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Schwinger variationa1 principle applied to long-range potentials
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We discuss an adaptation of the Schwinger variational principle which is particularly suitable for
dealing with long-range potentials. The method treats the direct interaction potential exactly by nu-

merical integration and assumes a separable representation of the Schwinger type for the exchange
potential. The method should be very effective for obtaining the electronic continuum solutions of
strongly polar molecular ions. The related photoionization cross sections can be shown to be varia-

tionally stable.

I. INTRODUCTION

In recent years several new approaches' have been
developed for studying the collisions of low-energy elec-
trons with molecules and the related problem of molecular
photoionization. In several of these methods, the use of
discrete basis functions plays an important role. Of speci-
fic interest to the developments in this paper is the
SchwingeI variational method in which the trial scattering
wave function can, in principle, be expanded exclusively in
a discrete basis. It is known that the expansion of the trial
wave function, in such a basis, e.g., ~'P&=g,.c; ~a;),
in the Schwinger variational principle is equivalent to the
use of a separable potential of the form

Vs{r,r')=g(r
~

V~ct;&(V ');, (a,
~
V( r') (1)

I,J

in the I.ippmann-Schwinger equation. Clearly the basis
functions in Eq. (1) must span the range of the full poten-
tial in order for V to be an adequate representation of V.

Applications to date have shown that for molecular tar-
gets with no strong long-range potentials, e.g. , H2, N2+,
and CO2, ' a discrete basis set approach to the
Schwinger variational principle can be very effective.
However, for strongly polar systems, e.g., LiH,
NO+(2ir '), and CO+(5o ')," ' it: is difficult to
describe the long-range forces with only discrete basis
functions and we have found that continuum functions
must be included in the trial function so as to obtain the
correct scattering solutions partlcu1RIly Rt low cnclglcs.
FoI' thcsc cases Rnd, morc gcncfally, to have R IIlcthod
which can provide accurate solutions where such solutions
may be required, we have developed an itexative procedure
for solving the Lippmann-Schwinger equation which is
based on the Schwinger variationa1 principle. In this
ltclatlvc pI'occdulc appropriate contlIluum functions can
be systematically incorporated into the basis set for the
trial scattering function. Criteria for the convergence of
this method have been developed.

The features discussed above pertain to the Schwinger
variational principle in a form in which the entire scatter-
ing potcntla1 V~ lncludlng both its 1ong- RQd shoIt-Iangc

components, is projected on a basis in the separable form
of Eq. (1). The Schwinger variational principle can be ex-
pressed in a form which assumes that the direct and long-
range interactions will be treated exactly, e.g., by numeri-
cal integration, and only the short-range forces such as ex-
change effects will be projected onto a discrete basis set as
in Eq. (1).' ' If this approach could be implemented ef-
ficiently, it could be expected to be a very effective way of
applying the Schwinger method to the more difficult sys-
tem such as the scattering of electrons by strongly polar
molecular ions which often arises in studies of molecular
photoionization. In fact, Rescigno and Orel have recent-
ly developed an approach to electron-molecu1C collisions
in which exactly this division of the scattering potential
into a long-range direct component and a short-range ex-
change component is made but in which the exchange
component is approximated by a separable potential of the
form

V,„(r,r ')= g (r
i a; &(a;

i V,„ i a; ) (a,. i
r '& .

The results of the application of this approach were im-
pressive. Exactly such a separation of the scattering po-
tential and the subsequent representation of the exchange
component by a basis set expansion of the form of Eq. (2)
have been used extensively and successfully by Schneider
and Collins. These results certainly suggest that a similar
approach within the framework of the Schwinger varia-
tional method would be very useful.

In this paper we develop an adaptation of the
Schwinger variational principle for long-range potentials
in which the static component of the electron-molecule in-
teraction is treated exactly and the exchange interactions
are approximated by the separable potential of the form of
Eq. (1). Most importantly, we will show that the use of a
scpaIRblc potential of this type 1cads to UQP'IQflollQOg stQ&Ie

scattering matrices. The method also includes an iterative
procedure for obtaining the converged scattering solutions
systematically. Moreover, the re1ated photoionization
cross sections can be shown to be variationally stable. The
method of solution is essentially based on the integral
cquatlons approach of SRIQs and Kourl ' ' and docs Qot
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require the Green's function for the static potential.
In the next section we formulate our adaptation of the

Schwinger potential for long-range potentials and demon-
strate that the photoionization cross sections obtained
with these continuum solutions are variationally stable. In
Sec. III we illustrate various features of our method by ap-
plication to the e-NO+(X'X+) and e-Hz systems. The
first example is chosen as an application of the method to
molecular photoionization involving a strongly polar ion
while the second example has been extensively studied by
several methods. The results of these applications, partic-
ularly those of the e-NO+ system, are very encouraging
and show that the procedure converges rapidly.

The solution of Eq. (5) can be written as

0-=0'-+ X~;0 ' (6)

where the functions f'- and 1(
' satisfy the equations

k

0'-=0'-+G'U, 0'- (7a)

the frozen-core approximation. By breaking the scatter-
ing potential U into its direct and exchange components,
Ud;, and U,„,respectively, Eq. (4) becomes

(V —Uq;, +k )f„=U,„g„+gA, ;X; .

EI. THEORY

A. Formulation

The Schrodinger equation for electron-molecule scatter-
ing in the static-exchange approximation is

(V —U+k )P„(r)=0, (3)

where —,
'

U is the static-exchange potential of the target.
To this equation we also add terms containing Lagrange
multipliers to impose any desired orthogonality of the
continuum function g-„ to occupied target orbitals. We

can write Eq. (3) including the auxiliarly orthogonality
conditions as

(V' —U+k')p-„(r)= gk;X;(r), (4)

where, for example, X; are the occupied orbitals of some
closed-shell molecular target and A,; are the Lagrange mul-
tiplers. These Lagrange multipliers play an important role
in determining the photoelectron continuum functions in

I

and

f '=6~X, +GdU, „Q
' .

In Eqs. (7) g is the solution for the direct potential, i.e.,k

(7b)

(V —Ug;, +k )P"„=0 (8)

&, = —g(A-'), , (x, Iy'„&,
J

where

A,,=(x, I@ ) .

(10)

The partial-wave E-matrix element associated with solu-
tions of Eqs. (6) and (7) is given by

and G is the Green s function for the static potential, i.e.,
(V'2 —Uz;, +k +ie) ' The o. rthogonality of g to the or-

bitals X& requires that

(x; Iy-„)=(x, Iy'-„)+g(x; Iy ')x;=0

and, hence,

t'

&+X(&Ikey Ix &+&Wkr IU. If '&)(A ')ij&xj Ilk'
l,J

(12)

IP = &@'I U..I
~"&,

ic'i" = &xI
I @I&,

Ig~q
'

Agj ——(x; I g ') . ——

(13a)

(13b)

(13c)

(13d)

In Eqs. (13) we have abbreviated the partial-wave designa-

where Efp is the K-matrix element for the direct poten-
tial and we have assumed the molecule is linear.

Our objective is to obtain a variationally stable expr'es-
sion of the Schwinger form for such K-matrix elements.
We assume that we have exact values for the XII andd

(f~ I X; ) elements which can be obtained from the solu-
tion of Eq. (8). We will discuss our method for solving
this equation later. %'e obtain a variational estimate of
IC~~ by constructing variational estimates of the matrix
elements

II'I'= &4i I
U ~ I ff&+&PI I U.*I A &

(@j'I Uex U G UXI pi)
I'I"= &4"

I U. I@ '&+&If
I U. G

—(@; I U,„—U,„G'U,„I1( '),
Ij'z'= &x~ I II &+&xi I

G"U
I PI&+&0 'I U

I,',"=&x, IG" Ix, &+&x, IG'U, „I@ &

+&y'I U.„G"Ix, &

—(g 'I(U,„—U,„G U,„)Ig ') .

(14a)

(14b)

(14c)

(14d)

I

tion. We can use Eqs. (6) and (7) to write the following
variational expressions for these four terms' '
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x&,
~
U.„~1t",&,

I,'~4'=&x,
~

G'~x, &+ y &x,
~

G'v, „~~.&[D-'].,
a, b

x & ab
~
U,„G"

~ XJ ), (15d)

where [D '],I, is an element of the inverse of the matrix

D,l, ——(, i(v,„—U,„G U,„) i b) . (16)

Use of Eq. (15) in Eq. (12) provides a variationally stable
expression for the K matrix.

Finally, insertion of a separable approximation for U,„
of the form

Expansion of the trial functions p' and pz in a basis

I ~
a; ) I and variation of the expansion parameters leads to

the variationally stable expressions for these elements, i.e.,

I'lI'= g &I/I I
U..II.&[D '].b&ol I

v- II/I &

u, b

&P = g &Pl I
U, I~.&[D '].b&~~ I

U-G'I&;& {»b)
g, b

I,'I" &&;
——

~
I/I &+ g (&;

~

G v.. I
~. & [D "].b

verged solutions of Eq. (3) when the set of S'"+" func-
tions is equal to the S'"' set.

C. Variational stability of photoionization
cross sections

An important objective of our work is to use these con-
tinuum solutions to obtain molecular photoionization
cross sections. The relevant one-electron matrix element
Is given bp

(19)

where p; is the orbital from which ionization occurs, 1t k

is the photoelectron continuum function, and p is the di-

pole moment operator. We now show that our approxi-
mate continuum solutions obtained above provide vibra-
tionally stable estimates of Eq. (19). For convenience we
keep the same notation as in the preceding section, al-
though in actual applications to photoionization one must
redefine the Green's function and the scattering potential
of Eq. (1) due to the presence of the Coulomb potential.
From Eqs. {6),{7),(10), and {19),we obtain

m= (Z
~
y'„)+(Z

~

G"U,„~ 1/'„)

v*,„=g v,„[a.)[v;„'].,&a„[ v.„ (17)
+ g((Z (

G'(X, )+(Z
(
G'U, „)y '))

'=G'x, + g G'v, „~a. &[D-'].,
(18a)

in Eqs. (7) yields the wave functions

I/kI"=I/kI+ gG"U-
I Iz. &ID '].b &Izb

I
V-

I ski & *

x(~-'),, (x, ~
y'-„& .

To obtain a varlatlollal cxprcssioll fol' tllc IIlatrlx clclllcl1t

M, we need, in addition to the variational estimates of I,"I
'

and I;z ',
driven

by Eqs. (14), variational expressions for
II"' and r,' ' where

I,'"=(z
~

G'v, „~ y', }

x(~,
~
V..G'~X;), (18b) and

which will be shown to be point-by-point variationally
stable in Sec. IIC. Substitutio~ of Eqs. (18) ln Eq. (6)
gives a total scattering solution whose partial wave

asymptotic form defines a K matrix identical to that ob-
tained by using Eqs. (15) in Eq. (12).

S. Iterative procedure

The functions in Eqs. (18) provide approximate solu-
tions of Eq. (3). In several applications, it can be impor-
tant to obtain the converged solutions of Eq. (3). A pro-
cedure for doing so begins by augmenting the initial basis

I a; ) I with the energy-dependent set of functions
S '= II/PI,', /PI,', . . . , 1/Pi' I defined by the initial solutions

of Eqs. (18). Here lR is the maximum partial wave re-
tained in the expansion of I/' '. Equations (18) are now

solved again with this augmented basis providing a new,
and more accurate, set of solutions
S = Il//kl, l/lkl, . . . , Qkl J. Rcpctltloll of this pi'occdul'c

with a new basis consisting of the set of functions I ~
a; ) I

and S"' leads to a more converged set of solutions
S' '=II/'kl, ',gkI,', . . . , Qkl'J. These functions are the con-

I,"'=(z ~G"v,„~y '), (21b)

I,'"=(z ~G"u,„~y ')+(y'~U, „G"~x,)

—(y'((v,„v,„G'v,„)(y '&-,

where g is a variational trial function for g and

Gdg +Gdv qR (23)

As before, we expand the trial functions f, p ', and I/ I
in the basis I ~

a;) J to obtain the variational expressions
for I I

' and I,' ', i.e.,

(24a)

where we again use a partial-wave designation for the con-
tinuum function, g'. Variational functionals for II' ' and
I ' can be written as

I'I"= &~ IG v-
I I/I&+&I/



Use of Eqs. (15c), (15d), and (24) in Eq. (20) leads to a
variationally stable expression for the matrix element M.
However, insertion of Eqs. (18) for pl' and 11'j

' directly into
Eq. (19) gives the identical expression for this matrix ele-

n1ent, showing that our procedure provides a variationally
stable estimate of M.

Finally, we note that I I and I,' are exactly the ma-
trix elements found in Eqs. (18), with {R

~

replaced by
{r~. This indeed confirms that the wave functions we
obtai~ are variationally stable.

D. Computational approach

To evaluate the variational expressions of Eqs. (15) and
(24) it is necessary to solve for the partial-wave static solu-
tion, pkl, and functions of the form

1("(r )={r
i
G

i
u ),

where
~
u) may be either U,„~a) or ~X;). Procedures

for evaluating U,„~a) have been given elsewhere. The
functions pkl and g" satisfy the integral equations

Itklm ~klm +G Udirfklm (26)

In Eqs. (29) and (30) fl and gl are the Riccati-Bessel and
Riccati-Neumann functions, respective1y, and we have
suppressed the subscripts k and m for convenience. It is
well known that placing Eq. (30) on a quadrature mesh
provides a noniterative propagation scheme for outward
integration of the equations. ' The associated E matrix,
i.e., [X~], is given by

[E ]=[Mi][M2 '], (32)

where, in matrix notation

fcl=[MI ']fM4] (35)

dir d(Mi)1 1 = —g— fl Ul I'-0l 1«
k pre

RIld (MI )pl 1S glvC11 111 Eq. (30).
To maintain accuracy, numerical stabihzation pro-

cedures had to be carried out at various grid points as the
solutions were propagated outward. These procedures
have been described in detail elsewhere. ' * '

The solution of Eq. (27) is obtained in a similar way by
transforming the equation for 1t" to a Volterra-type in-

tegral equation for P". In partial-wave form, for each m-
hon1ogcnelty Q~ wc have

Itl"=4"+g 411 C'I (34)
l'

l(t"=G u+G U;, ttt", (27)

I'CSpCctlvCly, wlmrC Skim ls the frCC-pRrtlclC Sollltloll alld
G the free-particle Green's function. Partial-wave expan-
sions are first made in Eqs. (26) and (27) and the resulting
coupled equations then converted to a set of Volterra in-
tegral equations. Volterra integral equations have been
used extensively in iclatcd applications ' ' ' and tech-
niques for their numerical solution have been discussed
clscwhcrc. ' ' Ill fRct, olll' apploacll ls very s111111al to
what has been used recently by Rescigno and Orel. First,
we consider Eq. (26). The partial-wave function l(11, de-
fined by the expansion

dlf d(M3 )ll' 51!'+ g gl Ull" Pl"1'd

00

(M~)1 =—g gl Ull" 01"« ~

k

The function pl"(r) satisfies the integral equation

$1"(r)= ——f fl(r & )gl(r & )ul(r')dr'

+ +f1«) gl —Ul'I" 41«'
k 0

(36R)

Pkl (r)=gfa (r)I'1 (r) *

is obtained from Eq. (29), i.e.,

fP"]=f0"][M ']
where

and $11 satisfies the Volterra integral equation

(28)

(30)

r——g gl «) fl Ul'I"41"«' .
0

(37)

Again the usefulness of this equation becomes apparent
when it is placed on a quadrature mesh.

In the numerical integrations we used the ordinap
Simpson's rule cyclically, and then used Simpson's "—,

rule" for integrals which ended on a midpoint of an ordi-
nary Simpson's rule quadrature. Knirk has shown this
quadrature scheme should be generally more accurate than
the overlapped Simpson's rule or the trapezoidal rule.

$11 (r)= fl(r)&11 +—g fl(r) f gl(r') Ull" (r')$1-I (r')«'
k 0

(31)

III. APPLICATIONS

To illustr'ate our procedure we first studied the pho-
toionization cross section for the 2m. level of NO leading
to the X 'X+ state of NO+. We primarily looked at the
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2m +—kcr component of this cross section which is shape-
resonant enhanced. ' ' ' We have studied this system re-
cently and it provides a good example of difficulties
which can arise in obtaining the electronic continuum of
strongly polar ions in resonance regions.

The rotationally unresolved, fixed-nuclei photoioniza-
tion cross section is given by

y(r)a, l, m, n ~ (& g )l(~ g )m(& g )me —a~ r —A
~

y(r)aim ~
~

r A~le —a~ r —A
~ y (II )

r —A

(39)

(40)

4 2

3
(38)

where p is the dipole moment operator and co the photon
frequency. In Eq. (38) 4;(r,R) is the initial state of the
molecule and %f the final ionized state. For qr; we use
the self-consistent field (SCF) wave function and for the
(X—1) bound electrons of %f we use the ground-state
SCF orbitals, i.e., the frozen-core approximation. The
continuum orbital is a solution of the one-particle
Schrodinger equation with the static-exchange potential of
this ion. Details of the SCF basis, quadrature grids, and
partial-wave expansions have been given previously. ' In
these studies the dipole moment of the molecular ion with
respect to the center of mass of the system is 1.27D. ' We
also assume the experimental ionization potential of 9.3
eV.

To illustrate the performance of the method and to
compare it with the iterative Schwinger variational ap-
proach, we have carried out calculations with three dif-
ferent initial basis sets. These are given in Table I and
consist of six, twelve, and eighteen Cartesian and spherical
Gaussian functions defined as

respectively. There are slight differences in the respective
basis sets for the two methods. We have found that basis
functions are needed at the center of mass in the iterative
Schwinger method to represent the direct component of
the scattering potential. However, in the present method
where only the exchange potential is projected on a basis,
higher-order Gaussian functions on the nuclei are more ef-
fective than those at the center of mass.

Our results are given in Table II. There we show some
2X K-matrix elements, the ko eigenphase sum, and the
2m~ko. photoionization cross section at a photon energy
of 14 eV which corresponds to the peak of the shape reso-
nance in this channel. ' At this photon energy the pho-
toelectron kinetic energy is 4.7 eV. We chose this example
since it is generally more difficult to obtain converged lr'

matrices and photoionization cross sections in resonant re-
gions that at nonresonant energies. The results show that,
even starting with the very small basis of six functions,
the present method gives essentially the converged results
after one iteration. The Schwinger method, in which the
entire potential is projected onto the basis, gives much
poorer results at this level. It is important to note, howev-
er, that with just six basis functions and no iterative im-

TABLE I. Starting Gaussian basis sets for the X continuum of the e-NO+(X 'X+) system.

Basis
set Center

Nuclei'

Present method
l m

4.0
0.5
1.0

Center

Nuclei

Iterative Schwinger method
l m Pl

4.0
0.5
1.0

Nuclei 8.0
2.0
0.5
1.0
0.25
0.5

Nuclei

c.m.b

c.m.

8.0
2.0
0.5
1.0
0.25
1,0
1.0

Nuclei 8.0
4.0
2.0
1.0
0.5
2.0
1.0
0.25
0.5

Nuclei

c.m.

8.0
4.0
2.0
1.0
0.5
1.0
0.25
1.0
1.0
1.0
1.0

'Basis functions on the nuclei are Cartesian Gaussians.
"Center of mass. Functions here are always spherical Gaussians.



TABLE II. Comparison of the X K-matrix elements, o. eigenphase sums, and the 2m.~ko. photoionization cross sections at a
photoelectron kinetic energy of 4.7 eV for the e-NO+ system obtained by the present method and the iterative Schwinger method.

Basis set II Basis set III

&(I,I )

0,0
0,1

1,1

0,2
12
22

—0.224
0.625

31.451
0.884

11.006
3.579

0.091
—0.524
—1.585

0.534
—1.154
—0.529

0.094
—0.526
—1.549

0.535
—1.145
—0.525

Present method
—0.045
—0.439
—2,467

0.564
—1.343
—0.595

0.069
—0.518
—1.740

0.536
—1.177
—0.553

0.094
—0.526
—1.546

0.535
—1.145
—0.524

&sum
d

1.616
1.336

—0.498
1.501

—0.806
1.328

—0.489
1.509

—0.576
1.472

—0.488
1,513

0,0
0,1

1,1
0,2
12
22

13.346
14.671
16.582

—2.554
—2.901

0.564

—0.273
—1.285
—2.764
—0.121
—1.571
—0.864

Iterative Schwinger method
—0.043
—0.397
—2.729

0.603
—1.209
—0.423

0.103
—0.551
—1.507

0.532
—1.135
—0.524

—0.033
—0.524
—2.471

0.553
—1.122
—0.370

0.096
—0.534
—1.521

0.535
—1.144
—0.523

—1.076
0.798

—0.853
0.524

—0.869
1.239

—0.488
1.342

—0.748
1.277

—0.479
1.524

'Discrete basis functions only. See Table I.
One iteration only.
In radians.

dIn megabarns (1 Mb= 10 '8 cm2).

provernent, the present method provides a good estimate
of the photoionization cross section. This is a conse-
quence of the variational stability of these cross sections.
At the i. level, the differences between the two methods
become smaller as the size of the basis sets increases but,
as expected, the present method yields more accurate re-
sults. With these larger basis sets, the differences between
these two Incthods bccoIIlc quite sIIlall once thc wave
functions are improved iteratively. Away from the
resonant energies in the 2n ~ko channd and for the non-
resonant 2m~km. and k5 channels, the present method
performs extremely well providing accurate cross sections
at the l. level with just six basis functions. For these
channels and with these small basis sets, the cross sections
obtained with the Schwinger method would change by as
much as 40% with iteration.

As a next example wc obta1n soIQc X K-matrix clc-
ments and eigenphase sums for e-H2 at k =0.25 in the
static-exchange approximation. This system is simple and
has been extensively studied previously. %C chose this
system so as to compare the present method both with the
iterative Schwinger procedure and the method of Rescig-
no and Orel. Our present method is very similar to
theirs and differs essentially only in the use of a different
separable representation of the exchange potential, i.e., the
use of Eq. (1) instead of Eq. (2). As we have shown ear-
lier, the use of the separable potential of the form of Eq.
(2) leads to a variationally stable formulation. For the
comparison of these results for this simple system ob-
tained by thc different approaches we do not believe it is

TABLE III. Starting basis sets for the Xg continuum of e-
H2. All functions are centered on the nuclei. All are Cartesian
Gaussian functions defined in Eq. (39).

Basis set I Pl, A'

0.5
0.5

0
0
0
0

0
0
0
0

1.0
0.3
1.0
0.3

necessary to present extensive numerical details.
For these studies of e-H2 we use an SCF target wave

function constructed from a [Ss2@]basis discussed previ-
ously. This basis gives an SCF energy of —1.1330 a.u.
and a quadrupole moment of OA52 a.u. We chose two
small scattering basis sets containing two and four og
functions, respectively. The basis functions are given in
Table III. The results of these calculations are given in
Table IV and show that with only two basis functions the
present method already provides quite accurate K-matrix
elcmcIlts at thc I lcvcl. %1th this same basis aIld
without any iterations the Schwinger method gives Inuch
poorer results. With four basis functions the differences
between these two methods at the l. level remain signifi-
cant. However, after one iteration, the two methods give
essentially the same results. The iterated results in Table
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TABI.E IV. Comparison of the X~ E-matrix elements and eigenphase sums for e-H2 at %2=0.25
a.u.

Itcl atIvc Schwingcr' method
L 2 Iterated

+(l,l')

(0,0)
(0,2)
(2,2)

~sum

—1.721
0.019
0.014

—1.026

-1.546
0.013
0.016

—0.976

0.690
—0.028

0.002
0.606

—1.549
—0.014

0.016
—0.975

(0,0)
(0',2)
(2,2)
6,„

—1.598
0.016
0.015

—0.992

—1.546
0.013
0.016

—0.976

—2.079
0.004
0.004

—1.118

—1.545
0.013
0.016

—0.974

IV are almost identical to the converged K matrices at this
energy. For comparison, with their choice of Eq. (2) for
the separable representation of the exchange potential,
Rescigno and Orel obtained values for Igloo, Xoz, and E22
of —1.490, 0.012, and 0.0148. These calculations used
the present [Ss2@] SCF basis, i.e., 7os functions, to form
the separable representation of the potential. Larger basis
sets in the present method without iterations and in their
studies can both provide the converged K matrices direct-
ly.

IV. CONCLUSIONS

We have developed an adaptation of the Schwinger
variational principle which is particularly well suited for
treating long-range potentials. The method treats the
direct component of the interaction potential exactly by
numerical procedures but assumes a separable representa-
tion of the Schwinger type for the exchange potential.
The method includes an iterative procedure for systemati-
cally obtaining converged solutions of the corresponding
Lippmann-Schwinger equation. The approach should be

particularly useful in obtaining continuum solutions of
strongly polar ions which are required in related studies of
resonant molecular photoionization cross sections. The
method, moreover, provides variationally stable estim. ates
of these photoionization cross sections. In this regard, ap-
plications of the method to the photoionization of the 2m.

level of NO gave encouraging results and suggest that the
approach can be quite useful in other related applications.
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