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Molecular photoionization in the linear algebraic approach: Hz, Nz, NO, and CO2
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We extend the linear algebraic method to the calculation of molecular photoionization cross sec-
tions. The formulation is primarily developed in the fixed-nuclei, Hartree-pock, and frozen-core
approximations, although correlation effects in the scattering solution are introduced through an ef-
fective optical potential. The single-center expansion and close-couplmg approxlmatlons are m-
voked to give converged scattering solutions. Cross sections and asymmetry parameters axe report-
ed for photoionization from the ground state of H2, N2, , NO, and CO2. We obtain very good agree-
IIlcnt with the SchwlngcI varlatlonal I'csults of MCKoy and co-workers foI all molecular systems.
For NO and CO2, we find substantial disagreements with the Stieltjes calculations for some sym-
metries.

I. INTRODUCTION

The understanding and analysis of a wide vaflety of
physical -Rnd chemical phcnonlcQR dcpcnd on R kIlowlcdgc
of molecular photoionization. ' Photoionization processes
play vital roles in the construction of models to represent
planetary atmospheres ' and astrophysical objects,
such as comets and circumstellar clouds. In addition, the
orientation of a molecule absorbed on a surface can be
determined from the angular distribution of the ejected
electron. Also, with the advent of the tunable synchro-
tron sources, detailed investigations of the energy and an-
gular dependence of the photoionization cmss section are
now possible. Therefore, the development of reliable
theoretical models for efficiently calculating photoioniza-
tion quantities has become an important endeavor for col-
11810Q physlclsts.

The calculation of photoionization cross sections can be
reduced to the evaluation of a multipole matrix element,
usually the dipole. This matrix dement, in turn, is related
to the bound-state wave functions of the target and residu-
al ionic molecules and to the continuum solution for the
ejected electron. The following three methods have been
the most extensively applied to the calculation of pho-
toionization quantities: (I} the Stieltjes-Tchebycheff mo-
ment theory (STMT), (2) the Schwinger variational
(SV) method, ' and (3) the continuum multiple scatter-
ing method (CMSM). ' In addition, calculations have
been performed using many-body perturbation theory
(MBPT},' a time-dependent, local density approximation
(TDLDA), ' the random-phase approximation with ex-
change (RPAE), ' ' ' and various iterative and noniterative
continuum methods. ' The STMT approach represents
the bound and continuum wave functions on an I. basis,
while the SV method and CMSM employ different
prescriptions for determining these two wave functions.
The bound-state wave functions are still determined by I.
techniques while the continuun1 wave function is deter-
mined from a numerical solution of the electron-ion
Schrodinger equat1on.

In this paper, we extend our linear algebraic (LA)

method for obtaining continuum electron-molecule solu-
tions to the realm of photoionization. The LA method
has been successfully applied at the static-exchange (SE)
or continuum Hartree-Fock (HF) level to a plethora of
molecular systems. ' In addition, we have introduced an
effective optical potential into the Schrodinger equation
for elastic scattering in order to treat correlation effects.
The results for e-H2+, -H2, and -N2 coll1s1ons are 1n qu1te
good agreement with those of other theoretical approaches
and with experiment. %C have also applied the I A tech-
nique to the electronic excitation of atoms and of the H2+
molecule. ' The success of the method in handling such a
wide variety of electron-molecule scattering processes led
us to believe that it would be equally well suited for pho-
toionization.

In our formulation of photoionization, we treat the
bound and continuum wave functions independently. The
bound-state functions are calculated with a standard
Inolecular structure package while the continuum solution
is determined by the LA method. The separate functions
RI'c thcIl comb1ncd 1Il thc dlpolc matrix clement to y1cld R

photolon1ZRtlon cross scct10Q. OUI' basic appl1catIOIl 1s at
the Hartree-Fock level for the bound and continuum wave
functions. In addition, we make the frozen-core (FC) ap-
proxlmatlon by wh1ch thc IlcutIal molecular orb1tals arc
used to represent those of the ion. For photoionization,
the frozen-core Hartree-Fock (FCHF) scheme has been
shown to give a reasonably accurate representation of the
cross section and asymmetry parameter. %e go
beyond this approximation by using an effective optical
potential to intmduce correlation effects into the elastic
scattering solution. This addition allows us to obtain au-
toionization structure which is absent from the FCHF ap-
pI'oach.

We treat photoionization of ground state Hz, N2, NO,
and CG2. Our purpose in selecting these systems is two-
fold. First, we wish to test the accuracy of the LA ap-
proach for photoionization. To this end, we select sys-
tems such as Hz and N2 that have received extensive
theoretical attention. Second, we wish to resolve some of
the differences between the Stieltjes and Schwinger results
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for NO and CO2.
The remainder of the paper is divided into three sec-

tions. In Sec. II we briefly review the formalism for
molecular photoionization, while in Sec. III we present the
results of our LA calculation. Finally, we summarize our
findings and draw conclusions in Sec. IV.

II. METHODS

and |) is the angle between the direction of polarization of
the light and the momentum of the outgoing electron.
This formulation is also referred to as the integrated tar-
get angular distribution (ITAD). The A coefficients have
the following form:

A@=6 g (Cosl liFl
lm, A,u

In this section, we develop the formalism necessary to
treat the process of molecular photoionization. Since the
details of this formulation are presented elsewhere, we
pretermit all but the most important aspects of the formal
development. In general, we follow closely the treatment
of Tully, Berry, and Dalton. Since their formulation is
restricted to photoionization from closed-shell molecules,
we have made some modifications in their formulas to en-

compass the more general case of open-shell targets. We
neglect rotational and vibrational motion of the molecule
and thus confine our treatment to the fixed-nuclei (FN)
approximation. In addition, we consider ionization only
out of the ground state of the target molecule, although
we shall introduce virtual electronic excitations through
an effective optical potential.

—smyth Gi~ i„)Cg(lA

where

yii = i)i —i)i+ (A, —l)ir/2,

I'I ~„——Redh Red~„+ Imd~ Imd~„,
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(6b)
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A. General formulation

We consider the following photoionization process:

AB(A;S;)+hv~AB+(A, S, )+e (lms) .

r

g I «kfn~i'k I i~"C'~, s,.
k yes" =m —m

crr (0)=App+A /pres(cos8), (3)

where Pz is an associated Legendre polynomial of order 2,

The initial state is characterized by the X-electron molecu-
lar wave function

@As�(1,

. . . , X) of the neutral, target
l l

molecule, while the final state is composed of an antisym-
metric linear combination of product wave functions
0'r i~ (1, . . . , N) representing the residual ion core
4& s (1, . . . , X—1) and the scattered electron Vi, (N).
The quantum numbers A and S refer to the projection of
the total orbital angular momentum of the molecular elec-
trons onto the internuclear axis and to the spin state of the
molecule, respectively. Similarly, the parameters m and s
are the analogs of A and S, but refer to the electron-plus-
molecular-ion system. The quantity I gives the value of
the orbital angular momentum of the outgoing, ionized
electron and labels a particular linearly independent
scattering solution. Finally, we introduce the customary
abbreviation I for the quantum numbers describing the
molecular ion and the spin state of the electron
[I =(A,S,s)]. In the dipole approximation to the radia-
tion field, the observables associated with the photoioniza-
tion process, such as the cross section and asymmetry pa-
rameter, are related to a dipole matrix element of the form

(@w,.s,. ~

D ~A(@w,s, 'Icr

where D (A) is the dipole (antisymmetry) operator.
In a more comprehensive form, we write the differential

photoionization cross section for an ensemble of arbitrari-
ly oriented molecules as

4~ +fico

3

with a denoting the fine-structure constant, fico the photon
energy, mj =A, —A;, gI the Coulomb phase shift, and
C (l, l2l3

~
m, m 2 ) a Clebsch-Gordan coefficient. The

difference in the Coulomb phases (i)i —ili) is calculated
by the geometric formula of Dill. The integration in Eq.
(8) is assumed to go over the configuration space of all
electrons.

By integrating Eq. (3) over all solid angles, we obtain an
expression for the photoionization cross section

O.p
——4~300 .

The asymmetry parameter P is also given in terms of the
A coefficients by

P =A 2p jA pp . (10)

For the case of /=0, we can simplify much of the Ra-
cah algebra in Eqs. (3)—(7) and derive a rather compact
form for the photoionization cross section

The cross section represented by Eq. (11) is characterized
by particular symmetries of the neutral and ionic mole-
cules. The total photoionization cross section O.

p& is found
by summing over the final states of the core ion and
averaging over the initial states of the target molecule.
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B. Approximations

We introduce several approximations to the above for-
mulation which simplify the analysis and facilitate the
computational aspects without seriously degrading the
quality of the results.

1. Bound sta-te orbitals fr—ozen core

(15)

where

analytical recursion relations in terms of modified spheri-
cal Bessel and associated Legendre functions. Substituting
Eqs. (14) into Eq. (13), we find

di~ =No QX(ljll'
~ mjm "m)D(l'111),

I', I)

We calculate the neutral and ionic molecular bound-
state wave functions at the HF level using standard molec-
ular structure programs. " The bound functions can
then be represented as a single Slater determinant of the
form

x(lil213
~

m &m2m3)—:
3(21i + 1)

4m(21, +1)

D(l'llJ)= f gt'i(r)rPi'(r)dr, (15')

(12)

x C(i(1213
~
m]m2m3)

X C(l l,l, i
OOO), (15")

for closed-shell systems, where n is the number of occu-
pied orbitals and P;(j) represents a spin orbital. For
open-shell molecules, we must usually take a linear com-
bination of determinants with partially filled orbitals in
order to construct a system wave function with the proper
orbital and spin angular momenta symmetries.

We introduce the frozen core -approximation by which
the HF orbitals of the neutral, target molecule are used to
represent those of the residual ion core. This substitution
leads to a considerable simplification in the form of the
dipole matrix elements dI . The dI quantities no% de-

pend only on the ionized and scattering orbitals and have
the general form

dt =Np J dr P& (r)rF& (r)Pz '(r) (13)

ft (r)=r QPPi(r)Ii (14a)

where tl}
' is the spatial HF orbital of symmetry m,

(=A, —A;) of the neutral molecule from which an elec-

tron is ejected, f~ (r) is the scattering orbital, and No is
the occupation number of the ionized orbital (=1 or 2).
Setting NO=2, we recover the closed-shell formulas of
Tully et al. ; the choice of No ——1 restricts us to a single-
occupied orbital outside a closed-shell core. For other
cases, we must determine Xo by constructing the proper
combination of determinants to give the correct spin and
angular symmetry of the system. We have dropped the
subscript involving spin and assumed that it has been

properly treated in the bound-state and scattering calcula-
tions.

We evaluate Eq. (13), which is the key to constructing
the photoionization parameters, by performing a single-
center expansion of the molecular and scattering orbitals

mj ——A; —A, . We reiterate that I labels a particular
linearly independent solution of the scattering wave func-
tion while l' labels a component of the single-center ex-
pansion. The scattering wave function satisfies S-matrix
boundary conditions, making d~ a complex quantity. We
usually choose to work with real functions in the scatter-
ing calculations and thus with K-matrix boundary condi-
tions. The two wave functions gs and tax , with S- .and
E-matrix boundary conditions, respectively, are related
b 16(c)

Imp, =2yx(1+L L)
Regs=(Imp~)L,

where K is the reactance matrix.

(16a)

(16b)

2. Continuum solutions

H ie}=Eie},
where

N

H=HT+T, +V,„+gg.. .

(17)

(18a)

HT denoting the Hamiltonian of the target molecule,

(18b)

V,„=—gZ /
r, —r (18c)

and

The Schrodinger equation which describes the collision
of an electron with an ¹lectron target molecule has the
following form:

(14b) g =I' —r.
l

(18d)

The radial coefficients for the scattering orbital pi i are
determined by solving a set of radial coupled integro-
differential equations as described in Sec. IIB2 and in
Refs. 17 and 18. Since the bound molecular orbitals are
expressed in terms of Cartesian Gaussians, the radial ex-
pansion coefficients can be determined from a set of

with r, (r;) the position of the scattering (target) electron
and Z~ (r~) the charge (position) of nucleus a. In order
to solve Eq. (17) we divide configuration space into two
regions with the boundary at r =a. In the outer region,
where nonlocal effects are negligible and the potential is
local and usually multipolar in form, we employ standard
coupled-channel propagation procedures to integrate the
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solution from r =a into the asymptotic region.
In the inner region, where exchange and correlation ef-

fects are important, we expand the total system wave
function

I 1(& as follows:

+ g Cq gq (1, . . . , N + 1), (19)

where P, is an N-electron target molecular-ion wave func-
tion and P, is the scattering wave function. The set of
"correlation" functions Igq J is added for completeness
and can be selected as pseudostates or electronically excit-
ed states of the target-plus-electron system. By introduc-
ing projection operators of the form

(20a)

Q IX&= gdqgq(1, . . . , N+1),

(Hpp+V, p, E)P
I
1(&=—0,

V pf Hpg (E —Hgg ) Hgp
—1

(E —Hgg)Q I Q& =HgpP
I Q&,

(21a)

(21c)

where Hxr =XH Y with X, Y=P or Q.
In this study, we will confine our discussion to the elas-

tic scattering solution. Thus, we truncate the expansion in
Eqs. (19) and (20a) at a single term (c =1), the ground
state of the target system, and choose f» to represent the
effects of virtual excitations to closed excited electronic
states.

a. Static exchange or continuum Hartree-Fock. In the
SE approximation, we further restrict the form of the to-
tal system wave function in Eq. (19) by neglecting the
correlation functions in the expansion (Cq =0). The sys-
tem wave function then becomes a simple antisymmetric
product of the continuum and ground-state wave func-
tions. If we substitute the expression for

I P& into Eq.
(21), multiply through by the ground-state molecular wave
function, and integrate over the coordinates of the bound
electrons, we obtain the standard SE equation for the
scattering orbital'

t'

n

f+ y (2ag Jg bg&g) erat = y &/, y—k, —(22)
i=) k=)

where

f=T, +V,„,
J;(1)XJ(1)=(X;(2)Ig[2 IX;(2)&XJ(1),

&;(2)XJ(1)= (X;(2)
I g$2 I

XJ(2) &X;(1), (23b)

where J; and E; are the standard Coulomb and exchange

(23a)

P+Q =I,
with

I
X& an arbitrary (N+ 1)-electron function, we can

partition the Schrodinger equation (17) into the standard
Feshbach form

operators with X~ either P or Pt, and e is the energy of
the outgoing electron in hartrees. The summation in Eq.
(22) runs over all occupied orbitals of the molecular ion;
the coefficients a; and b; are selected according to the spin
state and symmetry of the scattering function desired.
For example, for doublet scattering from a closed-shell
molecule, a = 1 and b = 1 for all occupied orbitals. We in-
clude the values of a and b for each system and symmetry
in tables in Sec. IV; a more complete compilation can be
found in Rose and McKoy.

The term on the right-hand side of Eq. (22) is added in
order to force the orthogonality of the scattering and
bound-state orbitals of the same symmetry. For a closed-
shell molecule represented by a HF wave function, the
scattering solution is formally orthogonal to the bound or-
bitals since they satisfy the same Schrodinger equation.
However, in the FC approximation this is no longer the
case since the neutral molecular orbitals are used to con-
struct the ionic molecular wave function. We must there-
fore guarantee the orthogonality by introducing a pos-
teriori the Lagrange undetermined multipliers (LUM) A,k.

b. Effectiue optical potential. As a first step for going
beyond the SE approximation, we consider the effects on
the elastic scattering solution of introducing correlation
effects through an effective optical potential V,~, [Eq.
(21b)j. For photoionization processes, the introduction of
correlation into the scattering orbital allows us to describe
autoionization features which are not present at the SE
level.

The partitioning introduced into the Schrodinger equa-
tion (17) is strictly formal. We take advantage of the
form of Eq. (21a) by making the additional approximation
of evaluating the optical potential on an L basis. Since
both the continuum and bound-state parts of V pt are
represented by an L basis, the evaluation of the optical
potential can be divorced from the scattering calculation.
We calculate V,~, by standard configuration-interaction
(CI) bound-state methods and introduce the resulting ex-
pression into the scattering equation. Since such a
prescription represents a "reconciliation" or union be-
tween the L and numerical close-coupling approaches, we
might term these methods syncretic.

As in the SE case, we derive an equation for the scatter-
ing orbital g t by multiplying Eq. (21) by the ground-state
molecular wave function and by integrating over the coor-
dinates of the bound electrons. The resulting equation has
the form

f+ g 2a;J; + U, ( r1 r,'e) eg t = g —A,„P„, (24)
i k

where U, contains both the exchange and the optical-
potential contributions. The Lagrange undetermined mul-
tipliers are introduced to force orthogonality of the con-
tinuum orbital to all bound orbitals of the same symme-
try. For a more thorough discussion of the effective opti-
cal potential method, we refer the reader to an earlier set
of publications. '

One further point is in order. The total system wave
function is given by

I 0& =P
I 0&+Q

I
0&,
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and it is this expression which should be used in the
evaluation of the dipole matrix element in Eq. (8). How-
ever, as a first approximation, we shall only use the P
space or scattering part of the system wave function as
calculated from Eq. (21a) or Eq. (24). Retention of the
scattering part will guarantee a reasonable representation
of the autoionization features; the absolute magnitude of
the photoionization may be in some error due to the
neglect of the Q

~
P) component.

c. Method of solution In. this final subsection, we
describe the methods we employ to solve Eqs. (22) and
(24). Once again, we present only a cursory description
since the details are presented in other publications. '

We first convert Eq. (22) or Eq. (24) to a set of coupled,
radial integro-differential equations by expanding the
bound and continuum orbitals in terms of spherical har-
monics [Eq. (14)] and by integrating over all angular coor-
dinates. This set of scattering equations is further
transformed to a set of coupled integral equations by
means of the Coulomb Green's functions. Finally, by in-
troducing a discrete quadrature for the evaluation of the
integrals, we obtain a set of LA equations. We then em-

ploy standard linear systems routines to solve the LA
equations for the radial scattering orbitals. We emphasize
that the LA equations are solved in the region r(a in
which nonlocal effects are important. For r )a, where
the potential is local, we extend the solution into the
asymptotic region by a standard propagation scheme.
We then match the solution to a linear combination of
regular and irregular Coulomb functions in order to ob-
tain the reactance or K matrix.

We treat the exchange or exchange-plus-optical-
potential terms in a separable approximation. ' ' In other
words, we represent the general exchange kernel in terms
of a complete set of basis functions as

ciency have been demonstrated by numerous groups for a
diverse set of molecular targets.

III. RESULTS

Before proceeding to a discussion of our results for H2,
N2, NO, and CO2, we review the salient features of our
photoionization calculations:

(1) Dipole length-convention.
(2) Bound orbitals: Hartree-Fock and frozen-core ap-

proximations.
(3) Continuum orbitals: static-exchange or effective-

optical-potential approximations.
(4) Single-center expansion and close-coupling approxi-

mation.
(5) Fixed-nuclei approximation.

We apply the more standard label FCHF for the frozen-
core, static-exchange case.

We also present the following summary of the nomen-
clature used throughout this section:

(1) n, denotes the number of terms retained in the ex-
pansion of the continuum orbital [Eq. (14a)] in the solu-
tion of the coupled scattering equations (22) and (24);

(2) n, is the same as n, except for the exchange term;
(3) n~ is the number of separable basis functions re-

tained in the representation of the exchange or optical-
potential terms [Eq. (25)];

(4) r, is the radius of the R-matrix boundary (=a);
(5) r is the asymptotic matching radius; and
(6) n~ is the total number of points in the Gauss-

Legendre mesh for the quadrature of the integrals in the
continuum Schrodinger equation.

U, (r, r ', e)= gX (r, e)A (e)X (r ',e), (25) The maximum value of l retained in a particular expan-
sion is given by

A (e)= f f X (r, e) U(r, r', e)X (r', e)dr dr'.
The general form of Eq. (25) involves a double summation
over the separable basis. We have shown, however, that
for the case of electronically elastic scattering that this
term can be placed in diagonal form by a simple unitary
transformation. ' ' The complete set of functions that
form the separable basis is usually constructed from a set
of occupied and virtual molecular orbitals of the symme-
try of the scattering orbital. '

We make one additional approximation to the solution
of the coupled radial equations. The sums in Eqs. (14),
which represent single-center expansions, run over an in-
finite number of terms. We therefore enforce the close-
coupling (CC) approximation by which these sums are
truncated at a finite upper limit. In order to guarantee ac-
curate solutions, we must assiduously and systematically
increase the limits until the various photoionization pa-
rameters converge to within a given tolerance. With the
proper care, single-center expansions can be made to give
highly accurate solutions of the continuum electron-
molecule Schrodinger equation. Its efficacy and effi-

l,„=b,l(n —1)+l0, (26)

where n =n, or n„b,l =1 (2) for a polar (homonuclear)
molecule, and 10 is the initial value of / for a given scatter-
ing symmetry. For example, for o.„scattering from
N2+(3crs ') with n, =10, we have l0 ——1 and /, „=19.
The static potential is also expanded in terms of spherical
harmonics with all values retained up to 2l,„. Owing to
the nature of the separable potential, the sum over the ex-
pansion coefficients of the bound orbitals is performed
implicitly and is effectively infinite. ' The integrals in the
scattering equations are evaluated with a Gauss-Legendre
quadrature. Usually, the region from r =0 to r =r, is di-
vided into a set of subregions, each with a different num-
ber of points. We designate this regional division by
[n &, n2, n3

~
r&, r2]. The first subregion extends from r =0

to r =r& and contains n~ Gauss-Legendre points, the
second subregion from r =r& to r =r2 with nz points, and
the third from r =r2 to r = r, with n3 points. The choice
of meshes employed in this study guarantees a conver-
gence of 5% or better. Since for the lower partial waves
which exhibit oscillatory behavior we must include a
minimum number of points for each half-wavelength, the
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number of mesh points must be increased as we move to
higher energies. Finally, in the evaluation of the pho-
toionization quantities, we choose the bound and continu-
urn orbital expansions to have the same limit as the con-
tinuum expansion in the scattering solution.

We generally choose r =r, . At first, this choice may
sccIT1 IathcI' restrictive. HowcvcI', since thc long-I'ange
(r) 10ao) Coulomb potential dominates even the dipole
term, we can safely match to Coulomb functions at
moderately small fadII. To scc this morc clearly~ wc note
that the ratio of the Coulomb to dipole term is given by
qr/D, where q is the residual ion charge and D is the ionic
dipole moment. For NO+, the dipole moment is 0.6 a.u. ,
implying that the Coulomb term is already an order of
magnitude larger at r =10ao. %e have performed several
tests for r~ =1.5r, and r =2r, in order to check this as-
sumption and found sensitivities of less than 5% to the
choice of matching radius. VA'th these conventions in
hand, we are now ready to proceed to a discussion of the
photoionization results.

A. Photoionization of H2

As a first application of the LA approach to photoioni-
zation, we chose H2. We consider the following process
for ionization of the Xg ground-state molecule:

k 0'g (27a)
hv+H, H, +(1,-I)+

km. (27b)

In Table I, we present a description of the two Gaussian
bases employed to construct the bound and separable ex-
change orbitals. Basis 1 is similar to one employed by
t.ucchese and McKoy to study e-H2+ collisions, ' while
basis 2 is patterned after that suggested by ONeil and
Reinhardt. Basis 2 has a slightly more diffuse character
tllall llasls 1. Tllc diff llse fllIlctlolls at tlM C.ill. Rl'c lllcllld-
ed primarily to give a better representation of the sepa-
rable orbitals. In addition, we calculated the photoioniza-
tloI1 closs scctloIl uslllg tllc SlRtel-type orbital (STO) bases
of Fraga and Ransil (FR) Rnd of Cade and Wahl (CW).
All four wave functions produce total Hartree-Pock ener-
gies and quadrupole moments (Q) for HI ln quite good
agreement. The total energies (Q} are as follows for the
ground-state wave functions produced by bases 1, 2, FR,

and CW: —1.13310 (0.50), —1.13326 (0.49), —1.133
(0.48), —1.133 63 (0.48) a.u. In order to produce a singlet
scattering state, we choose a ~ to be I and b I to be —l.

In Table II, we compare the results for the photoioniza-
tion cross sections and asymmetry parameters for the vari-
ous bases. Since we observe very small differences in the
eigenphase sums among the four bases, we conclude that
the diffuse functions are not essential for the description
of the scattering solution. However, the differences be-
tween the cross sections for bases 1 and 2 at low energies
indicates that such functions should be included in the
construction of the target-state wave function. As sug-
gested earlier by ONeil and Reinhardt, the need for a
more diffuse set of basis functions on the target molecule
stems from the nature of the dipole matrix element. The
Integral Is not only scnslflvc to thc rcg1on Rlound thc nu"
clei, where the tight functions give an adequate represen-
tation, but also to the region beyond the nuclei where
more diffuse functions are necessary for an accurate repre-
sentation. The results are in reasonably good agreement
with those of other theoretical endeavors, '@"' '"' '
taking Into account the different representations for the
target, ionic, and continuum wave functions.

hv+NI~NI+(3og ')X Xg + .
km„, (28a)

kog

hv+NI+(iver„g')A II„+ kyar„s

k6„yg .

The former process is of particular interest due to the ex-
istence of a broad shape resonance in the o„channel,
while the latter process demands special attention owing
to the appearance of a spurious m.„s shape resonance at the
PCHF level.

In Table III we describe the two Gaussian bases used to
represent the bound orbitals of N2 and N2+ and the orbi-
tals that form the basis of the separable potentials.

B. Photoionization of N2

We consider the following two photoionization process-
es for the ground state of Nz X'Xs+:

TABLE I. Gaussian bases for photoionization of ground state H2 at R~ =1.4ao. The conventions
are as follows: (1}ny/n'y implies. the contraction of the basis from n to n' functions of type y; (2)
8 /[X, FJ llllpllcs tllat IllcI'c Rl'c tt fllllcflolls of type p wltll tllc cxpoIlcllf, startlllg wltll R vahlc of X Rlld
decreasing in increments of F (geometric progression); (3) y with no subscript implies that all corn-
ponents are retained (e.g., p means that p, p~, and p, are included). The references are to the source of
the exponential and contraction coefficients. H refers to the hydrogen nucleus and c.m. to the center of
mass.

c.rn.

Type

Basis 1

Exponential
coefficient

Ref. 31
Ref. 31
[0.02,2]

Type

9s
4p
6p,
6p„

Basis 2
Exponential
coefficient

Ref. 32
Ref. 32
[0.02,2]
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TABLE II. Selected values of the eigenphase sums, partial and total photoionization cross sections,
and asymmetry parameters for the photoionization of H& from 1o.

~ orbital. The ionization energy is
16.4 eV, and k is the energy of the continuum electron. The scattering parameters are as follows.
GTO basis: (1) o.„, n, =n, =6, nf ——19; (2) m„„, n, =n, =6, nf ——10. STO bases: o.„, ~„, n, =6,
n, =nl, ——3. r, =r =10ao, nr=37 [10,15,10~0.7, 1.4]. One megabarn (Mb)=1.0)&10 "cm2. Only the
singlet scattering state is considered. FR refers to the wave function of Fraga and Ransil (Ref. 33) and
CW to that of Cade and Wahl (Ref. 34). 1 and 2 refer to the bases in Table I.

k (Ry)
Method

0.1838
FR
CW

2
1

0.3362
FR
CW

2
1

1.071
FR
CW

2
1

0.2106
0.2093
0.2084
0.2080

0.2647
0.2632
0.2626
0.2617

0.4301
0.4291
0.4236
0.4250

6,„(rad)

—0.2512
—0.2511
—0.2482

—0.2303
—0.2300
—0.2291

—0.1493
—0.1486
—0.1420

4.012
4.069
4.112
4.483

7.184
7.178
7.312

2.875
2.949
2.950
3.139

5.782
5.812
5.884

0.650
0.660
0.630
0.584

2.292
2.289
2.146

o.
ph (Mb)

1.922

1.915

1.910

Both bases have essentially the same form for the
nuclear-centered functions with basis 1 having a slightly
more extensive diffuse s and p set and less tightly bound d
functions. In addition, we include in basis 1 a much more
diffuse set of functions at the center of mass in order to
give a reasonable degree of flexibility to the separable
basis. Basis 1 yields a total energy for N2 of
—108.974 197 a.u. , while basis 2 gives a value of
—108.978 534 a.u. The slightly lower result for basis 2 is
due primarily to the inclusion of more tightly bound func-
tions, especially in the d set. Basis 1 gives a quadrupole
moment for N2 of 0.89 a.u. while basis 2 yields a value of
1.02. These results should be compared with the values
from the Slater-type basis calculations of Cade et al.
(0.95) and Nesbet" (0.89). That basis 1 gives a better
value for the quadrupole moment for Nz indicates a
greater flexibility to represent the outer regions of the
bound and separable wave functions. In Table IV, we give

the values of the a; and b; coefficients for the two scatter-
ing cases.

l. Photoionization leading to the X Xs state of N2+

In Fig. 1 we compare our total photoionization cross
sections for the ionization of the 3as orbital of Nz in the
FN, dipole-length approximations for basis 1 with those
of the STMT and SV' approaches. We obtain very good
agreement with the results of the SV method over the en-
tire range of photon energies. The agreement is also
reasonable with the STMT method except at low energies.
In Fig. 2, we compare our total photoionization cross sec-
tion with the experimental results of Plummer et al. ; in
addition, we present the partial photoionization cross sec-
tions in the o.„and m.„„scattering channels. The FCHF
values are somewhat too high at the position of the reso-
nance (-29 eV) and too low for small photon energies.

TABLE III. Gaussian bases for photoionization of the ground state of N2 at R~ =2.068ao. Conven-
tions as described in Table I.

Center

c.m.

Type

9s /5s
1s

5p /3p
1p
2d
6p.(~. )
6p'. (-'..)

Basis 1

Exponential
coefficient

Ref. 36
0.06
Ref. 36
0.05
0.98,0.16
[0.025,2]
[0.025,2]

Type

9s /4s
6s
5p /3p
2p
2d
4p, (o.„)

Basis 2
Exponential
coefficient

Ref. 36
[16,2]
Ref. 37
[1,2]
1.58,0.47
[4,2]
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TABLE IV. Coefficients a; Rnd b; for the Coulomb Rnd exchange operators [Eq. (22)] for electron
scattering from N2+. The core e refers to the Io.g, 2o.g, Io„,and 2o„orbitals.

Ionized
orbital

3og
Im„„

Scattering
symmetries

(1,1)

(4, —3)

Lucchese et al. ' have shown that better agreement with
experiment can be obtained in both energy regimes by us-

ing a CI target wave function. Still, the FCHF results are
within 30% of experiment over most of the energy range,
and the major features are faithfully reproduced. In Table
V we present selected results for the eigenphase sums, the
partial and total photoionization cross sections, and the
asymmetry parameter calculated with basis I.

%hile the agreement between the dipole-length I.A and
SV results are quite encouraging, there remain some small
differences of the order of 10—20% in the region below
the resonance peak (E~h & 29 CV). At very low photon en-
ergies, the SV results are lower than the I.A ones, while at
intermediate energies (20—25 eV), the trend is reversed.
Most of the difference can be ascribed to the choice of tar-
get wave function. In Table VI, we present a comparison
of eigenphase sums and photoionization cross sections for
the cr„channel employing different forms of the target
and continuum wave functions. For this exercise, we
build on basis 2, which is quite similar to that of Lucchese
et al. ' In case (1) we represent the N2, Nz+, and separ-
able exchange orbitals by basis 2. For case (2) we add a
set of diffuse functions at the c.m. for the separable orbi-
tals and leave the bound N2 and N2+ orbitals in terms of
basis 2. Finally, ill CRsc (3) wc I'cplcscIlt Rll ol'bltals ill 'tlM

augmented basis 2. In all cases, the elgenphase sums
change very little, indicating that the diffuse functions are
not necessary for an accurate description of the continu-
um orbital. This observation is reinforced by noting the
comparatively small change effected in the photoioniza-

tloll cl'oss scct1011 by golllg fl'0111 case (1) to (2). Howcvcl,
the fact that the photoionization cross section at the lower
photon energies changes by as much as 10% between
cases (2) and (3) indicates that diffuse functions are impor-
tant in describing the target wave function. This is similar
to the conclusion we drew from the photoionization of Hz.
We have simply reinforced it here and demonstrated that
it is also valid for larger molecular systems. Similar
differences arise in the It„channel leading to total pho-
toionization cross sections differing by 10—20%.

2. Photoionization leading to the A II„state ofNz+

As a demonstration of our techniques for the photoioni-
zation of the IIr„orbital, we consider only kit„g scatter-
ing. Since we employ Cartesian Gaussians in the descrip-
tion of the various wave functions, the J and Eoperators'
are noncylindrical for scattering in the Irg channel. Thus
this channel provides an opportunity to test the I.A rou-
tines for this more general case. In Fig. 3, we present the
partial photoionization cross section for ionization of the
1Ir„orbital of N2 in the dipole-length and FCHF approxi-
mations. We notice the appearance of a strong resonance
at low photon energies in agreement with the earlier
STMT and SV -calculations. ' This resonance, ho~ever,
is known to be spurious. ' The HF potential improperly
places an excited m. state above the ionization limit. When
proper account is taken of o correlations and o-m. cou-
pling, this feature moves below the ionization threshold.
The resonance feature disappears, and the photoionization

Cl
CI-

CI

A

b C,
b

/

15 17.5 20
I I

22.5 25 27.5 30 32, 5 35 37.5 40
E,„{ev)

FICi. 1. Total cross sections for the photoionization of N2
leading to the X Xg+ state of N&+(3og '). Comparison of
theoretical methods: solid line, LA; dashed line, SV, Ref. 10;
chain-dashed line, STMT, Ref. 6.

16 18 20 22 24 26 28 30 32 34 36 38 40
E „(ev)

FIG. 2. Partial and ~otal cross sections for the photoioniza-
tion of N2 (N2+ X X~ ). Comparison of the LA method and ex-
periment: solid line, total; chain-dashed line, 3o.

g
~ko.„;dashed

line 3o.~~km„,' crosses, expt. (Ref. 40).
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TABLE V. Selected values of the eigenphase sums, partial and total photonization cross sections,
and the asymmetry parameter for the photoionization of N& from the 30.

g orbital in basis 1 leading to
the Xg state of N2+. The ionization energy is 15.6 eV. The parameters for the scattering calculation
are as follows: (1) 0.„, n, =n, =16, nf ——18, (2) m„„, n, =n, =10, nf ——12, r, =r =10ao, n~ 100
[15,40,25,20

~

0.7, 1.5,2.5].

6,„(rad) o.
ph (Mb)

Eph (eV)

16.0
20.0
25.0
27.0
29.0
31.0
35.0
40.0

1.810
1.613
1.600
1.708
1.903
2.162
2.621
2.908

2.108
2.024
1.974
1.959
1.952
1.957
2.007
2.128

2.855
3.464
5.520
6.653
7.293
6.354
2.828
0.670

2.592
2.446
2.881
3.064
3.211
3.307
3 317
3.012

Total

5.447
5.909
8.402
9.717

10.504
9.847
6.145
3.681

1.644
1.142
1.027
0.995
0.942
0.868
0.724
0.693

TABLE VI. Comparison of different constructions of the target and scattering bases for photoioni-
zation of N2 out of the 3o.~ orbital and scattering in the cr„symmetry. Cases presented: (1) basis 2 for
the target and continuum; (2) basis 2 for the target, basis 2+ diffuse c.m. set of basis 1 for continuum;

(3) basis 2+ diffuse set for target and continuum. The scattering parameters for the o.„symmetry are
the same as in Table V.

E „(ev)
16.0
25.0
28.0
30.0
32.5

1.792
1.656
1.838
2.045
2.354

6,„(rad)
(2)

1.794
1.662
1.83S
2.043
2.363

(3)

1.794
1.662
1.835
2.043
2.363

2.704
6.129
7.179
6.929
4.993

O.
ph (Mb)

(2)

2.684
6.155
7.200
7.009
5.045

(3)

2.996
5.665
6.846
6.825
5.063

TABLE VII. Gaussian basis for photoionization of ground
state NO at R eq

=2. 1758o. Conventions are the same as in
Table I.

Exponential
coefficients

TABLE VIII. Selected values of the partial and total pho-
toionization cross section and asymmetry parameter for pho-
toionization of NO from the 2m orbital leading to the X 'X+ sate
of NO+. The ionization potential is 9.26 eV. The scattering pa-
rameters are as follows: (1) o., n, =n, =21, nf ——35; (2) ~„,
n, =n, =12, nf ——21; (3) 6„~, n, =n, =11, nf ——9; r, =r =10ao,
n~ =56 [7,23, 12,14~0.7, 1.5,2.5]. Scattering takes place in the
doublet spin state.

9s /5s
1s

6p /3p
1p
2d
9s /5s
1$

6p /3p
1p
2d
4p„(~„„)
5d„,

Ref. 36
0.05
Ref. 36
0.05
0.98,0.16
Ref. 36
0.05
Ref. 36
0.05
0.80,0.15
[0.025,2]
[0.05,2]

E„h (eV)

10.0
12.0
14.0
16.0
20.0
24.0
28.0
32.0
36.0
40.0

0.437
0.896
1.509
0.714
0.338
0.287
0.261
0.227
0.191
0.163

0.458
0.797
1.099
1.333
1.733
2.069
2.113
1.752
1.263
0.881

0.511
0.833
1.068
1.222
1.398
1.459
1.460
1.396
1.279
1 ~ 145

o.
ph (Mb)

6

1.406
2.526
3.676
3.269
3.469
3.815
3.834
3.375
2.733
2.189

—0.214
0.090
0.179
0.149
0.533
0.794
0.969
1.076
1.139
1.186
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TABLE IX. Gaussian bases for photoionization of ground state CQ2 at Rc o ——2. 1944ao. Conven-

tions as in Table I, where not mentioned, type and coefficient are the same as basis 1.

Center Type

Basis 1

Exponential
coefficient

Basis 2
Exponential

Type coefficient

Basis 3
Exponential

Type coefficient

0

c.m.

9s /Ss

1p
1d
9s /5s
Sp/3p
1p
1d

6p, (0.„)
6p„(m„„)

Ref. 36
Ref. 36
0.05
0.85
Ref. 36
Ref. 36
0.05
0.75
[0.025,2]
[0.02S,2]

Sp/5p Ref. 36

9s/5s

1p
2d
9s/5s
Sp /Sp
lp
1d

Ref. 36
Ref. 36
0.05
0.85,0.15

Ref. 36
Ref. 36
0.OS

0.75

TABLE X. Convergence study: CO2+(4crg ')+ko„ in the
FCHF approximation. The parameters are as follows: n, =18,
nf =23, basis 2, r, =r =10ao [10,14,20, 10,5i0.5, 1.9,2.5,4].
k =Eph —IP.

k (Ry) n, =18
6,„(rad)

n, =22 n, =26 n, =30

1.147
1.514
1.588
1.882

0.682
0.814
0.997
2.401

0.734
0.930
1.1S9
2.503

0.772
1.020
1.282
2.560

0.784
1.049
1.321
2.577

0. h (Mb)

1.147
1.514
1.588
1.882

3.299
5.341
6.385
0.878

3.398
5.722
6.763
0.628

3.474
6.049
6.875
0.525

3.498
6.132
6.884
0.499

TABLE XI. Selected values of the eigenphase sums, partial and total photoionization cross sections,
and asymmetry parameter for photoionization of CO2 from the 4o.

~ orbital leading to the C Xg state of
CO2 . The ionization energy is 19.4 eV. The parameters for the scattering calculation are as follows:
(1) o.„, n, =30, n, =18, nf ——23 (basis 2); (2) m„, n, =n, =14, nf ——15 (basis 1), r, =r =10ao, f/p 59
[10,14,20, 10,5~0.5, 1.9,2.5,4]. Scattering takes place in the singlet spin state.

Eph (eV)
6,„(rad) o.

ph (Mb)
Total

25.0
30.0
35.0
40.0
41.0
41.5
42.0
43.0
44.0
45.0

1.201
0.950
0.784
1.049
1.321
1.510
1.726
2.138
2.416
2.577

1.478
1.237
1.O36
0.932
0.921
0.916
0.9 1.1

0.903
0.895
0.888

2.183
2.876
3.506
6.161
6.992
6.709
5.876
3.135
1.263
0.503

0.462
0.742
1.023
1.242
1.272
1.285
1.296
1.316
1.331
1.341

2.645
3.618
4.529
7.403
8.194
7.994
7.172
4.441
2.594
1.844

1.441
1.596
1.561
1.107
0.848
0.684
0.498
0.146
0.045
0.299
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E,„(=~)
FIG. 3. Partial cross sections for the photoionizatlon of N2

leading to the A II„state of N2+(1m„'). Comparison of
theoretical methods for lm„—+keg: solid line, LA; dashed line,
SV (Ref. 10).

30

C. Photoionization of NO

We consider the following photoionization process for
NO in the ground X II state:

cross section agrees much better with experiment.
Several prescriptions have been proposed and imple-

mented for obtaining a more physical result by directly
modifying the HF potential. The optical potential for-
mulation should also lead to the desired results since the
pI'opcl excited-state corrclatlons and coupllngs arc includ-
ed ln Volt. Unfortunately, Its present restriction 'to a sill-

gle, open scattering channel does not allow an application
to be made to this case since the use of Cartesian Gauss-
ians forces a formulation in terms of two coupled, degen-
erate channels. We are currently developing a set of pro-
grams to handle sets of coupled, open electronic channels.

I

15
I

355 20 25 30 40
E„h(ev)

FIG. 5. Partial and total cross sections for the photoioniza-
tion of NO (NO+ X 'X+ }. Comparison of the I.A method and
experiment: solid line, total; chain-dashed line, 2m ~k~; dashed
line, 2m —+o; dotted line, 2m~k5; crosses, expt. (Ref. 42); trian-

gles, expt. (Ref. 41).

ko
hv+NO NO+(2~-') 'X+ .k~„

Our interest in this process stems from a desire to resolve
the rather large differences between the Stieltjes and
Schwinger results. In Table VII we present the basic pa-
rameters for the Gaussian basis used to describe NO. The
basis produces a total energy of —129.268 a.u. for NO
and a dipole moment of 0.65 a.u. for NO+. Since we are
scattering from a closed-shell ion the coefficients a and
b; are 1 for all orbitals.

In Fig. 4 we compare our total photoionization cross
sections with those of the STMT and SV" methods. Our
results are in very good agreement with those of the
Schwinger variational method. We observe no structure
ln thc lndlvldual partial photoionization CI'oss scctlons as

I

30
I

35105 15 20 25 40
E,„(ev)

FIG. 4. Total cross section for the photoionization of NO
leading to the X'X+ state of NO+(2m '). Comparison of
theoretical methods: solid line, LA; dashed line, SV (Ref. 11);
chain-dashed line STMT (Ref. 7).

C)
I

D

5 10
I

15
I I

20

E,„(ev)
30

FIG. 6. Asymmetry parameter (ITAD) for photoionization of
NO (NO+ X 'X+). Comparison of theoretical and experimental
results: solid line, LA; chain-dashed line, SV (Ref. 11); crosses,
expt. (Ref. 44).
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ization cross section for the m channel in the case that
the continuum solution is determined by the effective
optical-potential approach. This calculation was per-
formed with a limited basis and only meant to demon-
strate the validity of such an approach. Still, it is gratify-
ing to note the appearance of autoionization features.

1.5-—

D. Photoionization of CO2

We consider the following process for photoionization
of the ground X 'Xs state of CO2..

ko.„
hv+CO2~CO2+(4cr ')C X++ '

km „. (30)

5
0.3

I

0.4
)42(Ry)

0.6

FIG. 7. Partial cross sections for the photoionization of NQ
(NO+ X'X+) calculated with the effective-optical-potential ap-

proach (2m~km. ). Abscissa is labeled by photoelectron energy
k in Ry [Ezh ieV)=13.6k +9.26].

L

o

.o
I T

20 22. 5 25 27.5 30 32.5 3 5 37.5 40 42. 5 45 47.5 50
z„„(ev)

FIG. 8. Total cross sections for the photoionization of CO2
leading to the C Xg state of CO2(40.g '). Comparison of
theoretical methods: solid line, LA; dashed line, SV (Ref. 12);
chain-dashed line, STMT (Ref. 8).

is apparent from Fig. 5 where we also compare to the re-
sults of the (e,2e) experiment of Brion and Tan ' and the
synchrotron experiment of Southworth et al. In Fig. 6
we compare our P parameter with that of the SV
method. " Small differences are noted at low photon ener-
gies due to the slightly different positions of the o reso-
nance. The difference can, as with N2, be ascribed to the
choice of the basis. The effect in NO is somewhat more
pronounced since the resonance feature is sharper. We
present selected values of the eigenphase sums, partial and
total photoionization cross sections, and the asymmetry
parameters for photoionization of the 2m. orbital for NO
in Table VIII. Finally, in Fig. 7, we present the photoion-

We are particularly interested in this process since, as with
NO, there are considerable differences between the predic-
tions of the Stieltjes and Schwinger methods. The
Sch iw'nger method predicts a narrow shape resonance at12

about 41 eV in the O.„channel while the Stieltjes calcula-
tions show no such feature.

In Table IX we describe three bases employed to
represent the CQ2, CO2+, and separable exchange orbitals.
For neutral COq, the total energies (quadrupole moment)
are —187.6719 (4.5), —187.6720 (4.26), and —187.6754
( . ) a.u. for bases 1, 2, and 3, respectively. The experi-&3.78'
mental value for the quadrupole moment is 3.20 a.u.
The a; and b; coefficients for the core orbitals are as u
a, (,1), while for the 3crg orbital they are 1 and —1,

state.
respectively. This choice produces a singlet scattering

Before proceeding to a presentation of the results, we
irst demonstrate the efficacy of the single-center expan-

sion and CC approximation for representing the o„
scattering wave function. This symmetry provides the
most strenuous test of this prescription since 30 channels
are required to converge the various scattering and pho-
toionization quantities. In Table X we present a detailed
compilation of the results of our convergence study with
basis 2. We follow the eigenphase sum and partial pho-
toionization cross section as a function of the number of
expansion terms n, retained in Eq. (14a). This choice
translates into the solution of a set of 1 d

'
o coup e integra

equations of order n, . We note that the choice n, =30
produces quantities converged to within 5% or better. We

ave also tested the convergence with respect to the choice
of n„r„r, and nf and found similarly small sensitivi-
ties. These convergence parameters are quite close to
those found by Lucchese and McKoy' with the
Schwinger method. We have also performed o.„calcula-
tions in all three bases. We observe very little sensitivity
to the nature of the basis whether more diffuse or less
contracted.

In Fig. 8 we compare our total photoionization cross
section with those of the SV' and STMT methods the
dipole-length and FCHF approximation. We note that
our results follow quite closely those of the Schwin er
method ' Theme o . e o.„resonant feature is quite apparent in

e c winger

STMT
both calculations at about 41 eV. Gn the th h d heo er an, t e

T shows no feature in this energy regime. As with

2 and NO, there are slight differences between the re-
sults of the I.A and SV calculations. We find the peak
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FIG. 9. Partial and total cross sections for the photoioniza-
tion of CQ2 (CQ2+ C Xg+). Comparison of the LA method with
experiment: solid line, total; chain-dashed line, 4o.

~ ~ko.„,'
dashed line, 4o.~—+km„, crosses, expt. (Ref. 44).

I l I I l I I20 22 5 25 27.5 30 32 5 35 37.5 40 42 5 45 47.5 50
E:„„(ev)

FIG. 10. Asymmetry parameter (ITAD) for the photoioniza-
tion of CQ2 {CQ2+ O'Xg+). Comparison of theoretical and ex-
perimental results: solid line, LA; dashed line, SV (Ref. 12);
crosses, expt. (Ref. 45).

position to be about 41.25 eV while the SV' method re-
turns a result nearer to 41.8 eV. We believe that these
differences can be attributed to the slightly different basis
sets employed and not to any inherent problems with ei-
ther calculation or method. In Fig. 9, we also compare
our total photoionization cross section with the experi-
mental results of Tan and Brion. We note that the ex-
perimental results show no evidence of a resonance. How-
ever, t.ucchese and McKoy have shown that the sharp
resonant peak near 4i eV is damped by the introduction of
correlation into the target wave function and of vibration-
al effects. Therefore, the final verdict is not yet in. How-
ever, the comparison with experiment is somewhat of a
side issue, since in the FCHF and dipole-length approxi-
mations a11 three methods should give the same results.
We present a summary of our results in Table XI. Final-
ly, in Fig. 10, we give a comparison of our P parameters
with that of Lucchese and McKoy. ' Again, taking into
account the slight shift in the resonance position due to a
different choice of basis, the results are in quite good
agreement.

We have extended our linear algebraic method for cal-
culating electron-molecule scattering information to pho-
toionization processes. We have performed calculations at
the fixed-nuclei frozen-core, Hartree-Fock level for the
photoionization of ground state H2, N2, NO, and C02.
We obtained very good agreement in all four cases with

the Schwinger variational results of McKoy and co-
workers. For N2 our calculations agree reasonably well
with those of the STMT; however, for NO and CO2 we
obtain rather different results. We do not reproduce any
of the structure in the total and partial photoionization
cross sections for ionizing the 2m orbital of NO that is re-
ported from the STMT calculations. Also, for the ioniza-
tion of the 4os orbital of CO2, we obtain a sharp shape
resonance in the o.„channel which does not appear in the
STMT results. In addition, we have introduced correla-
tion effects into the elastic scattering channel through an
effective optical potential and obtained autoionizing
features for NO photoionization.
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