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Electronic stopping powers for low projectile velocities
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Previously we have discussed the shell corrections to electronic stopping which may be calculated
from momentum distributions obtained from numerical atomic wave functions. In that case, the
lower limit for particle velocity was determined by the largest orbital mean excitation energy for the
system. Here we discuss the extension of these calculations to the kilovolt region of projectile velo-

city, and report stopping powers, stopping numbers, and shell corrections for various cases. Trends
across the first two rows of the periodic table are discussed, and the low-velocity limiting behavior
of the stopping power and stopping number is considered.

I. INTRODUCTION

Previously' we have described the calculation of elec-
tronic stopping powers based on a kinetic theoretical
description of projectile scattering from scatters with a
velocity distribution obtained from a numerical atomic
wave function. The calculation was restricted, however,
by the requirement that projectile energies exceed the
highest orbital mean excitation energy for the material in
question. For most materials beyond the first row of the
periodic table, this occurs at proton energies of several
MeV (velocities of tens of atomic units), and excludes the
region of the stopping power curve where its maximum is
found, the kilovolt range of particle energies, and the lim-
iting behavior of the stopping power as the projectile velo-

city tends to zero. In the present communication these
calculations are extended to low projectile energies. We
will, in Sec. II, present the outline of the theory and the
method of calculation, and then discuss the low-energy
shell corrections to the stopping power, the low-energy
limiting behavior of the stopping power and its implica-
tions, and the relative orbital contributions to the stopping
number.

II. MODEL AND COMPUTATION METHOD

In the standard development of the theory of electronic
stopping, the stopping power of a material is related to the
stopping cross section S(v),

=nS(u),

where relativistic, density, and the higher-order Barkas
(Zi) and Bloch (Zi) corrections have been neglected.
The mean excitation energy I has its usual meaning' and
C/Z2 in the total shell correction.

We have previously shown' that one obtains very good
shell corrections to the stopping power if one treats the
system in a shellwise fashion. We define orbital mean ex-
citation energies Ik by requiring that the total mean exci-
tation energy be split up as

lnI = g iut, lnIk,
1

Z2 I,

and that the corresponding orbital weights are

iuk = —,
' nk(1+ fk ),

where the nk are occupation numbers and the nkf» are the
total oscillator strengths of all optical transitions from
shell k into unoccupied levels (continuum and discrete).
When one introduces these notions into Sigmund's kinetic
theory~ one obtains an expression for L (v)

L(v)= QLt, (v),

which consists of shellwise contributions of the sort

00

Lk(u) = —, du, pk(u, )u,0
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where n is the particle density and

4me4Z2iZz
S(u)= z L(u) .

NlV
(2)

2VL (u) =ln I
C(u)
Z2

Here v is the projectile velocity, and Z1 and Z2 are the nu-
clear charges of the projectile and target particles, respec-
tively. For impinging protons, to which we will restrict
ourselves, and in atomic units,

r

where pk(uz) is the electron velocity distribution in the
kth orbital, normalized to unity, and Lk '(v) is the stop-
ping number for a system where the scatterers are at
rest. ' Thus given an electron velocity distribution, a set

1,2

of orbital mean excitation energies and weights, and a
form for Lk, we should be able to calculate stopping

(0)

numbers directly.
The electron velocity distributions used in the calcula-

tions reported here are obtained from the fast Fourier
transform ' of numerical Hartree-Fock atomic wave
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functions generated by the Froese Fischer program'
(McHF77). The consistent sets of orbital mean excitation
energies were, as in our previous work, ' taken from the
tables of Inokuti and co-workers. "' It is thus a pure
atomic theory. No solid-state effects are included.

We have chosen L~ ' to be the (orbital) Bethe term'
without shell corrections

L' '=lnv +const . (9)

As it is expected that most stopping will be accomplished
by the outer electrons in the case of low projectile velocity,
we have chosen to implement the Bethe expression in a
shellwise manner, that is,

L„' '(v) = ln 8(u —a„), (10)
Z2 Ik

where

az (II, /2)' ' .——
It should be noted that even though LI', '(u) becomes zero
for u &a~, there is still a contribution to the integral in

Eq. (7) since v~ becomes the integration variable. Thus we
shall carry the integration down to low U, in contrast to
previous work' where L (u) was computed only for
u )maxt a~ j for the atom in question.

In the case of high projectile velocities, L (u) [cf. Eqs.
(6) and (7)j can be expanded' in moments of averages of
powers of the target electron velocity, and the expansion
has been shown' to converge well in this limit. In the case
of low projectile velocity, and for u &minIa~ j an ap-
propriate expansion can also be made:

Lq (u)= ln(p) k 2U

Z2 Ik

This should be a valid form as the Bethe formula derives
from the first Born approximation, valid when the projec-
tile velocity is large compared with the velocity of scatter-
ers, an assumption which, in fact, holds for Ll', ' since, as
explained after Eq. (7), LI', ' is the stopping number for
scatterers at rest. Indeed, this choice has been shown to
give good results for C/Z2 for swift particles. ' There
are, however, several other possibilities, such as the classi-
cal Bohr' expression

We now have a framework in which we may compute
electronic stopping properties. It should be noted, howev-
er, that we consider only the electronic stopping com-
ponent of the total stopping at low projectile velocities.
The nuclear stopping, which becom. es important only at
very low velocity, has been ignored and reactive scattering,
stripping, screening, and the like, which may also become
important at low projectile velocities, are not included ei-
ther. There are several measurements and predictions
against which we can test the results of this scheme, '

some of which are presented below.

III. SHELL CORRECTIONS
AND STOPPING NUMBERS
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The experimental shell corrections' and the results ob-
tained by this scheme for Ne, Ar, and Kr are presented in
Figs. 1—3. In order to compare theoretical and experi-
mental shell corrections, some account must be taken of
the Barkas and Bloch terms, which are not included in the
calculations. Using the notation of Besenbacher et al. ,

'

one should compare experimental shell corrections
(Cq/Zq), „„,to "apparent" theoretical shell corrections:

(C/Z2),'h„,——(C/Z2)a„„—L ' L—(15)

where the calculated values are (C/Z2), h„„and L' and
are the Barkas and Bloch corrections, respectively.

Equivalently, we have plotted (C/Z2)„~, +(L '+L ) and
( C/Z2 )th, o,.

The estimates of the Barkas and Bloch corrections as a
function of velocity were taken from Besenbacher et al. ,

'

and are obtained from qualitative theoretical considera-
tions and thus include some uncertainties. ' In addition,
there is some scatter in the data, of the order of 0.05. On
the whole, however, the agreement is good. The theoreti-

where

Z2 n=& 2n+1
(12)

(u )~„=4m.f u2 pl, (uz)du2 .

Thus
-0.6--

Sg(u) = 87TNg V

One would, then, since all terms in this series are positive,
expect the stopping cross section to start off as a linear
function of u and deviate in a positive manner at large u.

Such deviations have indeed been reported' for low-
energy stopping of heavy particles on gold foils.
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Ep {keV)

1500

FIG. 1. Shell correction for Ne ( ) as calculated in this
work and experimental data (~) from Besenbacher et al. (Ref.
17) vs projectile energy in proton keV.
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FIG. 2. Shell correction for Ar ( ) as calculated in this
work and experimental data () from Besenbacher et al. (Ref.
19) vs projectile energy in proton keV.
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FIG. 4. Theoretical shell corrections for Al as calculated in
this work ( ) and by Bonderup (Ref. 19) ( ———) vs pro-
jectile energy in proton keV. Experimental points ( Q ) are from
Andersen et al. (Ref. 20).

cal results presented here are also in good agreement with
those of Bonderup. ' Although the low-energy data are
not so extensive for aluminium, a similar plot (Fig. 4)
shows agreement with the experimental data of Andersen
et al. in the several hundred kilovolt range. The experi-
mental data are more reliable for Al than for the three
other atoms since for Al the Barkas and Bloch corrections
are determined experimentally by varying Z~ of the pro-
jectile. The results of Bonderup are also presented for
coQ1paf1son.

The low-velocity limiting behavior of the stopping
number 1.(U) and the stopping cross section S(u) can be
obtained from the low-velocity expansion given in Eqs.
(12) and (14). Thus if we denote the quantities calculated
by a two-term expansion mth a tIlde, we see

TABLE I. Range of validity of the low-velocity expansion of
S(v) in Eq. (17).

SOO 1000

Ep IkevI

1SOO

H
He
Li
Be
B
C
N
0
F

Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca

0.3
0.7
0.1

0.2
0.4
0.5
0.5
0.6
0.7
0.8
0.1

0.1

0.2
0.3
0.3
0.5
0.4
0.5
0.1

0.1

0.551
1.427
0.121
0.269
0.424
0.771
1.201
1.714
2.310
2.990
0.090
0.163
0.178
0.326
0.504
0.947
0.712
1.211
0.059
0.099

FIG. 3. Shell correction for Kr ( ) as calculated in this
work and experimental data () for Besenbacher eI; al. (Ref. 17)
vs projectile energy in proton keV.

'See text for definition; velocity in a.u.
'The smallest Ik for the atom; in a.u.



TABLE II. Orbital contribution to S(U) at low projectile velocity for Al.

% orbital contribution
1$ 2$ 2p 3$ 3jp

0.5
1.0
1.5
2.0
2.5

20.0

'In a.u.

0.02
0.03
0.07
0.12
0.19
6.14

0.47
0.81
1.65
3.00
4.65

11.90

1.38
2.23
4.22
7.14

10.62
44.68

52.19
54.12
53.01
51.28
49.02
22.56

45.94
42.81
41.05
38.46
35.52
14.72

S(u)= QSk(u),

8~k 3
8'7T'LUk

Sk(u)= u(u2 ),+ u'&u2 ), . (17)

uu„, ««(2Ek")'» =(uk),

where k refers to the highest-energy (valence) orbital, and
Ek'" is the kinetic energy of a k-shell electron. Thus the

The moment integrals were done by Simpson's-rule in-
tegration of the numerical orbital velocity density pk(u).
A correction is made when ak falls between two grid
points. A linear interpolation scheme using only the two
"neighboring»» grid points is used. The maximum correc-
tion occurs when ak is large compared to the maximum in
p~(u), i.e., for II for which the correction is about 1%.

The expansion, Eq. (17), should be valid only for low
projectile velocities, that is, the projectile need have low
velocity compared to the lowest orbital electron velocity,

expansion should be valid only in the projectile (proton)
energy range of a few decades of kilovolts, or velocities of
a fraction of an atomic unit. The peak in proton stopping
powers is typically in the IOO kilovolt range, so the power
expansion is valid only considerably below this energy.
Indeed, if we ask for the velocity (uiu) at which S(u) [cal-
culated directly via Eqs. (2), (6), (7), and (9)] and S(u)
[from Eqs. (13), (16), and (17)] differ by approximately
10%, it appears that the expansion quite quickly deviates
from the correct result (see Table I). It is clear that the
deviation is governed by the lowest mean ionization poten-
tial Ik of the atom, and that the lower this is, the more re-
stricted is the ambit of validity of the expansion. As the
orbital mean excitation energy varies across each period,
so does the range of validity of the expansion, with the
greatest range occurring at the rare-gas end of each
period. The gr'eatest range comes at Ne, and even here the
expansion is valid only to a projectile energy of approxi-
mately 25 proton keV.

In Fig. 5 we present the deviation of S(u} from S(u) for
the orbitals of Al, and it is apparent that the outer orbi-
tals, those with the lowest Ik(ak} deviate first. However,
it is just those outer obitals which contribute most to S(u),
as can be seen in Table II. In general, nearly 90% of the
stopping at low velocity is due to the valence shell. As ex-

v(a, u. )
1,00

0.00
0 2

v fa.u. )

FIG. 5. PcfccQt deviation of thc t&o-ted% expansion S(U)

[Eq. (17)] from S(u) for the shells of Al, calculated as

100[S(u)—S(u)]/S(u}.
Stopp~ng cross sect&on» ( 1/4~)S ( U) vs U for Ne.

Linearity is indicated by the dashed line.



pected, the inner shells contribute more to the high-
veioclty stopplllg, Rs caI1 bc sccll flolll thc slllglc lal'gc-
velocity (Ez ——10 MeV) entry in the table.

As discussed in connection with Eq. (14) one might ex-
pect S(u) to start as a linear function of u and thereafter
to experience positive deviations from linearity. Moak
et al. ' have indeed found such deviations in some heavy-
ion work, but the question remains as to whether or not
the effect is general. Because of the poor range of validity
of the low-velocity expansion [Eq. (17)], it can serve no
pI"cdlctlvc value herc. It docs scrvc to indicate, however,
that such an effect might be most likely found in cases
where the range of validity is largest, since it is here that
the u terms may have had a chance to grow to a signifi-
cant fraction of the linear terms in S(u). A full calcula-
tion not utiHzing the power-series expansion on Ne is
pI'cscntcd ln Flg. 6, and lndccd a small posltlvc dcvlatlon
from linearity is observed before the maximum (E~ =100
keV). For aluminium, on the other hand, the expansion
has a very short range of validity (see Table I) and (Fig. 7)
no positive deviation from linearity is observed. One need
bcwarc ln coIDparlng with cxpcrlIDcnt, as thc prcscnt re-
sults apply to atoms, and one finds sizable gas-solid differ-
ences in low-energy stopping. '

IV. Z, QSCILLATIONS

The oscillations of S(u) at constant u with the atomic
number of the target particle is a well-known
phenomenon and is apparently due to an oscillatory
behavior in both Ik and in the velocity (momentum) densi-

ty of the outer electrons, which contribute most to the
stopping number and cross section' (see also Table II).
The orbital II, determines the lower limit of the velocity
moment integrals in the expansion formula [Eq. (7)] via
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FIG. 8. Stopping number I.(U) vs Z2 the atomic charge of
the target atom, at projectile velocities of 2 a.u. (O ), 4 a.u. (), 6
a.u. (G), and 8 a.u. (4, ).
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V. CONCLUDING REMARKS

We have presented here a computational scheme which
is based on Sigmund's kinetic theory of stopping and
which Utlllzcs high quality, QuantuxQ-IDcchaIBcal, clcctron
velocity distributions for the scatterers. From this, we ex-
tract low-velocity electronic stopping cross sections and
shell corrections. These seem to reproduce both the quali-
tative and quantitative experimental results reasonably
well.

The moment expansion of S(u) at low velocity is shown
to have a low range of validity (u & uII), but it does indi-
cate that positive deviations from initial linearity' of S(u)

I.k ' [Eq. (10)]. In any case, the variation in Ik as one
progresses across the periodic table would be expected to
give rise to oscillations which decrease in amplitude as the
velocity increases. In Fig. 8 we present L(u) vs Z2 for
four projectile velocities in the 100 kilovolt range, and the
structure is as expected. If we compare (Fig. 9) Zz oscilla-
tion in the whole atom mean ionization potential I [see
Eq. (4)] with the ZI structure of L (u) it is seen that the
varlatlo11 1I1 L (u) parallels 'tllat II1 I.

200—

30

PIG. 7. Stopping cross section„(1/4m)S(u) vs U for Al.
Linearity is indicated by the dashed Hne.

FIG. 9. Total mean excitation energy (from Inokuti, Ref. 11)
vs Z2.



afe poss1ble. CalculatIons not utlllzmg the series expan-
sion show that Ne might indeed show this behavior, while
it is not expected for atomic Al. Since Ik for the valence
shell, as shown by Shiles et aI. , is considerably larger for
metallic Al than for atomic Al, the validity range of the
low-velocity expansion is extended considerably for the
Inetal and it is plausible that metallic Al may show a posi-
tive deviation from linearity at low velocities. Finally, we
find that the oscillations of I. (U) with Z2 for constant U

parallel those in I.
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