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The saddle-point complex-rotation method is tested for a three-electron system by calculating the
(1525 25)?S resonance in He™, Li1, Bell, and Bur. The energy position and width obtained for this
resonance are well converged for a wide range of rotation angles and nonlinear parameters for all
atomic systems considered. To obtain higher accuracy, the relativistic and mass polarization correc-
tions are also calculated. The results are compared with those of the most accurate theoretical cal-
culations and experiments. For Bell, the agreement between the theoretical widths is very poor.
Experimental data are needed to confirm the correct theoretical value.

I. INTRODUCTION

Recently, a saddle-point complex-rotation method for
calculating the position and width of a closed-channel res-
onance was proposed.! This method combines two dif-
ferent techniques for dealing with atomic resonances. The
saddle-point technique®® yields the essential part of the
closed-channel component of a resonant wave function. If
the open-channel component is combined with this
closed-channel component, then the small “shift” from
the saddle-point energy to the resonance position and the
width could be obtained. However, the inclusion of this
nonsquare-integrable component could present computa-
tional difficulties. On the other hand, the complex-
rotation method*> is capable of generating the resonance
position and width with only the use of square-integrable
basis functions. In Ref. 1 it was shown that this saddle-
point complex-rotation method yields accurate results for
two-electron resonances in helium. The complex eigen-
value was found to be very stable with respect to the rota-
tion angle and the nonlinear parameter of the scattered
electron in the open-channel component. Indeed, the good
convergence of the complex eigenvalue is the merit of this
present method, and it is probably due to the preoptimiza-
tion of the closed-channel basis functions by the saddle-
point technique.

In this paper we continue to investigate the saddle-point
complex-rotation method by applying it to a three-
electron system, the (1s2s2s)’S resonance in He™, Lil,
Be11, and B1m1. We chose this resonance because experi-
mental results for the width of He™ are available for com-
parison, and also because this resonance has been the
proving ground for many other theoretical methods. We
calculate it for Li1, Bell, and B11I in order to observe the
isoelectronic trends and to stimulate further experimental
interest in measuring the width of this resonance for these
systems.

II. RESULTS

The nonrelativistic Hamiltonian for the three-electron
system in atomic units (a.u.) is given by
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where Z is the nuclear charge and r;; is the interelectron
distance. The rotated Hamiltonian is obtained by scaling
each radical coordinate by e ie., r; becomes rje'e where
0 is the angle of rotation. If we refer to the N-electron ra-
dial coordinates collectively as Ry and the corresponding
angular variables as Qy, then the form of our rotated trial
wave function becomes
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where the C; and Dy are linear variation parameters and 4
is an antisymmetrization operator. In the first term,
which represents the closed-channel component, the ¢; are
optimized, antisymmetrized configuration-interaction
basis functions with the “proper” 1s vacancy built in. For
Li1, Bell, and B1i, the basis functions in the closed-
channel components result from previous saddle-point cal-
culations for the (1s2s2s)S states.® For He™ they are
determined in this investigation. To obtain a converged
result for these closed-channel components, up to 14 par-
tial waves and 97 linear parameters have been used (see
Ref. 6). In the second term, which represents the open-
channel component, ¥, is the (1s 15)'S two-electron target
state. The Ui (T), which form a one-dimensional complete
set for representing the scattered s-wave electron, are

given by
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TABLE 1. Energy of the eight-term, three-partial-wave
(1s 15)!S target state and comparison with Pekeris’s value (in
a.uw).

EgNR EKNR Egrel
System (This work) Pekeris (Ref. 8)
He —2.900 869 —2.903724 —2.903 800
Lin —17.276970 —7.279913 —7.280484
Be1x —13.651410 —13.655566 —13.657 643
Biv —22.027 384 —22.030972 —22.036 504
U(D)=rke~1", 3)

where ¥ is a nonlinear variation parameter.
With this 4, the width and shift are calculated by the
standard variation method

(9| Ho(0) | 9) _
Wiy

In the above expression the unconjugated e’® is used in the
complex conjugated wave function. For a more detailed
description of the above procedure, the interested reader is
referred to Ref. 1.

An accurate target-state wave function i, should be
used in the wave function given by Eq. (2) when carrying
out the complex-rotation computation. Although the
two-electron (1s 15)%S wave function can easily be calcu-
lated to high precision, this wave function would need a
large number of terms to account for the correlation ef-
fect.” This, in turn, would make the three-electron
complex-rotation calculation prohibitively time consum-
ing. On the other hand, a very crude target-state wave
function might lead to inaccuracy. To compromise, we
chose to use a three-partial-wave, eight-term function to
represent the target states. Compared with the nonrela-
tivistic results of Pekeris,® the energy of these wave func-
tions are higher by 0.0029—0.0041 a.u. The energies for
the eight-term target states and their comparison to Ref. 8
are given in Table 1.

For an accurate determination of the total energy for
the three-electron resonances we also calculated the contri-
bution from relativistic and mass polarization effects.
These are obtained by evaluating the expectation values of
the following operators’ with the saddle-point wave func-
tions

4)

3
Hi=—5a*3p} (5)

i=1

1879
(mass correction),
T 2 3 —
sz?a > Z8(1;) (6)
i=1
(Darwin term),
3
H3:_7T(12 2 (1+%§,§1)8(ﬁ1) (7)
ij=1
i<j
(Fermi contact term),
3 N
1 . o T (T p) .
Hi=—%a? 3 1 5,5+ L LPLRL | ()
ij=1"Tij Tij
i<j
(retardation),
Hool 23: . 9
5= 3, Pi'Pj
M2 "

(mass polarization).

In these equations, a is the fine-structure constant, Z is
the nuclear charge, and M is the nuclear mass approxi-
mated by

M ={[Z(1.008 142)+ N (1.008982)]1836} /1.008 142 .
(10)

For the atomic systems of interest, He™, LiI, Bell, and
B111, the number of neutrons N are 2, 4, 5, and 6, respec-
tively.

In Table II we present the results obtained with the
saddle-point wave functions for the different ions. In this
table Eg, is the saddle-point energy, L is the number of
angular partial waves used in the expansion of the saddle-
point wave function, N is the total number of terms used,
and g is the optimized parameter in the 1s vacancy orbital,

$;=Ce™ 7, (11)

where C is a normalization constant. It is interesting to
note that ¢ ~Z — =, indicating that the 1s vacancy is ap-
proximately half shielded from the nucleus by the 1s elec-
tron. (H,+H,), (H;), (H,), and (Hs) are the results
of the first-order perturbation theory for the operators
given in Eqgs. (5)—(9), respectively. We note that the rela-
tivistic and mass polarization corrections vary smoothly
as a function of nuclear charge.

In the complex-rotation computation, the inclusion of
15 terms in the open-channel component [i.e., k runs from

TABLE II. Relativistic correction, mass polarization, shift, and width of the (1s2s 25)S resonances (in a.u., for notation see text).

(Hi+H,) (H3) (Hy) (Hs) A r
E, L N q (107%) (1079  (107%  (107% (107 E (1073)
He™ —2.1916177 10 67 145  —0.1133 0.04 0.01 1.193  —0.287  —2.191758  0.4250
Li1 —5.4052190 10 79 248  —0.6266 0.47 0.4 0.673 0.071 —5.405833  1.3541
Ben  —10.1227182 14 97 348  —2.1114 1.67 1.4 —0.342 0.620  —10.124750  1.9475
Bm  —163410078 10 85 448  —5.3733 4.16 4.1 —2.278 1230  —16.346215  2.2855
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TABLE III. Convergence of the resonant energy E, and width T of Li1 (1s2s2s)’S as a function of
rotation angle @ (in radians) and nonlinear parameter y using the saddle-point complex-rotation method;
here, x is given in the body of the table. For energy E,=(—5.4052119+10""x) a.u. and for width

I'=(0.0013541+10""x) a.u.

6

y\ 0.2 0.3 04 0.5 0.6 0.7

E, 1.50 26 0 0 —1 —1 -3
1.875 16 0 0 0 —1 -1

2.25 20 0 0 0 0 2

2.265 15 0 0 0 -1 —6

3.00 —37 -2 0 0 2 15

r 1.50 —8 —1 0 —1 —1 2
1.875 30 1 0 0 0 0

2.25 19 1 0 0 0 -1

2.625 —44 -2 0 0 2 9

3.00 —4 -2 0 —1 —4 3

0 to 14 in Eq. (2)] yields a converged complex energy,
E,—iT'/2. This convergence for the resonant energy E,
and width I" is shown in Table III for the case of Li. This
table demonstrates that the complex eigenvalue is very
stable over a wide range of rotation angles 6 and nonlinear
parameters y. If the nonlinear parameter y is scaled to
the other charges Z from Lil by the prescription
Z
==y, (12)
v=37
then similar convergences are obtained for He™, BeIl, and
Bl
The final results for the 2§ resonances are also given in
Table II. The shift from the saddle-point energy to the
resonance position is defined by

A=E,—E . (13)
The total energy E in this table is defined by
E=E,+A+(H+H,+H;+H,+Hs) . (14)

We note that the shift changes steadily as a function of
nuclear charge, from —0.78 meV for He™ to + 1.67 meV
for Bui. The shift is smallest for the neutral lithium
atom, i.e.,, + 0.19 meV. The width also increases smooth-
ly as a function of nuclear charge.

It is worthwhile to point out that the shift depends
sensitively on the accuracy of the closed-channel wave
function used in the computation. The small shifts shown
in this table seem to justify the inner-shell vacancy picture
which is the foundation of the saddle-point technique.

III. COMPARISON WITH THEORY
AND EXPERIMENT

A comparison of our results with other calculations and
experiments is given in Table IV. The resonance position
in this work is quoted in electron volts above the two-
electron relativistic ground-state energy given in Table 1.
The conversion from atomic units to electron volts is ac-
complished with the infinite-mass rydberg, —13.605 826

ev, v;glich is appropriate when comparing with scattering
data.

For He™ all the theoretical calculations!'~'° for the %S
resonance position seem to be in good agreement. In
many references, the resonance position is given in terms
of the energy above the ground state of the helium atom.
But the actual value used for this energy is not quoted in
these references. This makes a precise comparison be-
tween the theoretical results difficult. A few of the earlier
results quoted in Table IV have been adjusted using the
reference energy of Table I. Our He™ energy lies on the
lower end of the theoretical results. It gives slightly better
agreement with the experiments.!*~2° The width of this
work agrees closely with that of Ehrhardt et al.”

For LiI no experimental results for the width are avail-
able, and to our knowledge only Bhatia and Temkin?! and
Bhatia®? have published theoretical values. They obtained
widths of 0.0423 and 0.0403 eV, respectively. Our result,
0.0369 eV, agrees better with the more recent value of
Bhatia.”? The experimental results for the energy of Rassi
et al.?® and Rgdbro et al.?* are slightly higher than those
of Pegg et al.?* and Ziem et al.?® Our calculated result is
in better agreement with that of Refs. 23 and 24.

For Bell there is a very large range of calculated
widths,?”’ =% from 0.02 to 0.09 eV. Unfortunately no ex-
perimental result for the width of this system is available
to resolve this large discrepency.

Kelly,”” Nicholaides et al.,?° and Bhatia®? calculated
the width with the golden-rule formula. This is accom-
plished by calculating a matrix element between the
closed-channel and open-channel components. Kelly?’
and Nicholaides et al.? used a multiconfiguration
Hartree-Fock function for the closed channel, and a
Hartree-Fock function for the open channel. Bhatia?
used a configuration interaction function derived from the
quasiprojection operator technique for the closed-channel
component, and he combined a scattering function com-
puted from the static-exchange approximation with his
closed-shell target state for the open channel. Kelly’s?’ re-
sult, 0.093 eV, is to be compared with the 0.083-eV result
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TABLE IV. Comparison of energy and width of the (1s2s2s)2S resonance for He™, Li1, Be1l, and

B1iL
Energy Width
eV) (meV) Ref. no. Author; method
He~ Theory 19.376* 11.56 This work
19.4032 12.13 11 Junker and Huang; complex rotation
19.4 13.9 12 Temkin et al.; quasiprojection operator
19.402% 11.72 11 Junker; complex rotation
19.38 11.5 13 Ormonde and Golden; close coupling
194 15 14 Sinfailam and Nesbet; variational
19.398 12 15 Bain et al. complex rotation
19.365 11.0 30 Hummer and Norcross; close coupling
Expt. 19.3 17.5+2.5 16 Andrick and Ehrhardt; transmission
19.3 12 17 Ehrhardt et al.; transmission
19.30+0.01 8+2 18 Golden and Zecca; transmission
19.367+£0.009 9+1 19 Cvejanovic et al.; transmission
19.35+0.02 13 20 Golden et al.; transmission
Lir Theory 51.012% 36.85 This work
51.000° 423 21 Bhatia and Temkin; quasiprojection
operator
51.049% 40.3 22 Bhatia; quasiprojection operator
51.15 A. W. Weiss (quoted in Ref. 22)
51.04 Junker (quoted in Ref. 25)
Expt.  50.92+0.03 25 Pegg et al.; projectile-electron
spectroscopy
50.92+0.01 26 Ziem et al.; projectile-electron
spectroscopy
51.004+0.015 23 Rassi et al.; projectile-electron
spectroscopy
50.97+0.05 24 Rgdbro et al.; beam-gas spectroscopy
Bent Theory 96.136° 53.00 This work
96.185% 53 22 Bhatia
96.737% 92.93 27 Kelly; Multiconfiguration Hartree-Fock (MCHF)
97.94 20.5 28 Palmquist et al.; Greens function
96.230* 83;23 29 Nicolaides et al.; MCHF
Expt.  96.10+0.1 24 Rgdbro et al.; beam-gas spectroscopy
B Theory 154.842° 62.19 This work
154.972% 68 22 Bhatia; quasiprojection operator
154.95 22 Weiss (quoted in Ref. 22)
Expt. 154.94+0.1 24 Rgdbro et al.; beam-gas spectroscopy

2These theoretical results are quoted relative to the relativistic ground-state energy of Table I.

of Nicholaides et al.,?” where both calculations employed
the same closed-channel wave function. These results do
not agree with the present result of 0.053 eV. When Ni-
cholaides et al.?® included more correlation in their
closed-channel wave function, their calculated width
dropped to 0.023 eV which also does not agree with the
present work.

Palmquist et al.?® used a Green function approach with
Siegert boundary conditions to calculate the resonance pa-
rameters via a complex energy. Their calculated width,
0.021 eV, agrees with the 0.023-eV result of Nicholaides
et al.” and disagrees with our result. Their calculated en-
ergy, 97.94 eV, is very high as compared to experiment
and other theory. This is probably due to a lack of com-
pleteness in their “Slater-type orbital plus one Siegert orbi-

tal” basis, which does not adequately account for the elec-
tron correlation.

Bhatia’s calculated width, 0.053 eV, is in excellent
agreement with the present work. This is interesting. The
two calculations are similar in that the basis sets used to
expand the closed-channel component of the wave func-
tion are more complete as compared to the other calcula-
tions. It appears that accounting for the electron correla-
tion is essential for a well converged result for the width
of this S resonance.

Nicholiades et al.?° also calculated the shift A, which
results from the interaction of the closed-channel com-
ponent of the resonant wave function with the open-
channel component through the Hamiltonian. Their re-
sult, —0.0015 a.u., is more than 20 times larger than our



1882 BRIAN F. DAVIS AND KWONG T. CHUNG 29

result of + 0.000064 a.u. This shows clearly that the
closed-channel component of this work is far more accu-
rate than that of Ref. 29.

For B111, fewer theoretical and experimental results ex-
ist for comparison. The calculated results of Bhatia,?
Weiss (see Ref. 22), and this work all lie within the experi-
mental uncertainty quoted by the only experimental result
of Redbro et al.?* Our result lies at the low end of the
quoted uncertainty while the other calculations are closer
to the line center. Our lower result is, for the most part,
due to the inclusion of the relativistic effects which are
absent in Ref. 22. Finally, our calculated width, 62 meV,
is in reasonable agreement with Bhatia’s result of 68 meV
for this system.

IV. SUMMARY

In this work the saddle-point complex-rotation method
is used to perform detailed calculations for the (1s2s2s)2S
resonance in He™, Lil, Bell, and Bii1. This method uti-
lizes saddle-point configuration-interaction basis functions
which include the proper vacancy orbitals for the closed-
channel component of the resonant wave function. A

complex rotation is then carried out after including the
open-channel component in order to obtain the width and
the small shift from the saddle-point energy to the reso-
nance position. We found that the resulting complex
eigenvalue is very stable over a wide range of rotation an-
gles and nonlinear parameters in the open-channel com-
ponent.

To obtain higher accuracy, the relativistic and mass po-
larization corrections for each atomic system are also con-
sidered. These results are then compared with the most
accurate theoretical calculations and experiments. For
He™, LiI, and B1II the theoretical calculations and experi-
ments are in satisfactory agreement. However, for Bell
agreement between the theoretical widths is very poor. It
would be very interesting to have this width measurement
carried out so that the correct theoretical result could be

verified.
ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation Grant No. PHY-82-06490.

IK. T. Chung and B. F. Davis, Phys. Rev. A 26, 3278 (1982).

2K. T. Chung, Phys. Rev. A 20, 1743 (1979).

3K. T. Chung and B. F. Davis, Phys. Rev. A 22, 835 (1980).

4E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280
(1971).

5B. F. Davis and K. T. Chung, Int. J. Quantum Chem. 14, No.
4(1978).

6B. F. Davis and K. T. Chung, J. Phys. B 15, 3113 (1982); K. T.
Chung and R. Bruch, Phys. Rev. A 28, 1418 (1983); K. T.
Chung, ibid. 25, 1596 (1982).

’B. F. Davis and K. T. Chung, Phys. Rev. A 25, 1328 (1982).

8C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

9H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Plenum, New York, 1977), p. 181.

10A. K. Bhatia and A. Temkin, Phys. Rev. A 11, 2018 (1975).

HB. R. Junker and C. L. Huang, Phys. Rev. A 18, 313 (1978); B.
R. Junker, ibid. 18, 2437 (1978).

12A. Temkin, A. K. Bhatia, and J. N. Bardsley, Phys. Rev. A 5,
1663 (1972).

13S. Ormonde and D. E. Golden, Phys. Rev. Lett. 31, 1161
(1973).

14A. L. Sinfailam and R. K. Nesbet, Phys. Rev. A 6, 2118
(1972).

I5R. A. Bain, J. N. Bardsley, B. R. Junker, and C. V. Sukumar,
J. Phys. B 7, 2189 (1974).

16D. Andrick and H. Ehrhardt, Z. Phys. 192, 99 (1966).

I7H. Ehrhardt, L. Lauhans, and F. Linder, Z. Phys. 214, 179
(1968).

18D, E. Golden and A. Zecca, Phys. Rev. A 1, 241 (1970); D. E.
Golden and A. Zecca, Rev. Sci. Instrum. 42, 210 (1971).

198, Cvejanovic, J. Comer, and F. H. Reed, J. Phys. B 7, 468
(1974).

20D. E. Golden, F. D. Schowengerdt, and J. Macek, J. Phys. B
1,478 (1974).

21A. K. Bhatia and A. Temkin, Phys. Rev. A 13, 2322 (1976).

22A. K. Bhatia, Phys. Rev. A 18, 2523 (1978).

23D. Rassi, V. Pejcev, and K. J. Ross, J. Phys. B 10, 3535 (1977).

24M. Rgdbro, R. Bruch, and P. Bisgaard, J. Phys. B 12, 2413
(1979).

25D. J. Pegg et al., Phys. Rev. A 12, 1330 (1975).

26p, Ziem, R. Bruch, and N. Stolterfoht, J. Phys. B 8, L480
(1975).

27H. P. Kelly, Phys. Rev. A 9, 1582 (1974).

28M. Palmquist, P. L. Altick, J. Richter, P. Winkler, and R.
Yaris, Phys. Rev. A 23, 1795 (1981).

29C. A. Nicolaides, Y. Komninos, and D. R. Beck, Phys. Rev. A
27, 3044 (1983).

30D. G. Hummer and D. W. Norcross, Bull. Am. Phys. Soc. 24,
1183 (1979).




