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Twenty-four quartet states of Be™ are calculated using configuration-interaction wave functions.
Relativistic and mass polarization corrections are included. The relativistic corrections considered
are mass correction to the kinetic energy, Darwin term, and retardation effect. The fine structure is
calculated using spin-orbit, spin-other-orbit, and spin-spin operators. The transition wavelengths
calculated in this work improve the agreement between theory and experiment in most cases. The
lifetimes computed in the present work generally agree with those of the experiment. However, we
also point out that the observed line at 3530 A may have been misidentified in the literature.

I. INTRODUCTION

Recently, the doubly excited, quartet states of Be™ have
attracted a great deal of interest, both experimentally and
theoretically. Since these states lie in the elastic scattering
energy region, they are metastable against autioionization
in the LS coupling scheme. Therefore, the dipole transi-
tions become the dominate decay mechanism. Experimen-
tally, this spectrum has been observed using the beam-foil
technique by Hontzeas et al.! More recently, Bentzen
et al.>~* and Mannervik et al.’> have obtained more data
with improved accuracy. The wavelength range investi-
gated experimentally is 600—5000 A, which corresponds
to transitions among (1s 2/,nl,)*L states with n <5.

Theoretically, these quartet levels have been calculated
by several methods. Holgien and Geltman® and Lunell
and Beebe’ performed Rayleigh-Ritz calculations with a
configuration-interaction (CI) basis. Laughlin® used a
model potential to include the effects of the valence elec-
trons’ interaction with the l1s electron; Larsson’ used the
Hylleraas method; Ali'® has done some Hartree-Fock cal-
culations; Froese Fischer!! has performed multiconfigura-
tion Hartree-Fock (MCHF) calculations for a large num-
ber of states; and finally Galan and Bunge'? have done ac-
curate CI calculations for a few states.

Among the theoretical works, Froese Fischer!! has con-
sidered the relativistic mass correction and Darwin term
whereas Galdn and Bunge have estimated the relativistic
contribution using two-electron results.!*> No explicit cal-
culation on the orbit-orbit interaction (retardation effect)
and mass polarization effect has been reported for Be™ in
the literature.

In this work, the energies for the quartet states of Be*
are calculated using configuration-interaction wave func-
tions. The relativistic effects are calculated using first-
order perturbation theory. The relativistic effects con-
sidered in this work are mass correction to kinetic energy,
Darwin term, retardation term, spin-orbit, spin-other-orbit
and spin-spin effects. Mass polarization effect is also con-
sidered.
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Using the calculated energies and wave functions in this
work, the transition wavelengths, oscillator strengths, and
lifetimes are reported. These results are compared with
the theoretical and experimental data in the literature.

II. COMPUTATION PROCEDURE

The wave functions for the Bet quartet states are ex-
panded in terms of configuration-interaction basis func-
tions. In the LS coupling scheme, we have
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Here o7 is the antisymmetrization operator and the C’s
ar,eLIAilnear parameters. The explicit forms for ¢,,,, and

Y, 1, are given in Davis and Chung.'"* We refer the in-

terested reader to this reference. The spin function is
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where s;, s,, and s; are % and f is the corresponding
single-particle spin function.

The nonrelativistic energy and wave function are ob-
tained by the standard variation procedure. That is,
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The relativistic perturbation operators are given by’ and
3
H,=—+a* P} (mass correction 5 T g e e
1= Z P (mass correction) D Hpa=—ta 3 [2ExF |428)
ij | Tij
H,=Za’3 |Z8(T))— 3 8(F;) | (Darwin term)  (6) h=
2 i Jei (spin-other-orbit) .  (11)
1 S33 ot In these equations, a is the fine-structure constant, Z is
Hy=7¢ 1% PiP; (mass polarization) T the nuclear charge, and M is the nuclear mass for *Be’. It
ij=1 should be pointed out that for quartet states of three-
. electron systems, the expectation value of 8(17;) is identi-
T;°(T;°P;)P; cal to zero.
2 vy oty tirJ c e .
Hy=— —a 2 N + 2 Among the relativistic corrections, H; and H, are by
N <-]1 & Y far the largest. These expectation values are evaluated us-
7 ) ing the first-order perturbation theory. The contributions
(retardation)  (8)  from the other operators are evaluated by diagonalizing
3 T,% the Hamiltonian with the perturbations included.
H,, = E_ 2 (spin-orbit) 9) For calculating the fine-structure splitting, eigenfunc-
> 25 tions with total angular momentum J are formed by!'¢
3
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TABLE 1. Energies for the Be* quartet states. J =L +S is used for the fine structure (in a.u.). For notation see text.
<H1+H2> <H3> (H4) (Hs.o‘) (Hs.s.> (Hs.o.o.)
(Hq) (1073) (1073) (107%) (1073) (1079) (1073) Eix°
(1525 35)*S —9.619706 —2.0585 0.174 0.106 —9.621762
(1525 4s)*S —9.462 304 —1.9967 —0.170 0.473 —9.464298
(1s2p3p)'S —9.430344 —1.8437 —3.945 4.068 —9.432186
(1s2s55)*S —9.394 206 —2.0218 0.014 0.067 —9.396227
(15 25 65)*S —9.362613 —2.0207 0.123 —0.025 —9.364 633
(1s2s2p)*P° —10.066 454 —2.0085 —3.233 3.453 5.995 4.385 —4.864 —10.068 460
(1s2s3p)*P° —9.569 405 —2.0030 —0.779 0.796 1.226 0.887 —0.973 —9.571408
(1s2p 3s)*P° —9.476377 —1.8286 —4.053 4.249 7.298 4.600 —5.602 —9.478204
(1s2s4p)*P° —9.441 344 —2.0071 —0.278 0.346 0.3819 0.337 —0.302 —9.443 350
(1s2p2p)*P —9.870676 —1.8063 —6.059 6.900 5.928 —4.170 —5.225 —9.872474
(1s2p 3p)*P —9.428 604 —1.7829 —4.616 4.946 4.351 —2.799 —3.511 —9.430384
(1s2p4p)*P —9.312297 —1.7860 —4.404 4.609 4.096 —2.564 —3.202 —9.314081
(1s2s3d)*D —9.540789 —1.9903 0.221 0.175 0.730 0.619 —0.689 —9.542775
(1s2p3p)*D —9.447 881 —1.8152 —4.473 4.539 8.221 5.044 —6.283 —9.449 696
(1s2s4d)*D —9.428765 —1.9987 —0.142 0.168 0.488 0.375 —0.452 —9.430763
(1s2s5d)*D —9.380737 —2.0115 0.185 —0.064 0.090 0.086 —0.095 —9.382747
(1s2p 3d)*D° —9.406 198 —1.7813 —3.638 4.273 2.800 —4.699 —2.221 —9.407973
(1s2p4d)*D° —9.303416 —1.7763 —4.035 4.338 2.700 —4.769 —2.086 —9.305189
(1s2p 5d)*D° —9.256 562 —1.7821 —4.164 4.365 2.667 —4.799 —2.044 —9.258 342
(1s2p4f)*Fe —9.302062 —1.7785 —4.254 4.373 2.011 —5.945 —1.560 —9.303 839
(1s2p5f)*Fe —9.255940 —1.7834 —4.268 4.377 1.992 —5.983 —1.530 —9.257722
4Fo(1) —9.435622 —1.8998 —2.646 1.946 3.573 2.304 —2.846 —9.437529
‘Fo2)° —9.411012 —1.9022 —2.320 1.972 3.667 2.351 —2.928 —9.412918
(1s 25 51)*F° —9.376018 —2.0062 —0.006 0.099 0.341 0.229 —0.288 —9.378023
(1525 4f —1s2p 3d)*Fe.
(1s2s4f +152p 3d)*F°.

Ew={Ho)+{(H,+H,)+{Hy)+{H,).
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and

-

<Hs.o.o. >=Cs.o.o.2i's ’ (15)

where
2L-S=J(J +1)—L(L +1)—S(S+1),

and the C’s are reduced matrix elements.'®

In computing the nonrelativistic energy, we have used
anywhere from 50 to 110 linear parameters and 7 to 13
angular partial waves depending on the convergence of the
particular state of interest. The calculated energies are
given in Table I together with the relativistic contribu-
tions. It is interesting to note that the result for
(H,+H,) is very clear in deciding whether this quartet
system has a 2s or a 2p electron. If the 2s electron is
present this expectation value is approximately —0.002
a.u. If the 2p electron is present, this expectation value is
about —0.0018 a.u. On the other hand, the two *F° states
have 1s2s4f and 1s2p 3d configurations with roughly the
same weight. In this case, (H;+H,) is approximately
—0.0019 a.u.

While the 2s electron is more effective in lowering the
energy, the 2p electrons are most effective in contributing
to the other relativistic effects such as retardation, fine
structure, as well as mass polarization effects. This is also
clearly demonstrated in Table I.

TABLE II. Comparison of nonrelativistic energies for Be™
quartet states (in a.u.).

States This work MCHF? Other theory
(1525 3s)*S —9.619706 —9.61946 —9.61949°
(152s4s)*S —9.462304 —9.46223 —9.46169°
(1s2p3p)'s —9.430344 —9.43002 —9.42811°
(1525 55)*S —9.394206 —9.39311°
(1525 65)*S —9.362613 —9.36143°
(1s2s2p)*P°  —10.066454  —10.06557 —10.06641°

—10.06492°
(1s2s3p)*P° —9.569 405 —9.56870 —9.56893"
(1s2p 3s)*P° —9.476377 —9.47569 —9.47574°
(1s2s4p)*P° —9.441344 —9.44165 —9.440 18°
(1s2p2p)*P —9.870676 —9.87027 —9.868 36°
(1s2p 3p)*P —9.428 604 —9.42739 —9.42397°
(1s2p4p)*P —9.312297 —9.31193
(1s2s3d)*D —9.540789 —9.54056 —9.5409234
(1s2p3p)*D —9.447 881 —9.446 81
(1s2s4d)*D —9.428 765 —9.42874
(1525 5d)*D —9.380737
(1s2p3d)*D° —9.406 198 —9.40593 —9.406 3404
(1s2p4d)*D° —9.303416 —9.30324
(1s2p 5d)*D° —9.256 562
(1s2p4f)°*F —9.302062 —9.30185 —9.302 1424
(1s2p 5)*F —9.255940 —9.25580

4Fe(1) —9.435622 —9.43521 —9.435789¢

4Fo2) —9.411012 —9.41042 —9.411235¢
(1s2s 5f)*F° —9.376018 —9.37559

®Froese Fischer, Ref. 11.
“Larsson et al., Ref. 9.
°Lunell and Beebe, Ref. 7.
dGalan and Bunge, Ref. 12.

III. RESULTS AND DISCUSSION

To assess the accuracy of the present work, we compare
the nonrelativistic energies in Table I with results from
the literature. This comparison is given in Table II
Among the earlier works on Be™, the most extensive
study is probably that of Froese Fischer!! using the
MCHF approach. Compared with the results of Ref. 11,
our energies are substantially lower. According to the
theorem by MacDonald,'® all the energies calculated in
this work are upper bounds to the true nonrelativistic
eigenvalue. Hence, the fact that our energies are lower
implies that these energies are more accurate. The only
exception is the 1s 2s4p “P° for which the result of MCHF
is lower than this work by —0.00031 a.u. Since this is
the fourth lowest state with the *P° symmetry, it is not
clear whether the MCHF result given here is an upper
bound to the true eigenvalue. Larsson et al.’ use 7;j coor-
dinates explicitly and up to 97 linear parameters in their
wave functions in a variation calculation. Their results
are only slightly higher than this work for the lowest *S
and “P°. But for higher excited states, the difference in
energy becomes more substantial. The present values are
slightly higher than those of Galan and Bunge for the five
states calculated in Ref. 12. A good portion of this energy
difference can be attributed to the extrapolation procedure
taken in Ref. 12.

Few fine-structure measurements have been made for
the quartets of Be™ in the literature. To stimulate more
interest in this area, the results calculated in this work are
presented in Table III. It is clear from this table that only
those states with 2p electrons give substantial fine-
structure splitting. The maximum splitting of the Be™
system is about 11.25 cm~!. Recently, the fine structures
for the 1s2s2p *P° and 1s2p 2p *P states of Be* have been
calculated by Hata and Grant!® using the multiconfigura-
tion Dirac-Fock (MCDF) method. Their results deviate

TABLE III. Fine structures for the quartet states of Be*t (in
em™)). J=L +1.5,J,=L +0.5,J,=L —0.5,J;=L —1.5.

EJ_EJ1 EJI_EJ2 EJZ_EJ3
1s2p2p*P —2.007 9.779
1s2p 3p*P 0.003 7.374
1s2p4p*P 0.456 7.025
1525 2p*P° 8.951 —6.177
1s2s3p*P° 1.898 —1.197
1s2p 3s*P° 11.253 —5.362
1s2s4p*P° 0.663 —0.491
1s2s3d*D 0.580 —0.265 —0.431
1s2p 3p*D 8.838 0.778 —1.747
1s2s4d*D 0.380 —0.141 —0.249
1s2s5d*D 0.0528 —0.0566 —0.0717
1s2p 3d*D° —2.129 3.636 4.244
1s2p4d*D° —2.092 3.739 4.337
1s2p 5d*D° —2.092 3.772 4.370
1s2p4f*F —2.924 2.596 4.464
1s2p 5f*F —2.926 2.627 4.502
4F(1) 3.111 0.532 —0.631
4Fo(2) 3.170 0.539 —0.647
(1s2s 51)*F° 0.268 0.021 —0.086
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TABLE IV. Transition wavelengths (in A) and ocsillator strengths for the quartet states of Be*.
Oscillator
Transition Wavelengths strength MCHF (Ref. 11) Other theory Experiment
2p4p *P—2s2p *P° 604.02 0.92402(—2) 604.4 604.1+0.4°
25 65 4S—252p ‘P° 647.40 0.55307(—2) 646.3
2s5d *D—2s2p *pP° 664.51 0.31866(—1) 665.4° 664.5+0.2f
2555 4S—2s2p 4P° 677.83 0.73055(—2) 676.8
2p3p *P—(252p)*P° 714.12 0.23032(—1) 713.8 710.9° 714.240.2f
715.1¢
2s4d *D—2s2p *P° 714.54 0.62016(—1) 715.5 717.2¢ 714.6+0.2f
714.6°
2p3p 4S—2s2p *P° 716.14 0.16962(—1) 716.8 713.9° 716.440.2f
718.5¢
2p3p*D—2s2p *P° 736.40 0.21852(—1) 736.2 739.3¢ 736.410.38
738.6°
2p5d *D°—2p2p *P 741.96 0.44412(—1) 739.7° 742.0+0.3f
2545 *S—2s2p *P° 754.20 0.50071(—1) 755.2 753.5 754.440.2f
755 +3b
2p4d *D°—2p2p ‘P 803.23 0.10404 803.6 799.9° 803.1+0.2f
2s3d *D—2s2p *P° 866.80 0.31320 867.9 869.8¢ 867.1+0.2f
851.7° 865.3+1"
2p3d *D°—2p2p *P 980.97 0.36776 981.3 973.7° 981.7+0.2f
968.2¢ 981.4+1.0"
2535 4S—2s2p *P° 1020.1 0.15008 1021.5 1020 1020.1+1.0
2p3s*P°—2p2p *P 1155.7 0.126 10 1154.9 1155.9+1.0"
2565 4S—2s3p *P° 2203.7 0.21938(—1) 21952
2p2p *P—2s2p *P° 2325.0 0.25721 2331 2318° 2324.60+0.03!
2324.6+0.3"
2p5d *D°—2p 3p *D 2381.3 0.704 48(—2) 2382.0"
255d *D—2s3p *P 2415.2 0.57590(—1)
2p Sf4F—4F(1) 2534.2 0.14063(—1) 2538
254p *P°—2s 35 4S 2554.0 0.25088(—1) 2562 2540 2563+1f
2562.940.21
2555 45 —25 3p *P° 2601.1 0.50245(—1) 25912 2599.240. 5
2p5d*D°—2p3p*P 2648.6 0.46364(—1)
2s5f *F°—2s3d *D 2765.7 0.15108 2762 27834 2764 +18
2764.2+1.0
2p4p *P—2p3s *P° 2776.3 0.15785(—1) 2782 2775 *1°
2p5f F—*F(2) 2936.0 0.20710(—1) 2944
2p5f*F—2p3d*D° 3032.7 0.98740(—1) 3035 30584 3031 +18
2p4d *D°—2p3p *D 3153.2 0.104 14(—1) 3173
2p3s *P°—2s3s54S 3174.1 0.72582(—1) 3165 3169° 3179.87+0.06'
3180.7+1.0
2p3p *P—2s3p *P° 3231.1 0.82152(—1) 3219 3231 +1f
2s4d *D—2s 3p *P° 3239.8 0.98730(—1) 3255 3240 +1f
2p3p*S—2s3p *P° 3272.9 0.21829(—1) 3282 32352 3261 +1f
2p3d *D°—2s3d *D 3380.2 0.11518 3379.4 3380.6/ 3380 #1f
3379.4¢ 3379.9+0.21
2p4f *F—*F°(1) 3408.4 0.14333 3414 3406.0° 3405.4+0.11
3405.6+0.6"
4F9(2)—2s3d *D 3508.9 0.26106 3499 3510.8J 3510.52+0.05
3526.4¢ 3510.8+0.5"
2p4p *P—2sdp *P° 3524.9 0.63550(—1) 3507 3530+1°
2p4d *D°—2s4d *D 3628.6 0.10317 3625 3624+1f
2p4d *D°—2p3p *P 3639.6 0.15508 3670 3636+1f
2p5d *D°—255d *D 3662.7 0.76334(—1) 3660+ 1f
2p3p*D—2s3p *P° 3743.7 0.17136 3732 3776.94 3749+ 18
3749.3h
2p5f*F—2s5f*F° 3787.7 0.55721(—1) 3797 3793.0¢ 3785+ 18
2545 *S—2s3p “P° 4254.1 0.407 12 4279 4248° 4252+1f

4252.1+0.3
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TABLE 1V. (Continued.)

Oscillator
Transition Wavelengths strength MCHF (Ref. 11) Other theory Experiment
4F°(1)—2s3d *D 4329.5 0.28016 4322 4330.1 4329.55+0.07'
4330.240.5"
2p4f *F—2p3d *D° 4375.7 0.610 66 4378 4371.8 4371.1+0.1!
2s4p *P°—253d *D 4583.0 0.86265(—1) 4608 4596+ 1f
2p4p *P—2p3d *D° 4853.0 0.46208(—1) 4848

*Larsson et al., Ref. 9.
bAli as quoted in Ref. 2.
°Lunell and Beebe, Ref. 7.
9Laughlin, Ref. 8.
“Bentzen et al., Ref. 4.

from those of Table III by about 0.1 to 1.8 cm~!. Since
correlation is very important for this system and the cal-
culated transition wavelengths in this work are far more
accurate, it is possible that the results in Table III are
more reliable.

Using the E,; given in Table I, we tabulate the transi-
tion wavelengths for these quartets. This is presented in
Table IV. The wavelengths are obtained using the conver-
sion factor 1 a.u. of energy, corresponding to 455.6613 A.
The oscillator strengths for each transition are obtained
using nonrelativistic energies and wave functions. Com-
parison with previous predictions and with experiments
are also given in this table.

Generally speaking, the agreement between the present
work and experiment is quite good. For the 37 identified
lines in Table IV, the agreement between theory and ex-
periment is improved for 27 lines, 15 of which lie within
the experimental uncertainty quoted. Most of the 37 lines
lie very close to the observed spectra with a few excep-
tions, notably_ the 2p 3p *S—2s3p *P° at 3272.9 A (exper-
iment, 3261 A) and the 2p4p *P—2s4p *P° at 3524.89 A
(experiment, 3530 A).

For the 2p3p“*S—2s3p*P° transition, the calculated
wavelength is too long, implying that either the calculated
lower-state energy is too high or that of the higher state is
too low. The transitions 2p3p 4P—252p“P° (theory,
714.12 A, experiment, 7142 A), 2p3p*P—2s3p*P°
(theory, 3231.08 A, experiment 3231 A), 2s4d "'D
—252p *P° (theory, 714.54 A, experiment, 714.6+0.2 A),
and 2s4d “D—2s3p*P° (theory 3239.8 A, experiment,
3240+1 A) seem to suggest that the calculated 1s2s 3p “P°
energy is accurate. Based on the transition
2p3p*S—2s2p*P° (theory, 716.14 A, experiment, 716.4
A), the calculated 1s2p3p*S energy is probably shghtly
too hl%h This suggests that the observed 2p3p“S
—2s 3p “P° transition should be longer than the calculated
3272.92 A. We note that in Bentzen et al.,* a strong line
have been seen at 3276 A. It is possible that
2p 3p “S—2s3p *P° may have contributed to this line. The
line at 3261 A could have come from other transitions.
Very recently, Angentoft et al. have reclassified this line
and suggested that it may have originated from the
1s(2p4d,2s 14f)*F° state.?’

fBentzen et al., Ref. 2.
8Bentzen et al., Ref. 3.
"Hontzeas et al., Ref. 1.
iMannervik et al., Ref. 5.
iGalan and Bunge, Ref. 12.

Based on the calculated 2s3s 4s—2s2p 41‘:" transition
data (theory, 1020.06 A, experiment, 1020.1 A), the ener-
gies of these two states are probably calculated to similar
accuracy. From_the 2p4p ‘P—2s2p *P° transition data
(theory, 604.02 A, experiment, 604.1 A), the calculated
1s2p4p *P energy is probably reliable. The calculated
25 4p *P—25 35 *S transition at 2554.0 A is too short com-
pared with the measured 2562.9 A. This implies that the
calculated 1s 2s4p *P energy is too high. Hence, the exper-
imental result should be shorter than the calculated
2p4p *P—254p *P° result of 3524 A. That is, the 3530 A
may need to be reassigned.

Bentzen et al.? predict on the basis of a _closed-loop en-
ergy analysis that a line observed at 3660 A belongs to the
2p5d *D°—2s5d *D transition. Our calculated result for
this transition, 3662.7 A, confirms this ass1gnment The
weak line at 2382 A reported by Hontzeas et al.! is jn
close agreement with our 2p 5d *“D°—2p 3p *D at 2381.3 A.

In Table V we present our calculated lifetimes along
with those from other theoretical calculations and experi-
ment. The agreement between theory and experiment is
good in most cases. The lifetime of the (1s2s54)*D state
is calculated here for the first time, and is within the ex-
perimental uncertainty quoted by Bentzen et al.? The
lifetime of 5.98 ns for the (1s2s5f)*F° state is in good
agreement with the measured value of 5.6+0.5 ns obtained
by Bentzen et al.’> and is an improvement over Froese
Fischer’s result of 7.3 ns.!! Our result of 3.16 ns for the
(1s2p2p)*P° state agrees well with the experimental result
of 3.1+0.2 ns by Hontzeas et al.'

There are a few cases where the theoretical predictions
lie outside the experimental uncertainty, e.g., for *F°(1),
4F°(2), and (1s2p3d)*D°. In these cases, the agreement
between the various calculations is quite good, but they
differ significantly from experiment, where the quoted un-
certainty is quite small. The reason for this discrepancy is
not clear at this time.

IV. SUMMARY

In this work, twenty-four low-lying Bet quartet states
are calculated along with relativistic and mass polariza-
tion effects. The nonrelativistic energy eigenvalues are
lower than previous theoretical calculations with the ex-
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TABLE V. Lifetimes for the quartet states of Be* (in 10~° sec).
This Other theory Experiment
State work MCHF* Laughlin® GB° BAP¢ MMJ* HMEB'
(1525 35)*S 1.04 1.0
(1525 4s)*S 1.36 1.4 1.6+0.2
(1s2p3p)*s 4.03 3.97
(1525 55)*S 5.45
(1525 65)*S 6.66
(1s2s3p)*P° 50.0 19.1
(1s2p 3s)*P° 1.47 1.5 1.4 1.5+0.1 2.4%0.3
ipo 1242
(1s2s4p)*P 10.7 15.1 1342
(1s2p2p)*P 3.16 527 3.1+0.2
(1s2p 3p)*P 2.66 2.7 2.740.5
4 3.9+0.4
(1s2p4p)*P 4.30 4.7 4.3 3.740.4
(1525 3d)*D 0.359 0.359 0.36 0.64+0.07 0.40+0.03 0.79+0.08
3.9+0.4
(1s2p3p)*D 2.83 2.79 2.8 3.110.3
2.740.3
(1s2s4d)*D 1.14 1.17 1.16 1.240.2 1.3+0.2
(1s2s5d)*D 1.79 2.240.6
(1s2p3d)*D° 0.382 0.378 0.38 0.39 0.45+0.03 1.0£0.1
(1s2p4d)*D° 0.824 0.85 0.83+0.06
(1s2p5d)*D° 1.56
(1s2p4f)*F 3.39 3.28 3.4 3.3 2.740.3 3.04£0.4
(1s2p5/)°F 6.01 5.7 6.7+0.5
‘Fo(1) 10.0 10.3 9.6 10 11.740.2
4Fo(2) 6.54 6.24 6.1 5.9 5.3£0.1
(1s2s 5f)*F° 5.98 7.3 5.6+0.5

?Froese Fischer, Ref. 11.

bReference 8.

°Galan and Bunge, Ref. 12.

9Bentzen, Anderson, and Poulson, Refs. 2, 3, and 4.
°Mannervik, Martinson, and Jelenkovic, Ref. 5.
fHontzeas et al., Ref. 1.

ception of a few states calculated by Galan and Bunge.!?
Using these energies, the transition wavelengths between
600 and 5000 A are tabulated. Compared with previous
theoretical results, the agreement between theory and ex-
periment is improved in most cases. However, based on
the analysis of this work, we find that the 3530 A line
may not be the 2p4p *P—2s4p *P° transition as suggested
in a previous work.?

The computed lifetimes in this work agree with those of
experiment in most cases. However, we find that in
several cases the theory disagrees with experiment. Fur-
ther study is needed to resolve this discrepancy.

To stimulate further experimental interest in making
measurements on the fine structure of Bet, we have tabu-
lated the fine-structure splitting of these quartets. We
hope that experiments will be performed and compared
with this work in the near future.
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