such operators can be written

down

—J (x,t)= i(cd, +b„)J (x,—t)+2ET+ dR, J,(x, t)aj

The Heisenberg equations (2.11) and (2.12) can be general-

ized to include the transverse and longitudinal relaxation
constants. Of these the transverse relaxation is very im-

portant as it can account for phase changing collisions. In
order to maintain the equal time commutation relations,
we have to add fluctuating forces whence (2.11) is modi-

fied to

J(x,t)=——i(cdt}+6,)+ J (x, t)a 1

+2kR 8' + 8' + w' +J,(x,t), (2.11) +2ET d Rg J,(x, t)

Jx(X,t)= J+(—X, t) [ET+ d Rg-aj '
+ g + g +g + kRgI+H. c.

(2.12)

In deriving these equations, the rotating wave approxima-
tion has been made. In Eq. (2.11) b,, is the field-
dependent Stark shift given by

+2kRg 8'+8'+8'+J, (x,t)+F (x, t) .

The operator fluctuating force F has the properties

(F (x t)) =0,

(2.14)

& =X(CO) 8'+8'

X(cd) =X'g'(co)+X' '(cd), (2.13)

(F (x,t)F (x', t')) = 5(x x')5(t t'), ——
2

(F (x, t)F (x', t')) =0 .

(2.15)

( —d )~i( —d )J, COJ,
.

X"(co)=— Equation (2.12) gets similarly modified due to both T, re-

laxation and the ionization from
~

R ).
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The dynamical evolution of the field Ez. is described by

1 8 4mV' —
3 2 ET ——

2 P(x, t},
c Bt c Bt

(2.16)

where P is the polarization operator at the frequency 3to
and it contains contributions from both linear and the
nonlinear properties of the medium. Since E is transverse,
the polarization that appears in (2.16) is also the trans-
verse part of the polarization operator. The equations for
the envelope functions, that appear in (2.10), can be ob-
tained by substituting (2.10) in (2.16). The set of Eqs.
(2.11)—(2.16) are our basic equations determining the
behavior of our gaseous medium under the condition of
three-photon resonant pumping. These are valid for arbi-
trary initial fields and for arbitrary initial conditions.
Such equations will be seen to give the generation of the
field at the third harmonic starting from the initial vacu-
um state of the third-harmonic field. The competition be-
tween MPI and THG can be studied now since the MPI
signal will be proportional to the change of the population
in the excited state, which in turn will be proportional to
the (J (x,t)}. In the next section we deal with the
steady-state problem and comment briefly on the transient

l

problem at the end of this section.
In order to make the equations tractable, we now

smooth the fields by averaging '9 over transverse slices of
the active volume with thickness dec «A, . Assume a
cylindrical shape of the sample with length I in the direc-
tion of propagation of the laser light, and diameter d such
that k«d « l and Fresnel number d /A, 1=1. We fur-
ther assume that the incident field is weak so that the sys-
tern has a very small inversion. In such a case equations
for J, and J„can be linearized. Keeping the particular
form of the fields in view, we write J (x, r) as

( ]) 3ikx 3i s—stR +—L —
e i xk— 3i t—ut

—3lkx —3lcot ~ — Ekx —3l cot+pL3 e +pR~ e (2.17)

and a similar form for the fluctuating force I' . The
operator R3 (Li ) represents the slowly varying part of
the polarization operator J (x, t), that is traveling to the
right (left) having its spatial component at the wave vector
3k (k). The operators L3 (Ri ) have similar meanings.
Using now Eqs. (2.11)—(2.17), we obtain the following
equations for the field envelopes and the operators
R —+ L +—.

a—R
Bt 3

T2
+&(fi+~s} R3 +2Jpd Rg @ R3+~pkRg. + R + R ~ R +FR3 (2.18)

a
P—L3

Bt
+t(5+6„) pL3 +2Jpd Rg 8t I+, 3+2Jp~kg. p g I, N'I 8t'I, +p+L, 3

T2
(2.19)

p R)
Bt T2

+& (&+~s } pR i +2JO d Rg
N' R 1P+2JokRg'. 3iu N'

R + R ~ L +P+R 1 ~ (2.20)

p L&
Bt T2

+i(Q+5s) PL, +2JPd Rg'iud' I, i+2JOkRg 3P 8 R 8 I, @ I, +iM+L, i ~ (2.21)

—9k' 9 +61k 8 + 6' a N+ =+ ' " R-+
c & c c

(2.22)

9k 2 9' 6.k 8 6lco 8 @+ ~i Rg+c' ' gx+c' g~
" + c'

's I

&' =++ 2+ i
~

+ 3 ~
Ri=+

c c t c

(2.23}

(2.24)

—k —2k —O'+ = L
c t)x c Bt '

c
(2.25)

where

(2.26)

For the ground-state problem we will put Jo ———n/2,
where n is the density of atoms n =4N/n. d I. The inten-
sity of the third harmonic will be determined from the ex-
pectation values like ( 8'3 $'3 }.

To appreciate the meaning of the various terms, we ex-

a i a+——8'+ =bR
Bt R3 (2.27)

amine the solution of the above equations for the
traveling-wave case. Furthermore, to keep the analysis
simple, we put k-co/c. We will further assume that all
the fields are similarly polarized so that the various fields,
d~, k~, etc., can be treated as scalars. For the
traveling-wave case we have to deal with the following
equations:

s
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(2.28)

1 = [1/T2+i (5+5, )],
67tfRE)Ig 6)b=

Equations (2») Rnd (2.28) Rre linear equations and can bc
solved by Laplace transform techruques. For example the
Laplace transform of the field at a point x and at time t is
found to be

z bndiig b nag~ &3(x,z)=exp —x —+ — 5)I3(x =O,z)+ dx cxp —x + 8 II3(x x, t =—0)0 c z+I
b x z bndIIg+ — dx cxp —x ' +z+I 0,c z+I IR3 (x x', t—=0)—nk)ig(k)I ) (x x',z)—+FII3(x —x',z)I . (2.30)

Thc form in tiInc domain CRII bc obtained l)y usiIig thc I'c-

lat1ons

—"J 4at '~2 e "t=— e-'~' gpo (2.31)

(2.34)

On combining (2.29) and (2.34) we have

bndc=c /I, . (2.35)

The first two terms in (2.30) will contribute only if ini-
tially the third-harmonic field is present. Since the initial

I

te e g= ++I (2.32)

f f(t —P)8(t P)e "dt=—f(z)e (2.33)

We may now note the relationship of the parameters that
appear iil (2.30) to tliosc RppcRriilg III tllc theories of
coopcI'Rtlvc emission. 81ncc thc emission 1s at thc frequen-
cy 3', one can define the cooperative length and "super-
fluorescence" time by

state of the third-harmonic field is a vacuum state, we can
drop the first two terms of (2.30) as long as we are calcu-
lating the normally ordered expectation values of
8'I+I3(x, t) Mo.reover, for the calculation of such expecta-
tion values, the random operator force term I's3 does not
contribute because of the property (2.15). The contribu-
tion coming from the terms R3 depends on the initial
state of the atomic system. For the usual cooperative
emission problem, the initial state is a state of complete
inversion and there is no coherent driving field. Thus in
that case the emission occurs because of the nonvanishing
values of {R3+(x,t=0)R3 (x', t=0)}. For the present
problem of the third-harmonic generation, the atoms at
t =0 are in the ground state and hence the expectation
values {RI+(x)R3 (x')} also vanish. Thus in the present
case the third-harmonic generation occurs due to the driv-
ing field term (8'II ) . Of course, if the initial state of the
atom is a superposition of the ground and the intermedi-
ate resonant state, then THG arises from both
{R3+(x)R3 (x') }and the driving field.

Assuming that the atom at t =0 is in the ground state,
the 1ntens1ty of' thc generated th1rd harmon1c can be writ-
ten Rs

x I t

II(x,t)= — f dx'f dt'(8'g+(x x', t t')) e "—"i—"8 t' —J'0 x' t'—
e Rg

(2.36)

Thus thc third-harmonic gcncratlon can bc stud1cd de-
pending upon the input driving field. In the limiting cases
of optically thin and thick saniples and for constant input
fields, we get simpler expressions

respectively No« that (2.37)»so gives the generation of
the third harmonic in the initial stages. The foregoing
anaiy»s clearly shows th«oie of the various initial condi-
tions in the generation of the third-harmonic radiation.

k)Ig(S'~+) x
-(1—e ')

I, de
(2.37) III. MULTIPHOTON IONIZATION

AND THE THIRD-HARMONIC SIGNALS
IN THE STEADY STATE

e2
z z(z+1-)+

I2

(2.38)

In this section we discuss the various signals in the
steady state. In particular we show how our model based
on the collective behavior leads to the steady-state cancel-
lation, i.e., disappearance of the multiphoton ionization
signal 1n thc travc11ng-wave case and to partial cancclla-
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tion for the standing-wave case and thus confirming the
results of Jackson and Wynne. The conditions for such a
cancellation are given. Our model also shows how the
steady-state results depend on the density of the atomic
vapor. In order to keep the analysis simple we treat the
case when all the fields are similarly polarized. This en-
ables us to treat all the fields as scalars. Similarly, dRg,
kR, etc., can be treated as scalars. In view of our discus-
sion following Eq. (2.30), we can treat the set (2.18)—(2.25)
as a c-number set for calculating the steady-state normally
ordered expectation values.

In the steady state the solutions of (2.18)—(2.21) are

R3 —— &—n[dRgS'R3+ Rg(SR ) ] ~

pL& —— W—n[dRgpS'L3+kRgp, (S'L ) ],
iJ'R 1 ~n[dRg@R )p+3kRgp(SR ) SL ]

pL1 —— W—n[dRgpS'L+1+3p, kR S'R+(S'L+)2],

+i(&+&,)
1

2
(3.2)

Thus the current density J (x, t) in the steady state will be

J (x, t)= —~n [dRgS'R3+kRg(S'R)']e" +[pdRgS'L3+kR, V'«L)']e "

+ [pdRg SR)+3kRgp( SR ) S L ]e +[pdRgSLl+3kRgp S R (S L )']e (3.3)

On substituting (3.1) in (2.22)—(2.25), we find the steady-state results for the field envelopes under the assumption that
the input field envelopes are constants:

S'R3(x, t) =

p S'L3(x, t) =

)(1' @R1(xi t)

(MS L 1(X,t) =

QkRg( S—'R ) +( i6kt2)P,.+ 3

(1—e '),
dRgP3

QkRgP ( +L ) (i/6kl2)P3x—
3 + 3

(1—e '),
dRgI'3

3QkRg)(1'( S R ) SL (txl2kli)P)
(1—e '),

dRg~1

3QP'kRg(S—'R )(S'L )'
( —'P, nkt2)

(1—e ' ),
dRg~1

(3.4a)

(3.4b)

(3.4c)

(3.4d)

where

9N —uk 1+Q

corresponding to the traveling wave (p =0) and the stand-
ing wave (((1,= 1) separately.

A. Traveling-wave case (p =0)

4'1m
I dRg I . 3o)i&i

c

(3.5)
In this case there are no waves propagating to the left.

Moreover (3Aa) reduces to

4vrn IdRg f

e(3(o)—1 =
A 5+6,—

2

(3.6)

The parameter Q can be written in terms of the suscepti-
bility of the atomic vapor at the frequency 3' if we retain
only the resonant contribution, i.e., on writing

—kR (SR)
S'R3(x, t) = [1 exp(isx——(zx )],

dRg

where s and a are defined by

3 67
s =——Re(e3 —1)

2 c

6mnco ldRg I (5+6, )

t
1

(3.8)

(3.9)

Q =(e3—1)
3col

(3.7)

Now as mentioned before k and co are related by (2.2).
Since the medium is assumed to have no single photon
resonance, e(co) will contain only the nonresonant contri-
bution and for atomic vapors the nonresonant term is ex-
tremely small and hence we can approximate e(co)=1
leading to k =co/c. We will now consider the two cases

3 co
cx = Im&3

2 C

6mnro fdRg f

2

Pic +(5+b,, )'
(3.10)
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On substituting (3.8) in (3.3) we get the current density

( 8 + )3eix (3k+s) —ax (3.11)

The coefficient a, which essentially represents the absorp-
tion of the free wave at 3', is density and collision depen-
dent. Hence in the limit of the high pressure (large densi-
ty), the current density J (x, t)=0. Therefore, the MPI
signal is absent since such a signal is proportional to
J (x, t). The strength of the generated third harmonic
will be

I
8'ii3

I

'=
I kt(g/dt(g I

'
I

8'it
I

'. (3.12)

(1+iP) b(1+iP) '

b k 2 p
2(x f)—

b

(3.13)

Thus the MPI signal goes to zero due to the interference
of the two amplitudes —(i) absorption of three photons
described by ki(s(8'z+), (ii) interaction of the generated
third harmonic described by diig 8'n3. The signal vanishes
only for densities such that ax »1. A similar result for
the cancellation was given by Jackson and Wynne who
however did not consider what happens in the low-
pressure limit. It should be added that
(3k+s)=3k+Ree3 since e3-1 and thus (3k+s) is the
wave vector of the free wave generated at 3'. It is also
clear when pressure and densities are such that al &&1,
then the third-harmonic intensity will be quite small as it
will be proportional to ~ l .

The variation of the generated third-harmonic intensity
with incident wavelength has been studied by Miller and
Compton at different pressures. It is clear that the peaks
in their curve (Ref. 2, Fig. 4) correspond to the vanishing
of the parameter s (phase matching condition). The pa-
rameter s vanishes for 5+6s =0 if the resonant approxi-
mations for the dielectric functions ei and e3 are made. If
the nonresonant contributions to e~ and e3 are retained,
then one has a more general condition namely
Re(~eq ~e&)=0 Thus acc.ording to (3.8), the peak in-
tensity is -(1—e i') assuming linear dependence of nT2
on pressure p. This pressure dependence is in agreement
with the observations of Miller and Compton (Ref. 2, Fig.
5). The above plane-wave theory does not explain the
dependence of the peak position on pressure. For this
purpose one should really use Gaussian beams as experi-
ments had focused beams. Thus the applied field should
be taken to have the form

where co is spot size. We have a similar expression for the
generated field

ii R3 1+ p) b(1+ p)
(3.14)

I
[I—exp(isx —ax)]

I

Ak

2
F(hk), (3.15)

p —(ib/2) hk(P' —P)
F(hk)= dP

2ffb —(/+i p')2
(3.16)

The function F has been extensively studied by Bjork-
lund' who has shown how the peak in F shifts to negative
values of b,k as the parameters b/l, f/l are changed. The
parameter b depends on the refractive index at the funda-
mental frequency and that

6kb =(~ez —~e, ) b
C

6mnco
I

d. its I
b

Ac 6+5,—
2

+ g (3.17)

where real and imaginary parts of g give the position and
the width of F. Note that Re71 & 0. Equation (3.17) leads
to

6mnco
I
dn

I
b

&+~,= +
2 Acg

(3.18)

and hence the shift in the peak position and the peak
width are proportional to pressure. The sign of the real
part of g also explains the shifting of the peak towards
blue as can be seen by calculating the wavelength corre-
sponding to (3.18). It must also be added that at very low
pressures, the production of coherent radiation at 3'
would be comparable to that of the incoherent radiation at
3', which so far has been ignored in the analysis. More-
over, at such low pressures the ratio of the single-atom
MPI rate to the THG is of the order of two photon ioni-
zation rates from the excited state

I
R ) per spontaneous

emission at 3e)=10 —10 ' I, where I is in W/m .
Hence for the intensities (I-10' W/m ) used in the ex-

periments, the MPI would dominate over the THG.

where y is the component of the vector r in the yz plane.
It can therefore be shown that the generated third har-
monic is given by (3.8) with

2

B. Standing-wave case (y, =1)
It has been shown experimentally and theoretically by Jackson and Wynne that the cancellation is incomplete in the

standing-wave case. We will now see the consequences of our formulation in the standing-wave case (p = 1). On substi-

tuting (3.4) in (3.3) we get the current density

(x t) ~nk (8'+)3eix(3k+s) ~ ~ l (8 +)3e —ix(3k+s)+~
X, = — nRg R e Rg L

ixP /2kl2
3&nk (8'+) —8'+ 1 — (1—e '

) e'~
8co l

—ixP /2kl23~ k (8+)28+ 1
M (1

' 1
)

ikx-
8co l

(3.19)



where we have approximated I'I -(9' /c —k )I
=(Sco /c )I .

The expression (3.19) shows that even if we drop the
free waves at the third harmonic, there is a net contribu-
tion to J (x, t). This contribution essentially arises when
two photons are absorbed from, say, the wave traveling to
the right and one photon is absorbed from the wave trav-
eling to the left. Since J (x, t) is finite in the standing-
wave case, the resonantly enhanced MPI signal survives
even though the third harmonic continues to be generated.

In summary we have shown how a very general
quantum-mechanical formulation of the competition be-
tween third-harmonic generation and multiphoton ioniza-
tion can be given. The formalism is valid under a variety

of excitation and initial conditions involving both travel-
ing and standing waves as well as pulses. In the steady
state and in the limit of large pressure, our results agree
with those of Jackson and Wynne obtained by using the
formulation of nonlinear optics. The pressure dependence
of the generated third harmonic is found to be in agree-
I11e11t wltll tile observations of M111eI' alld CQIIlpto11.
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