
PHYSICAL REVIEW A VOLUME 29, NUMBER 4 APRIL 1984

Saddle-point complex-rotation method for the ( ls 2s 2s) S resonance
in He, Li I, Be11, and 8 m
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The saddle-point complex-rotation method is tested for a three-electron system by calculating the
(1s2s2s) S resonance in He, Lit, Ben, and But. The energy position and width obtained for this
resonance are well converged for a wide range of rotation angles and nonlinear parameters for all
atomic systems considered. To obtain higher accuracy, the relativistic and mass polarization correc-
tions are also calculated. The results are compared with those of the most accurate theoretical cal-
culations and experiments. For Ben, the agreement between the theoretical widths is very poor.
Experimental data are needed to confirm the correct theoretical value.

I. INTRODUCTION II. RESULTS

Recently, a saddle-point complex-rotation method for
calculating the position and width of a closed-channel res-
onance was proposed. ' This method combines two dif-
ferent techniques for dealing with atomic resonances. The
saddle-point technique ' yields the essential part of the
closed-channel component of a resonant wave function. If
the open-channel component is combined with this
closed-channel component, then the small '!shift" from
the saddle-point energy to the resonance position and the
width could be obtained. However, the inclusion of this
nonsquare-integrable component could present computa-
tional difficulties. On the other hand, the complex-
rotation method ' is capable of generating the resonance
position and width with only the use of square-integrable
basis functions. In Ref. 1 it was shown that this saddle-
point complex-rotation method yields accurate results for
two-electron resonances in helium. The complex eigen-
value was found to be very stable with respect to the rota-
tion angle and the nonlinear parameter of the scattered
electron in the open-channel component. Indeed, the good
convergence of the complex eigenvalue is the merit of this
present method, and it is probably due to the preoptimiza-
tion of the closed-channel basis functions by the saddle-
point technique.

In this paper we continue to investigate the saddle-point
complex-rotation method by applying it to a three-
electron system, the (ls2s2s) S resonance in He, Lit,
BeII, and B III. %e chose this resonance because experi-
mental results for the width of He are available for com-
parison, and also because this resonance has been the
proving ground for many other theoretical methods. %e
calculate it for Lit, Ben, and 8 In in order to observe the
isoelectronic trends and to stimulate further experimental
interest in measuring the width of this resonance for these
systems.

The nonrelativistic Hamiltonian for the three-electron
system in atomic units (a.u. ) is given by

ao ——g
i=1

1 2 Z——V —— 3

+ g
ij =1 iJ

where Z is the nuclear charge and r,J is the interelectron
distance. The rotated Hamiltonian is obtained by scaling
each radical coordinate by e', i.e., rJ becomes rJe' where
8 is the angle of rotation. If we refer to the ¹lectron ra-
dial coordinates collectively as 8& and the corresponding
angular variables as 0&, then the form of our rotated trial
wave function becomes

p= Q CJQ~(R3e', Q3)
J

+2 QDkgs(R2e', 02)Uk(r),
k

(2)

where the CJ and Dk are linear variation parameters and A

is an antisymmetrization operator. In the first term,
which represents the closed-channel component, the pl are
optimized, antisymmetrized configuration-interaction
basis functions with the "proper" ls vacancy built in. For
Lit, Be?I, and BILE, the basis functions in the closed-
channel components result from previous saddle-point cal-
culations for the (ls2s2s) S states. For He they are
determined in this investigation. To obtain a converged
result for these closed-channel components, up to 14 par-
tial waves and 97 linear parameters have been used (see
Ref. 6). In the second term, which represents the open-
channel component, gs is the ( ls ls)'S two-electron target
state. The Uk(r ), which form a one-dimensional complete
set for representing the scattered s-wave electron, are
given by
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(This work)

R Ere1

Pekeris (Ref. 8)

TABLE I. Energy of the eight-term, three-partial-wave
(1s ls)'8 target state and comparison with Pekeris's value (in
a.u.).

(mass correction),
3

HI ———a g Z5(r;)
2 i=1

{DRrwlll teHI1),

(6)

He
Li II
Be III
8Iv

—2.900 869
—7.276970

—13.6S1 410
—22.027 384

—2.903 724
—7.279 913

—13.655 566
—22.030 972

—2.903 800
—7.280484

—13.657 643
—22.036 504

3

H, = Ir—uz g (1+ ', s;—sj)5(r,J)

(Fermi contact term),

Uk(r)=rke (3)

riJ. riJ. P; pj
Pl'PJ +

PIJ.

where y is a nonlinear variation parameter.
With this P, the width and shift are calculated by the

standard var1atlon method

(retardation),

(4)

In the above expression the unconjugated e'~ is used in the
complex conjugated wave function. For a more detailed
description of the above procedure, the interested reader is
referred to Ref. 1.

An accurate target-state wave function Ps should be
used in the wave function given by Eq. (2) when carrying
out the complex-rotation computation. Although the
two-electron {ls ls) 5 wave function can easily be calcu-
lated to high precision, this wave function would need a
large number of terms to account for the correlation ef-
fect. This, in turn,

'

would make the three-electron
complex-rotation calculation prohibitively time consum-
ing. On the other hand, a very crude target-state wave
function might lead to inaccuracy. To compromise, we
chose to use a three-partial-wave, eight-term function to
represent the target states. Compared with the nonrela-
tivistic results of Pekeris, the energy of these wave func-
tions are higher by 0.0029—0.0041 a.u. The energies for
the eight-term target states and their comparison to Ref. 8
are given in Table I.

Fol' Rll acclll'Rfc dctcHI11natlon of tllc to'tal cllcl'gy fol'
the three-electron resonances we also calculated the contri-
bution from relativistic and mass polarization effects.
These are obtained by evaluating the expectation values of
the following operators with the saddle-point wave func-
tions

(mass polarization).

Ill tllcsc cqllaflolls, Q ls flic flue-stIllcturc collstRllt, Z ls
thc nuclear charge~ Rild M 1S thc nuclear Q1ass Rpproxl-
m.ated by

M = I [Z (1.008 142)+X(1.008 982)118361/1.008 142 .

For the atomic systems of interest, He, Lil, BCII, and
Bm, the number of neutrons N are 2, 4, 5, and 6, respec-
tively.

In Table II we present the results obtained with the
saddle-point wave functions for the different ions. In this
table E,~ is the saddle-point energy, I. is the number of
angular partial waves used in the expansion of the saddle-
point wave function, N is the total number of terms used,
and q is the optimized parameter in the ls vacancy orbital,

$1,=Ce

whcrc C 1s 8 normR11zRt1on coIlstant. It 1S 1ntercstlng to
note that q =Z ——,, indicating that the 1s vacancy is ap-
proximately half shielded from the nucleus by the ls elec-
tron. (HI+HI), (Hs), (H4), and (H, ) are the results
of the first-order perturbation theory for the operators
given in Eqs. (5)—(9), respectively. We note that the rela-
tivistic and mass polarization corrections vary smoothly
as a function of nuclear charge.

In the complex-rotation computation, the inclusion of
15 terms in the open-channel component [i.e., k runs from

TABLE II. Relativistic correction, mass polarization, shift, and width of the (1s2s 2s) S resonances (in a.u. , for notation see text).

Ep
(a, +a, ) (a, ) (a„) (a, )

(10-') (10-') (10-') (10-') (10-")
I

(10

He
LiI
Be II
Hm

—2.1916177
—5.405 2190

—10.122 7182
—16.341 007 8

1.45
2.48
3.48
4.48

—0.1133
—0.6266
—2.1114
—5.3733

0.04
0.47
1.67
4.16

0.01
0.4
14
4.1

1.193
0.673

—0.342
—2.278

—0.287
0.071
0.620
1.230

—2.191758
—5.40S 833

—10.124750
—16.346215

0.4250
1.3541
1.9475
2.2855
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TABLE III. Convergence of the resonant energy E, and width I of Li I {1s2s 2s) 5 as a function of
rotation angle 19 (in radians) and nonlinear parameter y using the saddle-point complex-rotation method. ;
here, x is given in the body of the taMe. Por energy E,=(—5.4052119+10 x) a.u. and for width

I =(0.001 3541+10 x) a.u.

1.50
1.875
2.25
2.265
3.00

26
16
20
15

—37

0.3

0
0
0
0

—2

0.5

—1

0
0
0
0

—1
—1

0
—1

2

1.50
1.875
2.25
2.625
3.00

0 to 14 in Eq. (2)] yields a converged complex energy,
E,—il /2. This convergence for the resonant energy E„
and width I is shown in Table III for the case of Li. This
table demonstr ates that thc complex eigenvalue ls very
stable over a wide range of rotation angles 0 and nonlinear
parameters y. If the nonlinear parameter y is scaled to
the other charges Z from Li I by the prescription

Z
V (12)

E =E,@+6+(HI+HI+HI+H4+H5 ) . (14)

We note that the shift changes steadily as a function of
nuclear charge, from —0.78 meV for He to + 1.67 meV
for Bar. The shift is smallest for the neutral lithium
atom, i.e., + O.I9 meV. The width also increases smooth-
ly as a function of nuclear charge.

It is worthwhile to point out that the shift depends
sensitively on the accuracy of the closed-channel wave
function used in the computation. The small shifts shown
in this table seem to justify the inner-shell vacancy picture
which is thc foundation of the saddle-point technique.

A comparison of our results with other calculations and
experiments is given in Table IV. The resonance position
in this work is quoted in electron volts above the two-
electron relativistic ground-state energy given in Table I,
The conversion from atomic units to electron volts is ac-
complished with the infinite-mass rydberg, —13.605826

then similar convergences are obtained for He, Be II, and
8 III.

The final results for the S resonances are also given in
Table II. The shift from the saddle-point energy to the
resonance position is defined by

(13)

The total energy E in this table is defined by

cV, wlllch 1s RpproprlR'tc wllc11 coIIlparlIlg wltll scattcrIng
data. "

For He all the theoretical calculations" ' for the S
resonance position seem to be in good agreement. In
many references, the resonance position is given in terms
of the energy above the ground state of the helium atom.
But the actual value used for this energy is not quoted in
these references. This makes a precise comparison be-
tween the theoretical results difficult. A few of the earlier
results quoted in Table IV have been adjusted using the
reference energy of Table I. Our He energy lies on the
lower end of the theoretical results. It gives slightly better
agreement with the experiments. The width of this
work agrees closely with that of Ehrhardt et al. '

For Li I no experimental results for the width are avail-
able, and to our knowledge only Bhatia and Temkin ' and
Bhatia have published theoretical values. They obtained
widths of 0.0423 and 0.0403 eV, respectively. Our result,
0.0369 eV, agrees better with the more recent value of
Bhatia. The experimental results for the energy of Rassi
cr al. I and Rydbro et al. are slightly higher than those
of Pegg et al. and Ziem et al. Our calculated result is
in better agreement with that of Refs. 23 and 24.

For Ben there is a very large range of calculated
widths I from 0.02 to 0.09 cV. Unfortunately no ex-
perimental result for the width of this system is available
to resolve this large discrepency.

Kelly, Nicholaides et al. , and Bhatia calculated
the width with the golden-rule formula. This is accom-
plished by calculating a matrix element between the
closed-channel and open-channel components. Kelly
R11d Nlc1101aldcs eI gl. llscd a multlconflIguI'at1011
Hartrec-Fock function for the closed channel, and a
Hartree-Fock function for the open channel. Bhatia
used a configuration interaction function derived from the
quasiprojection operator technique for the closed-channel
component, and he combined a scattering function com-
puted from the static-exchange approximation with his
closed-shell target state for the open channel. Kelly's re-
sult, 0.093 CV, is to be compared with the 0.083-CV result
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TABLE IV. Comparison of energy and width of the (1s2s 2sl 5 resonance for He, Lit, Ben, and
Bm.

He Theory 19.376'
19.403'
19.4
19.402'
19.38
19.4
19.398
19.365
19.3
19.3
19.30+0.01
19.367+0.009
19.35+0.02

11.56
12.13
13.9
11.72
11.5
15
12
11.0
17.5+2.5
12
8+2
9+1

13

This wolk
Junker RIld Huang; complex Iotat1on
Temkin et a/. ; quasiprojection operator
Junker; complex rotation
Qrmonde and Golden; close coupling
Sinfailam and Nesbet; variational
Bain et al. complex rotation
Hummer and Norcross; close coupling
Andrick and Ehrhardt; transmission
Ehrhardt 8t a/. ; transmission
Golclen Rnd ZeccR; transmission
CvejRnovic 8P a/. ; transmission
Golden 8t a/. ; transmission

I 1 I Theory 5 1.012
51.000'

51.049'
51.15
51.04
50.92+0.03

50.92+0.01

51.004+0.015

50.97+0.05

36.85
42.3

40.3

23

This work
Bhatla Rnd Temkln; quaslproj ection
operator
Bhatlaq quaslprojectlon operator
A, %. gneiss (quoted in Ref. 22)
Junker (quoted in Ref. 25)
Pegg et a/. ; projectile-electron
spectroscopy
Ziem et a/. ; projectile-electron
spectroscopy
Rassi et a/. ; projectile-electron
spectroscopy
Rgdbro et a/. ; beam-gas spectroscopy

Be II Theory 96.136'
96.185'
96.737'
97.94
96.230
96.10+0.1

53.00
53
92.93
20.5

83;23

This work
Bhatla
Kelly; Multiconfiguration Hartree-Fock (MCHF)
Palmquist 8't a/. ; Greens function
Nicolaides et a/. ; MCHF
R@dbro et a/. ; beam-gas spectroscopy

This work
Bhat1R~ quaslproject1on Operator
%eiss (quoted in Ref. 22)
Rgdbro et a/. ; beam-gas spectroscopy

'These theoretical results are quoted relative to the relativistic ground-state energy of Table I.

of Nicholaides et al. , where both calculations employed
the same closed-channel wave function. These results do
not agree with the present result of 0.053 eV. When Ni-
cholaldcs 8f QI. 1IlclUdcd IDorc cori clatloQ ln thcll
closed-channel wave function, their calculated width
dropped to 0.023 cV %'hich 818G docs Qot agree %'lt11 tllc
Px'csent %'GI'k.

Palmqulst et al. used a Green function approach with
Slcgcrt boUQdarg condltlons to calcUlRtc t11c I'csoQRQcc pa-
I"RIQctcrs via 8 coIIlplcx cnclgp. Thcll calcUlatcd %'ldth,
0.021 eV, agrees %ith the 0.023-cV I'esUlt of Nicholaidcs
ef QI. Rnd disagI'ccs %'ith GUI" fcSUlt. Their calcUlatcd cn-
cI'gY, 97.94 cV, 18 vs' high Rs coIDparcd to cxpcrlQ1ent
and other theory. This is probably due to a lack of com-
plctcncss 1Q their SlatcI'-tgpc orbital plUs onc Slcgcrt orbl-

tal" basis, which does not adequately account for the elec-
tron correlation.

Hhatia'8 C81CU18teCl %1dth, 0.053 CV, lS iQ CxCC11CQt

RgfccIDCQt %'lt11 thc pI'cscnt %'olk. This 18 lntcrcstlllg. Thc
t%'o calcUlatlons arc similar ln that thc b8818 sets Used to
expand the closed-channel component of the wave func-
tioll 8I'c Qlore conlplcte Rs conlparcd to thc other calcU18-
tlons. It Rppcals that RccoUQtlng foI' thc clcctron corx'ela-
tion is essential for a well converged result for the width
of this 2S resonance.

Nicholiades et al. also calculated the shift b„which
results from the interaction of the closed-channel com-
ponent of the resonant wave function with the open-
chRQQcl coIDponcnt throUgh thc HRImltonlRIl. T11clI' lc-
sUlt, —0.0015 R.U. q 18 IDorc t11811 20 tlIQcs larger thRQ GUI'
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result of +O.MM064 a.u. This shows clearly that the
closed-channel component of this work is far more accu-
rate than that of Ref. 29.

For BIG, fewer theoretical and experimental results ex-
ist for comparison. The calculated results of Bhatia,
Weiss (see Ref. 22), and this work all lie within the experi-
mental uncertainty quoted by the only experimental x'esult

of Rgdbro et al. Our result lies at the low end of the
quoted uncertainty while the other calculations are closer
to the line center. Our lower result is, for the most part,
due to the inclusion of the relativistic effects which are
absent in Ref. 22. Finally, our calculated width, 62 meV,
is in reasonable agreement with Bhatia's result of 68 meV
for this system.

IV. SUMMARY

In th1s work thc saddle-point complex-rotat1on method
is used to perform detailed calculations for the ( ls 2s 2s) S
resonance in He, I.iI, BCIj., and 8 III. This method uti-
lizes saddle-point configuration-interaction basis functions
which include the proper vacancy orbitals for the closed-
channel component of the resonant wave function. A

complex rotation is then carried out after including the
opcn-channel component in order to obtain the width and
the small shift from the saddle-point energy to the reso-
IlaIlcc pos1tlo11. Wc follIld that tllc 1cslllt111g co111plcx
eigenvalue is very stable over a wide range of rotation an-
gles and nonlinear parameters in the open-channel com-
ponent.

To obtain higher Rccux'Rcy, thc Iclat1v1st1c Rnd mass po-
larization corrections for each atomic system are also con-
sidered. These results are then coxnpared with the most
accurate theoretical calculations and experiments. For
He, Li I, and B III the theoretical calculations and experi-
ments are in satisfactory agreement. However, for Ben
agreement between the theoretical widths is very poor. It
would be very interesting to have this width measurement
carried out so that the correct theoretical result could be
verified.
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