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Line-shape parameters for 'P Feshbach resonances in He and Li+

A. K. Bhatia and A. Temkin
Atomic Physics Office, Laboratory for Astronomy and Solar Physics,

U.S. National Aeronautics and Space Administration, Greenbelt, Maryland 20771
(Received 8 June 1983)

The line-shape parameter (q) for the three lowest 'I' autoionization states of He and Li+ below

the first excited target (He+, Li +) level are accurately calculated. In order to do this we rederive a
rigorous expression for q in terms of the Feshbach formalism; the formula contains additional terms

representing the effect of other resonances on the resonance being calculated. Hylleraas functions
are used to calculate Q4, and the exchange approximation is used for the nonresonant continuum.

Results agree well with the experiment where available. Our previous calculations of positions and

widths are not affected; however, it is noted that the energy of the newest experiment of Morgan
and Ederer for the lowest I' autoionization state of He (60.151+0.01 eV) is such that when it is

combined with the older experimental value of Madden and Codling (60.133 0.015 eV), the weight-

ed mean of the two measurements (60.145+0.008 eV) is in exceptional agreement with our previous

value (60.145 eV).

I. INTRODUCTION

Over the last many years we have carried out a series of
calculations of two-electron autoionization states, trying
to use the full potential of the Feshbach formalism' to
obtain significant accuracy. The main object of these in-
vestigations was to provide precision checks of the contin-
uum solutions of the Schrodinger equation, of which au-
toionization states (i.e., resonances) are a part which is
particularly well suited to such tests. The applications
were confined to two-electron systems (i.e., scattering
from one electron targets) for the obvious reason that such
systems are amenable to precision calculations and for the
not so obvious reason that projection operators —the life
blood of the Feshbach formalism' —are explicitly available
for the one-body targets.

The results of these calculations culminating in two
recent papers, have yielded increasingly satisfactory
agreement with experiment. Two discrepancies remained,
however, both with respect to the 'P(2s 2P) autoionization
state of He: one was the deviation of the calculated ener-

gy value from the central position of that state as mea-
sured in the classic vacuum uv absorption experiment of
Ref. 9; the: second was the deviation from the measured
line-shape parameter q. %'e shall discuss the position
measurement briefly at the end; suffice it here to note that
a new measurement in the following paper by Morgan and
Ederer' is now in good accord with our previous result.

This leaves the line-shape parameter discrepancy as the
remaining issue to be dealt with. Here the problem is that
the translation of the line-shape parameter as introduced
by Fano" into calculationally unambiguous form within
the Feshbach formalism is not completely obvious. Sec-
tion II is concerned with that. Since only the obvious
parts of the formula are what was previously included,
Sec. III is devoted to a recalculation of q for the autoioni-
zation states mentioned in the abstract.

II. DERIVATION OF q

In the Fano formulation" the cross section for an elec-
tromagnetic transition described by an operator T (think
of the absorption of a photon of energy E) from an initial
bound state —which we shall take to be the ground
state—to a final continuum state characterized by a reso-
nance at energy E, is given by the formula

It is assumed that 4 is characterized by a resonance at en-

ergy E, and a width I,. In Eq. (1) the scaled energy is de-
fined by

e =(E—E, )/(I, /2) (2)

From (1) it is seen that the final additional parameter
that is necessary to describe the shape of the line is q, usu-
ally called the line-shape parameter. It is our object in
this section to give a derivation in terms of the Feshbach
formalism' (which assumes only nonoverlapping reso-
nances) of a rigorous expression for q from which
ab initio calculations can be performed, and to do such
calculations.

The denominator in the left-hand side (lhs) of Eq. (1) is
a transition element from %'s to a nonresonant (scattering)
state %'o which is asymptotically like the fully resonant
scattering function %', but lacking an internal part associ-
ated with the resonance. (But it does have internal contri-
butions from other resonances, as we shall see. )

It is at this point that the incisiveness and beauty of the
Feshbach theory enters, for it is of the essence that it
divides the whole wave function into internal pieces QV
and an external part P%, at the outset
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Coupled equations for P'0 and QV can readily be de-
rived. ' In particular the boundlike part is readily ex-
pandable in terms of a well-defined set of functions
C)n =Q(I)n satisfying

QHQ@„=8'„(I)„.
lim (P%„)= 1

cos'g

sin(kr ) ln—./. 2+ qp+ ri, )

kr)

then the solution of (7) defined in Eq. (9) will be different-
ly normalized to

Using the relation between P% and Qq',
X I'L, p(&) )yp(r2) . (14)

Q+ = QHP%',
1

E —H

one obtains by inserting a complete 4n in Q space in (5)

f
Q(I)„)(Q@„IH

f
P%)

[In (6) we mean the sum over the discrete spectrum and
integral over the continuous spectrum of (4). Note that
below the relevant inelastic threshold„Q is such that the
4„are discrete and correspond to real resonances, and
above the threshold the spectrum is continuous. ] The
function P% satisfies the full optical potential Schrodinger
equation

I'HI'+ - —E I% =0,

Both the normalization factor, the width, and the energy
dependence of the additional (resonant) part of the phase
shift are derivable from Eq. (9),

—I1

2 s
tang, =—

E —E,

and

I g
——2k

I
(P%I)'(E, ) IHpg I

C), ) I (16)

I Q@.&(Q@.
I

g E I (17)

(Rydberg units are used throughout. )

It is convenient at this point to define the Q-space
Green's functions as follows:

whereas the nonresonant function is defined to satisfy the
same equation less the resonant (n =s) term,

PHP
Hp I dn) 4n IHg' —E IPq"&=0.

n &s) 8

(&)

A formal relation between P% and P'Pp' can be readily de-
rived'

(,)
Gp'Hpg

I
c&, ) (4,

I Hgp I

q)I)')

E —8' —i)),

and

fgq„)=GggH IPq„). (19)

Inserting Eqs. (9) and (19) into (3), we have

Iq„)= IPq„)+ Igq„&

and to retain "bra-ket" notation explicitly. %ith these
definitions Eq. (6) can be written

where Gp' is Green's function of Eq. (8) which, projected
on Pp(r2 ) Fl p(A) ) satisfies the equation

Hpg I
4„)(@„

I Hgp
Pp(r2)1'I p(r) ) PHP+

n &s) n

(,)
Gp"Hpg

I
e, )y,

I
Qe, ) (e,

I
H, „, G,"H„

I
C, )y,

5, is the shift in the resonance position E, from 8', [cf.
Eq. (4)], where

+Gg'Hgp IP+n & (20)

y, =(e, IHg, I
q,") . (21)

b,,=((I), IHgpGp'Hpg I
4, ) . (12) The expression containing the large parentheses in (20)

can be simplified using the above definitions of y, and b,„
In Eqs. (9) and beyond we have labeled )II=4„,because if
the solution of (8) is normalized to unit (plane wave) am-
plitude,

(,)
sin(kr, —l~y2+gp)

hm (P+o )= I'I.p(II))yp(r2), (13)
P) ~oo

kryo

(22)

Thus we conveniently write our final expression for +„
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r. I
Q@'* &

E E—

(1+6& ~Hg~)
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The correctly normalized function %' to be used in the ex-
pression for q, Eq. (3), as is clear from (14) is

I

(Il ) =costi„ I 4„) . (24)

On the other hand, the correctly normalized
%o"=P+o"+Q(Ilo" requires using the counterpart of (19)
for Q(Ilo(",

I

Qill(sl ) G(&)Q~
I

Pill(s) ) (19')

Thus we recognize that %o" has both a P and a Q part
which together are

Iqo(*'&=(I+G,"a,p) IPe(o" & . (25)

%o
' is the function (Ilo to be used in Eq. (1). Substituting

(24) and (25) into Fano's basic expression (1) for the reso-
nance profile, we find that the lhs of (1) does reduce to the
form of the right-hand side (rhs), where in particular an
explicit expression for q emerges. We shall write it in a
form suitable for calculation in Sec. III.

We conclude this section with the following observa-
tion: GIi' includes the effects of other resonances {ulti-
mately on the shape parameter q) on the specific (s) reso-
nance. However, the profile itself is given by a one-
resonance type f—ormula, Eq. (1). Aside from the ab initio
calculational aspect, this represents a somewhat different
point of view of including the effect of other resonances
from the one embodied in a many-resonance formula.
Pano has derived the latter in Sec. V of his paper" leading
to a formula which will automatically exhibit the usual
resonant shape at each rcsonancc, but Yvhich &111also con-
tain slight deviations in shape at any resonance coming
from the other resonances. This comes down to describ-
ing the bound-state-like parts separately, but with a single
nonresonant continuum. This is to be contrasted vrith the

present approach of treating other resonances as a distor-
tion of the nonresonant continuum associated with the
single (sth) resonance.

As compared to a single profile formula (as is done
here), it may be thought that the many-level formula is
more accurate, because it allows deviations from the single
profile formula. However, it should be emphasized that in
a purely Feshbach approach, the shift, width, and finally

q, are energy dependent: I;=I;(E), h, =h, (E), and fi-
nally q =q(E). To be sure, all these quantities depend
only weakly on E in the vicinity of E =E,. But to the ex-
tent that they do, the profile formula will deviate from a
strictly one-level form with energy-independent parame-
ters, and we believe it will do so in an experimentally
meaningful way.

We remind the reader that the energy dependence of the
Feshbach resonant quantities also leads to corrections
fronl tlmil eliel'gy independent (Breit-Wlgner) couiltel-
parts; they are embodied in the formulas '

Ba,(E)I.,""'=r,(E) 1+

E,""'= [N', +S,(E)]+—'1.,(E)
' + ~ ~ ~

BE

For calculational purposes we write the final formula in
a manner sliilllal to Ref. 7. (All qualltitles not giveil llele
are defined therein. ) Specifically, we write

9 =Co+&Vc+&9b+6gr .

The new quantity here is 5q„,

(27)

(26b)

Indeed our precision calculation of the lowest 'S autode-
taching state of H shows the second term of {26a) [but
not (26b)] makes a small but important contribution to
I,' '. One could in principle develop similar formulas
for q (E); however, they would be so complicated to derive
and exhibit that it is better to calculate q numerically as a
suitable mesh in E and then to assess the quantitative im-
portance of its E dependence. We shall do that in Sec. III.

(Q cI TIe, )
9'r =

g (+g) ES ES
i &Qc. I

~
I
P+o'(E') & & +o"(E')P

I
II

I Qe, )K'dE'

m=k(e, (E, )P Ia IQe, &(e,"(E,)
I
T Iq, &. (29)

Note the last factor in (29) involves %o' of Eq. (25) and
not simply P%'o (although numerically the Q@o contribu-
tion is found to be very small).

The calculation of q also involves quantities occuring in
the nonresonant background, o'~. The latter is the only
significant contribution to the absorption for energies
away from resonance; the formula for it is'

(Tii 4nafK(I+K ) I
(4——o'

I
T

I %s ) I
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TABLE I. Convergence of 5q, and 5q, as a function of the number of mesh points in principal value

integrals for doubly excited states of He and Li+.

System

He['P(s)]

Li+ ['P (s) ]

Number of
points

175
187
203
175
249
385

$ =1

3.676(—1)'
3.677(—1)
3.677(—1)
3.677(—1)
3.825( —1)
3.850(—1)

—9.89S(—4)
—9.892(—4)
—9.892(—4)
—4.329(—4)
—4.024( —4)
—3.972(—4)

5q,

$=2
5q, 5q,

$=3
5q,

1.674 —9.006(—2) 2.623(—1) —4.325(—3)
1.678 —9.387(—2) 3.603(—1) —4.537(—3)
1.678 —9.387(—2) 3.635(—1) —4.595(—3)
1.749 —6.763(—3) 5.295(—1) —6.438(—3)
1.706 —6.859(—3) 4.674(—1) —5.884( —3)
1.685 —6.908(—3) 4.340(—1) —5.587(—3)

'3.688(—1) is an abbreviation for 3.688 X 10

af is the fine-structure constant, and I is the ionization
potential. Note again that the effect of other resonances is
incorporated in %o' [cf. Eqs. (18),(19),(25)] and hence in
crz. Numerically we find that the contribution from the
Q@o' to crz is small but not negligible. The total absorp-
tion cross section is given by'

oT=og (e+q)'
(31)

1+E
Coming now to our actual calculation, we have used for

the resonant wave functions 84-term Hylleraas functions
of our previous papers. The nonresonant continua are
those of the exchange approximation. In addition to cal-
culating 5q„ itself we have concentrated in this calculation
on refining the evaluation of the principal value integrals
which occur in 5q, as well as 5q„. Note that in (28), all
quantities referring to the nonresonant continuum are
rigorously functions of s because each has a different po-
tential constructed by omitting the s term from the full
optical potential. Each nonresonant potential also gives
rise to a bound-state spectrum (P'Ir,"). In practice we use
the exchange approximation for which all these non-
resonant quantities are independent of s. Nevertheless

that approximation contains a bound-state contribution II„
which is handled as discussed in Bhatia, Burke, and Tem-
kin.

Table I gives results for various numbers of mesh points
used in evaluating the principal value integrals for the
first three resonances in He and Li+. The contribution
for the principal value itself was handled by the usual de-
vice of Taylor expanding the numerator (retaining here as
many as nine terms) and then analytically performing the
integrals of the resultant sum between appropriate limits
on either side of the singularity. The remaining part of
the integral was done numerically and the "number of
points" column refers to the number of mesh points in
that portion of the integral plus the number of terms in
the principal value expansion. Note 5q„also includes con-
tributions from other resonances (n) in addition to its own
bound-state spectrum. In Table I we also include a recal-
culation of 5q, which differs from Ref. 4 primarily by a
factor of ~2. (The polarized orbital value of 5q, in Ref. 5
is correct there and is negligibly different from the present
5q, . That appears to be true for all resonant quantities for
the He+ target and is the reason why we have restricted
ourselves to the exchange approximation here. )

TABLE II. Calculation of resonance parameters and absorption cross sections for He *[(2s2p) 'P]
as a function of E. (Cross sections are in the units of 10 "cm .)

59.6187
59.7888
59.9588
60.0813
60.1085
60.1386
60.1407
60.1450
60.1629
60.1901
60.2989
60.6390
60.8091
60.9787

r (eV)

0.036 264
0.036265
0.036 308
0.036 320
0.363 23
0.036 324'
0.036 324'
0.036 324
0.036 328
0.036 331
0.036 340
0.036 369
0.036 396
0.036 395

—2.8371
—2.8428
—2.8471'
—2.8474'
—2.8481
—2.8496
—2.8521

1.3610
1.3686
1.3761
1.3816
1.3829
1.3834
1.3843
1.3845
1.3853
1.3865
1.3915
1.4071
1.4150
1.4230

O tot

4.178
6.4S6

12.597
12.470
11.231
2.451
0.0266

a
~tot

1.640
1.799
2.226
4.193
6.470

12.605
12.476
11.231
2.447
0.0260
0.605
1.126
1.202
1.251

b0 tot

1.531
1.669
2.046
3.578
5.136
9.801

10.079
10.212
3.707
0.0746
0.5813
1.095
1.170
1.220

Using constant q = —2.8481, I =0.036324 eV at E =E,=60.1450 eV from the present calculation.
"From Morgan and Ederer (Ref. 10) their parameters q = —2.6, I"=0.038 eV, and E„=60.151 eV, and
their o.~.
'Interpolated values.
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TABLE III. Final results for resonance parameters.

Parameter

qo
5q,
5qg

5q„
q

E (eV)'
r (ev)'

$=1

—3.139
3.677(—1)

—7.631(—2)
—9.892(—4)
—2.849
60.1450
0.0363

He
$=2

—3.556
1.678

—2.636
—9.387(—2)
—4.606
62.7594

1.06(—4)

$=3
Present

—2.849
3.635(—1)

—1.129(—1)
—4.595(—3)
—2.604
63.6610
0.009

calculation
—2.507

3.850(—1)
—7.603(—2)
—3.972(—4)
—2.199
150.2470

0.0593

Li+
$=2

—26.451
1.685

—1.963
—6.908(—3)

—26.736
159.1453

0.163(—3)

$=3

—2.294
4.340(—1)
1.704(—1)

—5.587(—3)
—2.033
161.0327

0.0195

q
E (eV)
I (eV)

—2.80 +0.25
60.133+0.015
0.038+0.004

Ref. b

62.756+0.010
—2.0 +1.0
63.656+0.007
0.008+0.004

—1.5 +0 5
0.3

150.29 +0.05
0.075+0.025

Ref. d

161.06+0. 10

q
E (eV)
I (eV)

—2.55 +0.16
60.151+0.010
0.038+0.002

Ref. c
—2.5 +0.5

63.655 +0.01
0.0083+0.002

'Results for E and I for He from our preceding paper (Ref. 7). Compare Ref. 3 for other experimental and calculated results.
Madden and Codling (Ref. 9). Results of Refs. 9 and 10 have been converted to eV using the latest values of Wc = 1.973 285 8&& 10

eV cm from the compilation: Particle Data Group, Phys. Lett. 111B,(1982).
'Morgan and Ederer (Ref. 10).
dCarrol and Kennedy (Ref. 15); calculated results are with respect to the ground state of Li+ which is taken as —14.557 86 Ry.

In Table II we give the energy dependence of the vari-
ous calculated quantities, including 0.~, which determines
the total absorption cross section oT of Eq. (31). As we
have indicated above, this includes the energy dependence
of I' and q. However, in practice we see that the effect on
oT is negligibly different from using energy independent
I and q evaluated at E =E„, whose values are given in
footnote a of Table II. The main difference from the ex-
periment is in the maximum absorption, whose value at
maximum is seen to be about 20%%uo less than either of the
theoretical values. The maximum absorption is in turn re-
lated to the value of q via

o,„,b ——os(1+q ),2

thus it is clear that the experimentally inferred q is some-
what smaller in absolute value than our calculated result.
In the following experimental paper, ' Morgan and Ederer
discuss the experimental significance of the error in this
quantity specifically. From the theoretical point of view
we would estimate the error of our result conservatively to
be about 10%; however, it is clear from Table II that the
deviation in shape of the resonance curve of Morgan and
Ederer cannot be attributed to the energy dependence of
the calculated resonance parameters.

In Table III we have collated our final results for all
resonances we consider here. The various parts of q are
included as well as our previous results for E and I . The
lower part of Table III gives experimental results. First
and foremost, observe the lowest 'P state of He'*. One
sees that the central value of the new experimental result
of Morgan and Ederer' is considerably closer to our value
of E than the older result of Madden and Codling. We

2
(b~. )2

, AE=,
II(«)

' 1/2

g («;)
i=1

gives a weighted experimental value

E,„p,
——60. 145+0.008,

which can only be described as being in exceptional accord
with our result (60.145 eV).

The remaining comparisons in Table III are also seen to
be within the experimental limits. The second resonance
of Morgan and Ederer' clearly corresponds to the third
'P resonance for the well-known reason that the second
resonance is too narrow to be seen. The same also applies
to the second resonance in Li+ observed by Carrol and
Kennedy, ' hence we would also confidently associate it

emphasize that our result for E is here simply taken over
from our previous calculation, and that that result has
not changed significantly since our earliest calculation of
the shift. It was in view of this constancy and its devia-
tion from the central value of the older experiment that
we had long been calling for a remeasurement of this basic
autoionization state. ' ' We are very grateful that a new
measurement has now taken place. ' [It should be noted
from the table that both experimental results for E reflect
the latest values of fundamental constants (viz. , Pic), there-
fore, the Madden-Codling results (for E) differ slightly
from their previously published values. ] Taking a weight-
ed average of the two measurements '
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with the third resonance of the Li+('P) series. Here as
well as in He" ('P) the effect of the energy dependence of
all resonance parameters can be calculated when the ex-
perimental accuracy warrants. But for the present we can
say, with the possible exception of q, that the most accu-
rate experimental observation and calculation are in quite
satisfactory agreement for autoionization states of two-

electron systems below the n =2 target threshold, in par-
ticular (H ) and He
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