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Coulomb half-shell t matrix
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The lth —partial-wave Coulomb half-off-shell t matrix tI'(k, q, k ) is expressed in terms of hyper-
geometric functions which are polynomials. The expression is used to compute tI'{k,q, k~} as a func-
tion of the off-shell momentum q for two laboratory energies El,b{=2k ) =10 and 20 MeV. Results
are presented for 1=0 to 10. Our numbers refer to repulsive Coulomb potential encountered in the
case of p-p scattering. It is found that in addition to the on-shell discontinuity tl(k, q, k } exhibits a
singularity as q —+0 for higher partial waves;

I. INTRODUCTION

The concept of off-shell Jost functions originally intro-
duced by Fuda and Whiting' in the context of scattering
by short-range potentials has been extended by van Haer-
ingen to deal with problems involving the Coulomb in-
teraction. For short-range potentials the off-shell Jost
function ft(k, q) is a continuous function of the off-shell
momentum q in that ft(k, q) goes over to the ordinary Jost
function ft(k) as q approaches the on-shell momentum k.
In contrast to this the Coulomb off-shell Jost function

ff (k,q) exhibits a discontinuity at the energy shell. How-
ever for short-range and Coulomb potentials the half-off-
shell t matrix tt(k, q, k ) can be expressed in terms of ap-
propriate on- and off-shell Jost functions. For the
Coulomb potential 2rlklr (rl is the Sommerfeld parame-
ter} we have

k ff«q) ff« q- —
i trqff (k)

From Eq. (1) and the explicit expression s for the off-
shell Coulomb Jost function it is easy to see that the
singularity in ft (k,q) as q~k is exactly the discontinuity
of the physical half-off-shell t matrix studied by Okubo
and Feldman, Mapleton, and Ford.

Recently Maximon has revisited the problem of
developing efficient methods to include Coulomb interac-
tion in the final state of an amplitude which already con-
tains the strong interaction pair scattering. In order to in-
vestigate how the Coulomb interaction modulates the
non-Coulomb amplitude to produce the final state, Maxi-
mon proceeds by writing the following integral:

parameter. We observe that K(k, q) is in fact related to
the Coulomb half-off-shell t matrix. Thus knowledge of
the Coulomb half-off-shell t matrix is of great practical
value in those cases where the amplitude A is known from
numerical or analytical calculations.

The object of the present paper is to study in some de-
tail the behavior of tf(k, q, k ) as a function of q as well as
of l. In Eq. (1) tf(k, q, k ) is written in terms of ff (k, +q)
and ff(k). The expression for ff (k) is quite simple'o and
can easily be evaluated. In contrast to this the general ex-
pression for ff(k, +q) is quite complicated4'5 although the
s-wave result is extremely simple. Thus rather than using
the values of ff (k, +q) in Eq. (1), one would like to have
in the literature a noncomplicated expression for
tf (k,q, k ) for easy numerical evaluation of the Coulomb
physical half-off-shell t matrix. In Sec. II we achieve this
by using some of the results given in Ref. 9. We analyze
in Sec. III the numerical results for tf(k, q, k ) and find
that in addition to its singularity at the on-shell point,
tf(k, q, k ) exhibits a singularity as q~O, particularly for
large l.

Derivation of Eq. (1) is implicit from some of the equa-
tions given by van Haeringen. " It is of interest to note
that the expression for tf(k, q, k ) in terms of Jost func-
tions is formally similar to that for a short-range poten-
tial. In the Appendix we express the Coulomb physical
(outgoing wave) off-shell wave function gt'+'(k, q, r) in
terms of appropriate Jost functions and solutions by the
use of Green's-function technique. As in the case of the
Coulomb half-off-shell t matrix, we find that gf'+'(k, q, r)
is also formally similar to the physical off-shell wave
function for short-range potentials.

A, (k)= f K(k, q)A(q)d q . (2) II. HALF-OFF-SHELL T MATRIX

Here A (q } is the amplitude associated with scattering by
the strong interaction alone, while A, (k} represents the
Coulomb-distorted amplitude. The transformation func-

tion E(k, q } depends on the relative momentum variables

k and q of the particles involved and on their Coulomb

The lth —partial-wave physical half-off-shell t matrix
which exhibits a singularity at the energy shell is written
as"

tf (k,q, k') = I j t(qr) 4f (k, r) dr,
mkq P
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tf (k, q, k )=

with 'tile oldlnary Collloinb Jost function

fc(k) e Pl + 1)
Pl+ 1+iii)

and

jt(q&)= (q&) e 's")F((i+1,2l+2;2iqr),2 I {l+1)
I (2l+2)

4f(k, r) ="+" ""g,-(i+1 i~,2l—+2;2ik. ) .

Using Eqs. (6) and (7) 111 Eq. (4) we have

c(k k2) 2 + k +
q Pl+1)g

~(2l+1)!!I(2l+2)ff(k) '

I {kq) lim f &
(E+ik—+iq)r 2l+jlm

g~o 0

where J't(x) [=xjt(x)] is a Riccati-Bessel function and
gf'+'(k, r), the outgoing wave solution for the Coulomb
potential.

In terms of the regular solution'o pf(k, r), Eq. {3)reads

4 k+'
Jg gp' I p' p'

n (21 + 1)!!ff(k)

J, e "t' ' iF&(a,c;t) P, (a', c;at) dt

= Pc)(s —1) '(s —A, ) 's'+' '

' '(s —1)(s —A, )

Rec) O, Res &Rel, +1. (10)

~e now transform the variables in Eq. (lo) by substituting

t =2ku, A, =q/k, s =o/2k

=1(c)(cr—2k) '(o.—2q) '
(o' —2k)(cr —2q)

Rec )0, Reer) (2k+2q) . (12)

Further substitution u =ir reduces Eq. (12) to
ec ' g)(a, c;2t'«) )F)(a',c;2iqr) dr

'I (c)(o 2k) —'(cr 2q) —'cr'+'
X g )(i+ 1 irl, 21 +2—;2ikr)

X ~F~(l+1,2l+2;2iqr) dr .

To evaluate It (k,q) we make use of the integral~2

4kq
'

(o —2k)(o —2q)

For oui case a =l+1 iri, —a'=l+1, c =2l+2,
o=(k+q —iE). Thus we have

(13)

lt(k, q) =i 'P2l ~2) hm (q —k ie) ' '+—'&(k -—
q
— ie) ——'(k+q;s)- v,F,

e~O

» Eq. (14) we now make use of the transformation formulas'3

Pc)I (b —a)
&F, (a,b;c;z) = ( —z) '2F~ a, 1 —c+a;1 b+a;—Pb)I (c —a) ' ' ' z

4kq

(q —k) +e2

+ I (c)I {a b)—
( —z) zF) b, 1 —c+b;1—a +b;Pa)Pc b)— z

zF)(a, b;c;z) =(1—z)' ' b2Fi(c —a,c b;c;z)

and substitute the resulting It(k, q) in Eq. (8) to get

(16)

1(i+1) Pl+ill) q+k
t~qf'(k) I (t+1+irt) q k—(q —k)

2F) —l, l + 1; 1 iri; ——
4kq

I (1—irt) q+k
I'(1 + 1 —irl ) q —k 2E) —l, l + I; j.+iq;—(q —k)

4kq

Equation (17) is very convenient for calculating numerical values for the Coulomb half-off-shell t matrix since the hy-
pergeometric functions appearing here are polynomials. In Sec. III we study the behavior of tg'(k, q, k ) as a function of q
Mld l.



Bas~ on Eq (17) we have calculated numerical results
for tl'(k, q, k ) for El,b ——10 and 20 MeV for l =0—10.
Our numbers refer to a repulsive Coulomb potential with

(2k') '=28.8 fm. This is the proton Bohr radius. The
real Rlld Imaginary parts of tile I Illatrlx for 1 =0, 1, 2, Rfld

3 are plotted in Figs. 1, 2, 3, and 4 as a function of q.
Each figure collslsts of two parts. Tlm uppel' pRrt displays
the results for E&,b ——10 MeV and the lower part those for
E~,b ——20 MeV. The variation of real and imaginary parts
of tf(k, q, kl) are represented by solid and dashed curves.
Each of the curves exhibits the characteristic discontinuity
at the energy shell arising f'rom the fact that the Coulomb
potential distorts not only the scattered waves but also the
1QC1dCQt PlRQC WRVC. Th18 d18t OQt1QMtg 18 Sho&Q bg tWO

vertical dotted lines. Interestingly, the branches of
Rett'(k, q, kl) [or Imtl'(k, q, k )] corresponding to q ~ k and

q & k approach the on-shell discontinuity with gradients of
unequal magnitudes. This is in agreement with the obser-
vation of Kok et al. I Looking closely into our curves we
see that besides the on-shell discontinuity, the l =2 and 3
tCDd to ShOW 81QgglRflt1CS Rt SIR11I VR1UCS.

In Figs. 5 and 6 we have plotted If(k, k/S, kl) and
Il'(k, 2k, k ) as a function of the angular momentum I for
Ejab = 10 RQd 20 MCV~ I'CSpCCt1VCjf. ThC t IRtACCS
Il'(k, k/S, k ) and If(k, 2k, k ) behave very differently. For
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example, tt'(k, k/8, k ) diverges logarithmically as I in-
creases and we had to plot intf( kk /8, k) against 1. The
appropriate curves are denoted by set a with the ordinate

shown in the left. As before, the solid and dashed lines
stand for the real and imaginary parts of t. Save the
anomalous behavior of ln Rett'(k, k/8, k2) at I =1, the gra-
dient of both solid and dashed lines are quite appreciable.
In contrast to this, the results for tt'(k, 2k, k ) remain con-
stant or slightly decrease in their values for few lower par-
tial waves and then increases linearly. Set b represents the
curves for tf(k, 2k, k ) with the ordinate in the right. In
view of this we conclude the following.

Maximon has suggested the use of Eq. (2) by making
partial wave decomposition of the amplitudes which occur
there. The on-shell discontinuity of the kernel E will
present the first difficulty in calculating the Coulomb dis-
torted amplitude. In addition to this there may be some
problem arising out of the low-energy behavior of the in-
tegrand involved.
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FIG. 5. Coulomb half-off-shell t matrix as a function of l.
Set a represents the appropriate scaled real and imaginary parts
of tI'(k, k/S, k ) for El,b ——10 MeV. Set b denotes similar varia-
tion for tI'(k, 2k, k ) at the same on-shell energy.

APPENDIX

The off-shell Jost and physical (outgoing wave) solu-
tions ft(k, q, r) and g't+'(k, q, r) satisfy" the differential
equations

t

d 2 1(I +1)+k— —V(r) ft(k, q, r)
dr r2

2 q)et~lnw'+'(q—r) (Al)
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and

d'
2 l(l+1) l+l+k— —V(r) pl (k,q, r) =(k —q j)l(qr)

p
2

and

0,«, r)f, (k, r') 4—,«,r')f, (k, r)
Gl (r, r') =- a l(k)

(A5)

with the Riccati-Bessel function'

Ji(qr) ~ [wi (qr) wi (qr)]
2l

(A2)

(A3)

( ) pl(k, r& )fl(k, r) )
Gl'+'(r, r') =-

P l(k)

Here P i(k) is related to the Jost function fi(k) as

P i(k)= —(2l+1)!!k 'e' '/ f (k)

(A6)

(A7)

The functions wi+'(qr) and wi '(qr) are related by

wl '(qr) = [wl+'(qr)]' .

Equations (Al) and (A2) hold good both for short-range
and Coulomb-type potentials. The full Green's functions
for Eqs. (Al) and (A2) corresponding to irregular (Jost)
and outgoing-wave boundary conditions are given by'

In Eqs. (A5) and (A6) the functions!tel(k, r) and fi(k, r) are
the regular and irregular solutions of the Schrodinger
equation for our general potential V(r) Th. e particular
solutions of Eqs. (Al) and (A2) in terms of the Green's
functions in Eqs. (A5) and (A6) are the off-shell wave
functions fi(k, q, r) and f'i+'(k, q, r), while the complemen-
tary functions of the complete primitive refer to appropri-
ate solutions of the Schrodinger equation. Thus we write

k2 2 eiw!/2
fl(k q r)= fl(k r) f it!l(k r )wl' '(qr )dr ital(k r)—f fi(k, r')wl+'(qr')dr' (A8)

and
2 2

Qi+'(k, q, r) = . fl(k, r) f it!i(k,r')[wl'+'(qr') wl' '(qr')] dr—'

+pl(k, r) f fi(k, r')[wi+'(qr') wi '—(qr')] dr' (A9)

Equations (A8) and (A9) are quite formal and side re-
marks about their relations with other established results
are in order. For example, the integral representation' of
fi(k, q) can be obtained from (A8) as follows.

Irrespective of whether the potential has a simple pole
or is analytic there, the off-shell Jost function is defined
by

q le —ill/2(21 + 1 )
fi(k, q) = lim r'fi(k, q, r)

(21+1)!! r 0

k'A(k, r) =
"' —'"+"—V(.) y, (k,.)

dl" P'
(A12)

(A13)

In deriving Eq. (A13) we have used the fact that'o

and integrate the resulting equation twice by parts to get
Fuda's integral representation

I

fi(k, q)=1+ „ f wi+'(qr)V(r)pl(k, r)dr .

in close analogy with the definition of the on-shell or ordi-
nary Jost function' fi(k) in terms of fl(k, r). Combining
Eqs. (A7), (A8), and (A10) we have

lim r ' 'Pl(k, r) =1
r —+0

(A14)

2 2

fi(k, q) = q f it!i(k, r)wi'+'(qr) dr . (A 1 1)
wi+'(x) —x '(2l —1)!!.

x~0
(A15)

In Eq. (All) we now use
Let us now return to the main topic of this Appendix.

Using Eq. (A8) we can write

i+ !Pl(k, r) f fi(k, r')[wi+ (qr') wl '(qr')] dr'—

(A16)fl(k, r) it!i(k, r')[wii+'(qr') wi '(qr')] dr' —[e ' '/ fi(k, q, r)——e' '/ fl(k, q, r)] . — —
2l

We now replace the second integral in Eq. (A9) by Eq. (A16) and arrive at
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g»(+'(k, q, r) = — — g»(k, q) e ' I f»(k, r)+ —[e ' I f»(k, q, r) e—' I f»(k, q,—r)]»,
2if»(k) q (2l + 1)!! ' ' '

2i
(A17)

g, (k,q)= J P»(k, r)[»J»+'(qr) ~»—' '(qr)]dr .

Because of Eqs. (All) and (A18) the term inside the large parentheses in Eq. (A17) can be written in terms of off-shell
Jost functions and we have

@» (k, q, r)= —
2 trq — e ' f»(k, r)+ [—e ' f»(k, q, r) —e' f»(k q, r—)] . (A19)(+& ~ «» q f» "-q —' »I2 1 —»»/2 '

»/2

q i trqf»(k)
' 2i

(A18)

The term inside the large square brackets of Eq. (A19) stands for the half-off-shell t matrix. Thus we see that in close
analogy with the work of Fuda and Whiting for the short-range potentials, the half-off-shell t matrix for the Coulomb
and Coulomb-type potentials can also be expressed directly in terms of the Jost function. It is of interest to note that the
derivation of Ref. 1 is based on a peculiar attention' ' to the asymptotic behavior of P»(+'(k, q, r) In th. e above we could
circumvent this by the use of full Green's functions.
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