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Study on the angular dependence of the average energy loss for ions in solids
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By using the transport thcoI'y, %'c have dcrivcd a gcncral expression %which connects AE(8), the
average energy loss measured at different 8 emergence angles, and Q(8), the average elastic and in-

clastlc cnclgy loss 1n a S1nglc scattering as a function of the scattering angle 8, fo1 1ons tfansmItted
through thin films. In this may, the effect of multiple scattering on the angular dependence of the
energy loss is properly taken into account. By means of this procedure the average energy-loss func-
tion Q is retrieved &em experimental EE(8) data, as we show for the cases of 50—200-keV H+ on
C and Al foils.

I. INTRODUCTION

The purpose of this paper is to present a theoretical
study on thc fclatlon bet%veen thc avcIRgc cncrgy lost by
iona transmitted through a thin foil within a given scatter-
ing angle RIKI that corresponding to a slnglc colllslon. As
is well known, the slowing down of ions in matter can be
characterized primarily by the stopping power, or the
average energy loss per unit path length

~

dE/dR ~, given
by

by the scattering angle P, and KE(8)„ the average energy
loss of particles transmitted within an angle 8 in a beam-
foil experiment. In Sec. III some consequences of our
theoretical results are discussed. In Sec. IV a procedure is
shown to obtain a Q(P) from SE(8). Finally, as an ex-
ample, we apply the method to measurements of energy
loss as a function of angle for 50—200-keV H+ on Al and
C foils. We focus our attention on light iona since they
Rrc morc RttI'actlvc than heavier ones because clcctl'onlc
processes dominate their slowing down and these are still
sub)cct to lnvcstlgatlon.

where Q is the average energy loss per collision, der the
differential scattering cross section, and N the atomic den-
sity of the target material.

One of the most widespread methods employed to mea-
sure the stopping power is the so-called transmission ex-
periment, %vhcre a well-colliIIlatcd ion beam passes
through a thin solid film. The energy of those particles
emerging within a given angle, usually in the forward
dll ection, ls tlmn ITlcasurcd. Thc stopping po%ver

j dE/dR
~

is approximated by the quotient ( hE/hR
~

of
the observed energy loss and the foil thickness, respective-
ly.

This procedure has, however, the following shortcom-
ing: On one hand, a foil as thin as possible is desirable in
oidei' to keep tlie ioil eilei'gy well defined. Oil the otller
hand, as the thickness of the foil decreases the observation
angle cannot be reached through arbitrary scattering an-
gles. Under this circumstance the measurements can no
longer be identified with the stopping power as given by
{1)since in the integration there is no restriction on the fi-
nal direction of motion. The existence of angular as well
as thickness dependences of the stopping power measured
%vlt4 very thin fllIDs corroboratcs thc above statement.

It is thus of interest to analyze in some detail the appli-
cabihty of Eq. (1) for a given experimental condition. An
appropriate procedure to deal neith this problem is the
transport equation. In the following section we obtain a
general expression which states the relation between Q (P),
the average energy loss in a single collision characterized

II. CALCULATION

I.et us introduce the function F(z, 8,E) representing the
distribution of particles after traveling a distance z in a
solid within angular and energy intervals (8,d8) and
(E,dE), respectively, during bombardment with a well-
collimated beam of particles of energy Eo. Here 8
represents the component of the particle direction of
motion perpendicular to the beam. F obeys the transport
equation '

=N J d p[F(z, 8 P,E+Q) F—(z, 8,E)) (2—)

with the boundary condition

F(z =0,8,E)=5(8)5(E—Eo),
where p is the impact parameter, P represents the change
on the direction of motion of the particle due to the
scattering, Q is the average energy loss corresponding to
such Rn impact parameter, Rnd % ls t4c atoIDlc dcIlslty.

If the energy of transmitted particles does not differ
significantly from that of the incident beam, we can then
assume the scattering law P(p) as well as the energy loss
Q to be energy independent. Hence, Eq. (2) can be easily
solved by using the Fourier-transform technique:

F(z, 8,E)=
3 f dkdcoexp[im(EO E) ik 8——

(2m )

—zX~( k,co)],
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tr( k, to) = f d p(1 —c' " ' I' '"&) .
%C want to point out that Eq. (3} has thus far been ob-
tained by Meyer et ah. , but they solved it by introducing
an unrealistic expression for Q as discussed in a recent ar-
ticle by Wedell et ol.

Let us now calculate the average energy of the particles
transmitted through a t-thick foil at a given angle 8 disre-
garding path length enlargement effects (see the Appen-
dix), i.c.,

EEI' t, H, E
{E(t,e))=

f dEF(t, e,E)

After some algebra we obtain from Eq. (3)

tN f dp Q(p)F~s(t, e —P(p))
E(t, 8 ) =Eo-

FMs(t, e)

F~s(t, 8)= f F(t, e,E)dE

is the angular distribution function of particles transmit-
ted irrespective of their energy; in other words, the
multiple-scattering distribution.

If scattering angle is used instead of impact parameter,
Kq. (6) changes to

tN f d'o(P)FMs(t, 8 P)Q($)—
{E(t,e)) =E,—

Fls(t 8}

where Q is written now as a function of the scattering an-

gle. Since Q and d o(P) do not depend on the scattering
angle dlrcctlon, wc Hlay write

tN f der(P)its(t, e,p)Q(P)
{E(t,e)) =E,—

Fls(t 8}

%herc

d Ir(P) =do(P) dal(2Ir),
2w

GMs(t 8 0}=
2 fo «Fits(t 8 4'}-

tt being the angle between vectors 8 and P.

{E(t,e})=ED Q—(8), t~0 and I 8
~
&0.

As expected, if the thickness tends to zero the measured
energy loss corresponds to that of single scattering. This
approxlmatlon was recently used by Ifcrov and -Zhukova
to obtain Q from &F-(t,e) measurements; however, for
their foil thicknesses the application of Eq. (9) leads to er-
roneous Q estimations.

On the other hand, when t is sufficiently large, F~& is a
smooth function of the angle 8; therefore, F~s(t, g —8)
approximately cancels with FMs(t, 8 ) in Eq. (7). Thus, we
have

{E(t,e)) =Eo tN f—d cr(P)Q(P) . (10)

Observe that Eq. (10) is the formula commonly used in
the stopping-power literature. %'e are now in a position to
show in which cases Eq. (10) is applicable for a given ex-
perirncntal condition.

By tlic way, it Is wortllwllilc to polIlt out that Eq. (7) oI
(8} contains the answer to one of the most frequent ques-
tions made by stopping-power experimentalists: How fre-
quently does an individual scattering angle having
modulus between P and P+dP take place during the pas-
sage of a particle in a t-thick film, when the observation

angle 8 is fixed' Note that if no condition on the obser-
vation angle is given, or the particle detector has a wide
angular acceptance, the answer is just

Therefore, by direct comparison with Eq. (8) we may con-
clude that the restriction imposed by the observation angle
is taken into account by the function

G~s(t 8 4}
Fls(t 8}

To calculate this function, we introduce the Gaussian
approximation for the multiple-scattering distribution

F~s(t, 8)=C(t)exP[ —8 IQ (t)],
where Q (t) is a measure of the angular spread of the dis-

tribution and C(t) a normalization factor. The Gaussian
approximation for FMs is only valid in the limit of infinite
thickness; nevertheless, we will use it here only to obtain a
s1Inplc analyt1cal expression for' G~g'.

It is illustrative to analyze Eq. (7) In some det»1

can see how the average energy loss in a single scattering

is related to the observed energy loss [Eo E(t, 8)] in a-
transmission experiment. For example, as the thickness
decreases. (t-+0)

F~s(t 8}

FMs(t, 8)~tNo(8),
~

8
~

Q0'

o(8) being the differential scattering cross section So Eq.
(7) changes to

GMs (t,e,p) =C (t)exp[ —(8 +P )lQ (t) ]Io
Q'(t)

(13}

where 10(&) is thc modified Bcsscl fuIlction of the zeroth
order. 9

Afterwards, when calculating the average single col-
»»on en«gy loss, we will perform a numerical calculation
of GMg using I'cal Inultlplc"scattcrlng dlstrlbutlons.

By replacing (12) RIld (13) IIlto (11},wc have

Gls(t 8 4} ~i~„z(,) 2'=e 'Io
Fls(t 8} Q'(t)



Figure 1 shows the quotient given by Eq. (14) as a func-
tion of individual scattering angle P and for different ob-
servation angles 8, both in units of Q. We observe in Fig.
1 that when the scattering angle tends to zero the function
(14) tends to unity independently of 8; in other words,
scattering angles P smaller than Q occur with nearly the
same frequency irrespective of the observation angle. On
the other hand, scattering angles P greater than 8+Q
should be considered as very unlikely. We find also that
in the case of 8~ 0, Eq. (14) reaches its maximum at P
values around 8. In all cases the value of (14}at the max-
irnum increases monotonically with 8.

~(8J ) =Eo—(E(I,8J ) }
IX f do(p)G~s(I, 8, p)Q(p)

+~s(t 8J)

with j =l, ... .,n„n being the number of experimental
points. Here we are taking I as the foil thickness which
implies disregarding path length enlargement effects (see
the Appendix)

A solution of Eq. (15) can be found by assuming a func-
tional form for Q, and adjusting their parameter values to
minimize, for instance, the sum of the squared errors

IV. OBTAINING Q (Q) FROM EE(8)

The connection that we have just established between
the average energy loss per collision Q(P) and the energy
lost after traversing the foil b,E(8) allows us to obtain one
of these functions in terms of the other. It is clear that
this connection works well when Q (P) is known, since the
EE(8) is obtained explicitly by use of expression (8). Un-
fortunately, there are no calculations available for Q($)
for the systems and velocities of interest. To retrieve
Q(P) from a knowledge of bE(8), for example, from ex-
perimcIlta1 measurements, i.s also possiMC, at least in prin-
ciple, but we should mention that EE(8) is greatly depen-
dent on individual collisions with small scattering angles
as can be seen in Fig. 1 and, therefore, the bulk of the 8
dependence of KE(8) comes from Q(P) for small P and
the action of the multiple scattering. Under these cau-
tious considerations, me mll nmv study the way in which
me can obtain the average energy lost in a single-scattering
process Q(P} from the measured mean energy loss as a
function of the emergence angle EE(8).

Our aim is to solve Eq. (8) which is an integral equa-
tion. For a set of experimental values we have

2.0
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FIG. 1. Plot of the funct1on (14) evaluated %'ith a GaUsslll
approximation for the multiple-scattering distribution. It gives
the weight of single-scattering angles P when the observation an-

gle is 8. Angles are measured in units of Q, the angular spread
of the multiple-scattering distribution.

IN f do(p)G~s(t, 8J.,Q)Q(p)
CJ =DE(8, )—

+Ms(I 8J)

The function Q can be split Into two components:

where Q is the n'uclear OI' elastIc eneI'gy loss and Q Is tllc
inelastic eneI'gy loss. F01' sIDRll scattcr111g Rnglcs Q„can
bc approximated b7

where M, and Mz are the projectile and target ~~s~e~,
respectively.

In search of analytical expressions for Q, we fInd that
there are basically two kinds of theoretical models which
supply impact-parameter-dependent Q, functions. They
are those based on a first-order Born approximation' '"
valid for high ion vdocities, and those who start from
Firsov's inodel' ' which are specially designed for low
ion velocities and atomic numbers of the colh ding
partners similar to each other and both substantially
greater than unity. Even though these theories are valid
in rather unconnected ranges of energies and of colliding
species, they both have the same behavior as far as the
impact-parameter dependence is concerned", that is, Q, de-

creasess

Glonotonlcally with thc Impact pal aIIlctcI' p and
fcacllcs its maxiHluIQ value at p =O. Hearing in Imnd this
Just-mentioned charactcrIstlc behavior of Q~ pI'cdlctcd by
both groups of models we propose the following od hoc
cxpfcssion:

8 8» Nf

0 +4'o

where P is the scattering angle and Q, , $0, and v are
variational parameters. By introducing (18) in the numer-
ical scheme given by (16) and (17) we process the experi-
mental data and obtain the Q, function.

As pointed out at the beginning of this section, the in-
vcI'sion pI'occdurc docs not yield, iIl gcncla1, a unique
Q(P)-function, especially in the range of large P values;
furthermore, as foil thickness increases, the results become
less confident. We must take them as Q functions which
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reproduce the measured energy loss as a function of angle
within uncertainties of the order of few percents. Discus-
sion of the results is presented in Sec. V.

V. COMPARISON %ITH EXPERIMENT
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0
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In Fig. 2 we display some experimental results from
measurements performed in our laboratory for H+ bom-
barding Al and C foils. ' Details of the equipment can be
found elsewhere. ' ' The figure shows the difference be-
tween the energy loss b.E(8) measured at a given angle 8
and that of zero angle b,E{0). The angular range covers
approximately three half-widths of the angular spectra
which, by the way, are in good agreement with theoretical
multiple-scattering distributions. ' In order to illustrate
the importance of this effect let us mention that the aver-
age zero angle energy losses are as follows: 2230, 2020,
and 1720 eV for 50-, 100-, and 200-keV protons on Al,
respectively, and 5280 CV for 200-keV protons on C.

In Fig. 3 we show the Q, functions calculated from the
experiments by us1ng ouI prcv1ous thcolct1cal I'csults. In
these calculations, we have used the multiple-scattering
distribution function corresponding to a Thomas-Fermi
interatomic potential. ' In addition to that, we used the
differential scattering cross section for the same potential
in the analytical approximation contained in Ref. 17.
This gives self-consistency to our theory since, in the
derivation of the multiple-scattering distributions, the
same scattering cross sections were used. On the other
hand, these expressions are based on classical scattering
treatment; therefore, they are not valid for sufficiently
high vcloc1t1cs or very low scattering angles.

Our first observation from Figs. 2 and 3 is that at large
8, the obtained single-scattering energy-loss function Q,
lies well below the corresponding EE(8)—b,E(0) at the
same angle. This is an important feature since it tells us
that we cannot identify the difference AE(8) bE(0)—
with Q, (P) for /=8 in a straightforward manner as was
done elsewhere. This peculiar result is due to the fact
that there are, roughly speaking, two kinds of contributing
processes to the difference bE(8) &&(0): a scatt—ering
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FIG. 2, Difference between the energy loss measured (Ref.
14) at a given angle 8 and that at angle zero for protons travers-

~ 0

ing 170-A aluminum and 410-A carbon foils at various ener-
gies. H: 50-keV H+ on Al. 6: 100-keV H+ on Al. 0: 200-
keV H+ on Al . 200-keV H+ on C. For the case of 100-keV
H+ on Al, also, the energy loss integrated over all angles was
determined. Its difference with the zero angle energy loss is in-
dicated by the arrow on the left.
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FIG. 3. Calculated inelastic energy losses for single-scattering
events of angle P. Symbol convention: same as Fig. 2.

of angle /=8 and a series of rather small-angle scatter-
ings. It, so happens that, for a certain intermediate foil
thickness, the latter kind of scatterings sum up to a con-
siderable energy loss, causing the b,E(8)—b,E(0) curve to
lie above the calculated Q, values.

We can also see in Figs. 2 and 3 that when going from
the energy-loss difference KE(8)—bE(0) to Q, (8), the ef-
fect of the multiple scattering as well as of the scattering
cross section strongly depends on the projectile energy.
For instance, the energy-loss differences belonging to H+
on Al at 100 and 200 keV lie a factor of 4 above those of
H+ on Al at 50 keV for large angles; however, the corre-
sponding Q, values differ in a factor of the order of 2. It
should bc mentioned tha't, fol 0111' CRscs, Iiuclcal' cIlclgy
loss Q„as well as path length enlargement can be neglect-
ed.

VI. CONCLUDING REMARKS

We offer a way to analyze the observation angle depen-
dence of the energy loss b,E{8)through a single-scattering
energy-loss function Q(P), where P is the scattering angle.
By means of the transport theory we obtained the equa-
tion (8) which connects bE(8) with Q($). We have stud-
ied the cases of H+ bombarding Al and C foils in the
50—200-keV energy range and obtained from them suit-
able Q, functions. It is found that Q, functions are not
related to b,E(8) in a straightforward manner, but by an
integral equation. This equation (8) also provides a way to
analyze, for a given experimental condition, which kind of
scattering angles have suffered those particles we are ob-
serving. Th1S should bc taken into account 1I1 111gh-

accuracy stopping-power measurements by thin foil
transmlsslon expcr1mcnts. For instance~ 1oughly speaking~
those 1011S cmclglng fr0111 a tlu11 foll 111 tlM forward dll'ec-

tion have not undergone scattering angles greater than
that of the width of the angular distribution, a result
which is quite obvious; however, it claiins for a careful
analysis of the effect of this type of scattering event on the
average energy loss. It follows from our study that be-
si.des nuclear energy loss, the inelastic energy loss might
depend on foil thickness too. Finally, it is clear that a
theoretical calculation of Q, would be valuable in order to
allow the extension of current stopping-power investiga-
tion towards its angular dependency.
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APPENDIX

approximate

f dEEF(z, 8,E)
-Ep —NSz,f dEF(z, 8,E)

where NS is the stopping power; thus, we have

(A4)

As mentioned in Sec. V, the stopping power may de-
pend on the emergence angle since the path length in-
creases with this angle due to a simple geometrical effect.
The trajectory of a projectile through the foil is deter-
mined by multiple scatterings, and its path length z fluctu-
ates around a mean value which depends on the emergence
angle.

Going back to Eq. (5) let us recall that the variable z
which appears in our calculation represents the distance
traveled by the ion along its path. Therefore, Eq. (5) real-
ly establishes the average energy of particles at a fixed
path length. In order to compare (5) with experimental
data, which are obtained at a fixed foil thickness, we may
replace t by (z) in this expression. Here (z) means the
average path length as a function of the emergence angle 8
and foil thickness t. Thus, we have

EEF t, O,E
(E(t, 8))- —NSS .

dE F(t, 8,E)
(A5)

Equation (A5) implies that Eq. (5) can be used to com-
pare with experimental data setting z = t if—a correction by
excess of path length 5 is made. I.et us, therefore, evalu-
ate this quantity 6 in what follows It. can be shown'
that the average path length is given in terms of the foil
thickness t and the emergence angle 8 by the expression

f daa f dsFMs(s a)FMs(t —s, 8 —a)
(z) =t+— 0

2 F~s(t 8)
(A6)

We can solve Eq. (Al) analytically by introducing the
Gaussian approximation:

f dEEF(z, 8,E)
(E(t, 8)) =-

f dEF(z, 8,E)

I.et us consider

z=t+5,

(A 1)

(A2)

(t e)=C(t)e

C(t)=

where 6 represents the path length excess due to multiple
scattering and geometry. By expanding (Al) in a power
series of b„and keeping up to the first-order term, we ob-
tain

0'(t) =t/A, .

Here

f dE EF(t, 8,E)
(E(t, 8)) -=

f dEF(t, 8,E)

f dE EF(z, 8,E)

f dEF(, 8,E)
(A3) t0'(t) 28'

12 Q() (A7)

A, =N f d8 8 cr(8),

where N is the atomic density and o is the differential
elastic scattering cross section. Moreover, we assume that
this integral does not diverge. So we obtain
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