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Collisional line broadening due to van der Waals potentials
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The thermally averaged collision-broadened line shape is written in terms of a detuning-
dependent broadening rate y, (A) which is evaluated numerically for van der Waals potentials using
classical straight trajectories. The results are presented in terms of reduced variables that make it
easy to calculate the line shape for any system with arbitrary van der Waals coefficient and tem-
perature. The results show how the line shape makes a smooth transition from a Lorentzian profile
in the impact region to the dramatically asymmetric far line wings. The transition zone is charac-
terized by

~

6
~

Ts —1, where b is the frequency detuning from resonance and Ts is a characteristic
collision duration. The lowest-order correction to the Lorentzian line shape due to finite collision
duration describes the dominant behavior for

~

6
~

Tq —1. The numerical results are compared with

analytic approximations and recent experiments. Averaging over a thermal distribution of relative
velocities is shown to alter the line-shape asymmetry substantially, improving agreement between
theory and experiment. The temperature dependence of the overall line shape is presented and dis-
cussed.

INTRODUCTION

The absorption line shape for an isolated optical transi-
tion in a dilute gas can be written as a generalized
Lorentzian profile with a detuning-dependent collision
broadening rate y, (b, ) (Refs. 1—4):

rtv+X, (~
2~ (b, —5, ) + [Yx+ Y, (0)] /4

where b.=co—coo is the detuning from resonance. The
natural width due to radiative decay is yz, and 5, is the
collision-induced line shift. The detuning dependence of
y, (h) accounts for deviation from a simple Lorentzian
profile for frequencies beyond the impact region. The fre-
quency scale for the variation of y, (h) with detuning is
T~, where T~ is a characteristic collision duration
(Ta —10 ' sec, so that

~

b
~

T~ —1 for
~

b,
~

—5.3 cm ').
Near resonance (

~

6
~
Tz &&1) the broadening rate is ap-

proximately constant, and the generalized profile above
reduces to the familiar Lorentzian line shape of the im-
pact theory. In the far wings of the line (

~

6
~

T~ &&1),
the broadening rate varies with detuning in a complex
fashion that depends critically on the difference between
the upper and lower state interaction potentials, V~(R).

The transition of the collision-broadened line shape
from the Lorentzian profile in the impact region to the
far-wing profiles has received rather little attention in the

literature. One of the few theoretical studies to examine
this transition region is that of Srivastava and Zaidi,
which considered the resonance broadening of a transition
between two excited states due to collisions with identical
atoms in the ground state. In this case there is a pair of
long-range interaction potentials V~(R)=+C3R, and
the far wings are symmetric about line center, falling off
as

~

b.
~

but with an amplitude different from that
predicted by the impact theory.

The situation is dramatically different in the case of
foreign-gas broadening, for which there is a single long-
range difference potential that varies as R due to the
van der Waals interaction. The excited state potential is
typically more attractive than that for the ground state;
this gives rise to asymmetric far line wings, neither of
which falls off as

~

b,
~

. On the quasistatic side (the red
side for an attractive difference potential), the analytic
form for the line shape is

~

b,
~

for van der Waals
broadening, implying that y, (b ) ~

~

b,
~

'~ . On the anti-
static side, the line falls off faster than exponentially in

~

b, ~, reflecting the rapid decrease of y, (h).
In this work, we evaluate the line shape numerically for

broadening by a van der Waals potential using straight
classical trajectories for the atom perturber motion. These
restrictions limit the applicability of the results to systems
with strong van der Waals interactions and detunings not
too far from resonance (ih'

~

b,
~

&&kT). We express the re-
sults in terms of a simple pair of reduced variables so that
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they Inay be applied to a system with arbitrary C6 and
temperature and show that thermal averaging, which has
been omitted from previous theories although it is an in-
herent feature of all experiments, improves the agreement
between the calculated and observed values of the first-
order asymmetry parameter a

&
. Moreover, we show that

this first-order term by itself gives an excellent approxi-
mation to the line shape in the region

~

5 Td —1, thereby
I

bridging the gap between the Lorentzian core and the ana-
lytic approximations valid in the far line wings.

BACKGROUND

The detuning-dependent broadening rate for straight
classical trajectories is'

00 00 2

y, (~)=(n, uf 2mtdb I d(caz[s(()]exp(~( —f d('md[~(( )]' (2)

where the angle brackets denote an average over relative
velocities U, n~ is the perturber density, b is the impact pa-
rameter, and ficod[R(t)] is the difference between the
excited- and ground-state potentials seen on the trajectory
R(t) =(b +v t )' . The broadening rate Eq. (2) can easi-
ly be derived using the ideas of the Anderson model of
line broadening, and it corresponds to the classical limit
of the unified Franck-Condon theory of Szudy and
Baylis. There is also a very close relationship between
Eq. (2) and the rate of collisional transfer between
dressed-atom states.

Yeh and Herman " have presented calculations of the
cross section for collisional transfer between dressed-atom
states due to a van der Waals interaction. Our treatment
differs from theirs in several significant ways: We expli-
citly average over a thermal distribution of collision veloc-
ities and present results for y, (b, ) in terms of an appropri-
ately scaled function valid for any C6 and temperature.
Peach' has given numerical data from which complete
line shapes for van der Waals broadening can be calculat-

I

y, (b ) = tv, h8mR, gI(ATd )., (3)

~he~e v,h
——(2kT/p)' ' is the most probable relative velo-

city, and R,h =(
~
C6

~

/v[h)' is an effective collision ra-
dius. The detuning dependence is now contained in the
dimensionless function I(A Td ):

ed using the Anderson model. That approach has the
merit of being applicable at high perturber pressures (as-
suming scalar additivity to go beyond the binary collision
approximation), but an additional integration must be
done to calculate the line shape. Our approach [Eqs. (1)
and (2)], while limited to the binary collision regime,
directly yields the line shape in terms of the collision
damping rate y, (b, ).

For an attractive van der Waals difference potential
cod(R) = —

~
C6

~

R, the broadening rate scaled in terms
of simple dimensionless parameters yields a single curve
for arbitrary

~
C6

~

and temperature:

oo n./2
I(I,Td)= f u exp( —u2)du f c& r f d8cos (8)cos[p(8)] (4)

where

6Td r tanO
g(@)=

D

w, (e)
+

ur

The dimensionless variables are u =v /U, h, r =b /R, h,
tanO=Ut/b. The function 8 6 is

38 sin(28) sin(49)
8 4 32

+

In Eq. (4) the integral over u is the Maxwell-Boltzmann
velocity average, the integral over r is the impact parame-
ter integration, and the integral over 0 is the time integra-
tion for a trajectory with given impact parameter and
velocity. We have written I(ATd ) explicitly as a function
of 6Td, the product of the detuning and the collision
duration„where Td is defined by Td ——-R,h/U, h=

~
C6

~

'~ v,h . We concentrate on the intermediate de-
tuning range

~

ETd
~

—1 where the transition between the
impact region (~ETd

~

«1) and the far line wings

COMPUTATIONAL METHOD

The numerical problem is to calculate I(ETd ) in Eq. (4)
as a function of the parameter b Td. Of the three integra-
tions involved, only the impact parameter (r) integration
is difficult, owing to the rapid oscillations of the integrand
at small impact parameter. The integral over 0 was done
by Simpson's rule using 600 evenly spaced points, and the
integral over u (velocity average) was done by a six-point
Gaussian method (Gauss-Laguerre). Fortunately, for
6=0, each stage of the numerical evaluation could be
tested against exact analytic expressions. This was very
useful for determining appropriate step sizes and trunca-
tion techniques.

The impact parameter (r) integral was done by integrat-
ing towards r =0 starting with a maximum valuer,„=2.2 and using the trapezoidal rule with an initial in-
terval kr =0.005. The interval was decreased each time
the slope of the integrand changed sign until the sixth
zero of the integrand was reached (see Fig. 1). For smaller
impact parameters the oscillations were too rapid to fol-
low, and a random-phase approximation was used. The
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side of the line (b, &0), we expect the error to be compar-
ably small (certainly & 1%) because our two estimates o
the small impact parameter contribution to I(b, Td) agree
well and the other two integrations (O, u) present no diffi-
culty. On the antistatic side of the line (h&0), the es-
timated error remains & 1% for b, Td & 1, but rapidly in-
creases for b Td & 1 due to the difficulty of determining
the contribution from small impact parameters. For
ATd =2.4 we estimate & S%%uo error in the value of I(ETd ).
Thus we could not push the calculations to large positive
AT~ where the broadening rate decreases exponentially.
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FIG. 1. Relative contributions to the broadening rate y, (A)
from various impact parameters are shown for a fixed collision
velocity (v=2.403v,q) and three detunings: ATd ———2 (upper
curve), ATd ——0 (central curve), and ATd ——+2 (lower curve).
The left portions of these curves (b/R, q &0.42) show two esti-
mates of the envelope of the rapid oscillations which occur for
small impact parameters; the solid curve is a quartic polynomial
and the dashed curve is a cubic spline.

0.0
0.0 I.OQ4

envelope of these rapid oscillations was approximateu in
(1) quartic polynomial was constrained to go

through the origin with the correct slope and t roug
the last calculated maximum with a slope and curvature
determined by the neighboring maxima; (2) a cubic spline
straight at the ends) was connected through all calculated

maxima and through the origin. These two approxima-
tions are illustrated in Fig. 1. We believe that the quartic
polynomial is somewhat more accurate because it has the
correct slope at the origin, and therefore use the quartic

t f the presentation of our results in the
next section. A comparison of the results of the two ap-
proximations provides a rough estimate of the error in
I(b, Td ).

The error in our numerical calculations is known pre-
cise y on y or1 1 f 6=0 where the net relative error in the
calculated value of I(0) is =3&& 10 . On the quasistatic

RESULTS AND DISCUSSION
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FIG. 2. Dimensionless function I(A Td ) defined by Eqs.
(4)—(6) is shown. The broadening rate y, (h) can be determined
from this curve using Eq. (3). Numerically calculated points
(+ ) are connected by a cubic spline (solid curve); the dotted line
is a linear Taylor-series approximation for sma AT and
the dashed lines are asymptotic approximations for Td 1.

The detuning dependence of the broadening rate y, 6)
for attractive van der Waals difference potentials is illus-
trated in Fig. 2. The calculated points (+ ) are shown
connected by a cubic spline (solid curve). There is a stri-

and blue (6 & 0)ing asymmetry between the red (b &0) an ue
sides of the line. The basic reason for this asymmetry is

'
ls shift thethat during a collision the interatomic potentia s s i e

transition frequency monotonically towar s the red the

the asymmetry would be reversed for a repulsive differ-
ence potential). The fact that the broadening rate exhibits
a strong dependence on detuning implies that the absorp-
tion profile deviates substantially from a pure Lorentzian
shape [for a pure Lorentzian I(h Td ) =I(0), a constant].

Near resonance (
I
ETd

I
& 1), the broadening rate varies

linearly with detuning producing asymmetry in the near
wings o t e ine.f th 1' e ' ' Our numerical calculations agree
very well with the Taylor-series expansion of Eq. (4) up to
the term linear in AT~ [I(b,Td)=0.3380—0.2245 6Td].
The linear approximation (dotted line in Fig. 2) corre-
sponds to the impact limit (

I
b Td

I
0) plus the lowest-

order correction due to the finite collision duration. It is
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FIG. 3. Temperature dependence of y, (h) is illustrated. The
parameters have been chosen such that Tq

' corresponds to 5
cm ' at T=400 K. The relative broadening rate shown is the
ratio of y, (b;T) to y, (6=0;T=400 K). The quasistatic ap-
proximation is temperature independent and is shown as a
dashed line.

remarkably accurate for —1.5 & b, T~ & 0.5, accounting for
much of the transition between the impact region
(

I
b, Tg

I
« 1) and the far line wiilgs (

~ AT/ ~

&& 1).
On the red side of the line (b, & 0), the numerical calcu-

lations rapidly approach the quasistatic approximation
(dashed line on the left of Fig. 2). The quasistatic approx-
imation [I(b T~)=(ir/6)

~

AT~
~

' ] is obtained by evaluat-
ing Eq. (4) by the method of stationary phase; it amounts
to the assertion that absorption occurs only during a col-
lision near the point where the interatomic potentials shift
the transition frequency into resonance: 5=co~(R )

= —
~

C6
~

R . The quasistatic approximation is quite
accurate; the error is of order

~

6T~ ~, and amounts to
only —3% for hT~ ———2. This rapid transition to the
quasistatic line shape has been observed experimentally. '

On the blue side of the line (5 & 0), the broadening rate
rapidly decreases because the interatomic potentials shift
the transition frequency away from resonance; i.e., there
are no real roots to the resonance condition
b, =co~(R) = —

~
C6

~

R when b, & 0. The theoretical
asymptote for AT~ &&1 falls off exponentially:

I(AT~)=0. 8464(AT~)' exp[ —2. 1341(b,T~) ] .

The numerical calculations for b, T~ & 1 are fairly close to
this expected asymptotic behavior (dashed line to the right
of Fig. 2), but this situation is somewhat fortuitous be-
cause the error in the asymptotic expression is of order

~

b Tq ~, i.e., the approach to the asymptote is expect-
ed to be rather slow. We suspect that the true curve
I(b, Tq) passes below the asymptote near b Tz ——3, but we
were unable to reliably test the asymptotic behavior due to
the difficulty of calculating the contribution from small
impact parameters.

We now consider the temperature dependence of the
broadening rate y, (b, ). This dependence is obtained using
Eq. (3) and the calculated curve I(AT~). Accordingly, the
broadening rate as a function of temperature is obtained

by scaling the ordinate of the universal curve I(b, T~) byT, and the abscissa by T . The temperature depen-
dence is illustrated in Fig. 3 (we have chosen parameters
typical of alkali-metal-atom —heavy-rare-gas interactions).
On the red side of the line (6 &0), the broadening rate be-
comes temperature independent, approaching the quasi-
static approximation (dashed curve in Fig. 3). At line
center, y, (0) increases at T in agreement with the usual
impact theory. The slope of y, (b, ) near b, =0 decreases
with increasing temperature as T ', and the zone of
transition between the impact region and the far line
wings moves to increasingly large detunings from reso-
nance as T (since this zone is characterized by

~

b, T& —1). On the blue side of the line (b, & 0), y, (A) in-
creases sharply with temperature because it is primarily
the high velocity collisions which contribute to the ab-
sorption on the antistatic wing. The fact that the col-
lisions responsible for line broadening have a velocity
dependence that varies with detuning makes it important
to average over the thermal distribution of relative veloci-
ties in order to obtain the correct line shape. Velocity
averaging is most important for antistatic regions of the
line owing to the strong velocity dependence there.

The broadening rate near resonance (
I
b T~

~
& 1) may

be written in the intuitively appealing forin
y, (h)=y, (0)(1+aid, T~) where y, (0) is the Lorentzian
width (full width at half maximum) of the impact theory,
T~ is a characteristic collision duration, and a~ is a nu-
merical coefficient. The value of the numerical coefficient
depends on the definition of the collision duration T~.
For our definition Tq =

~

C6
~

'~ v,h with
U,h (2kT!p)'~——, the calculation yields ai ———0.664. In
the experiment of Walkup et al. ' the collision duration
was defined in terms of the impact broadening rate and
the rrns relative velocity: T~ =Rb Iv, where

y, (0)=nzirRbu~„and U, =(3kT/p) . With these
definitions, y, (h) =y, (0)(1+a'ihT&), where a i

———0.547
for attractive van der Waals broadening. This compares
favorably with the average value of a~ reported experi-
mentally: a'i(expt)= —0.53+0.08 where the average is
over the heavy perturbers Ar, Kr, and Xe and both of the
Na D lines. '

We emphasize that the asymmetry in the near wings is
sensitive to velocity averaging since the lower velocity col-
lisions have a longer effective collision duration. Predic-
tions of near-wing asymmetry that do not use the proper
velocity average ' ' thus generally underestimate the
asymmetry; using a constant relative velocity, one would
predict a i

———0.420, a value significantly different from
the velocity-averaged result of a

&
———0.547 for attractive

van der Waals broadening.

CONCLUSIONS

Interaction by van der Waals potentials produces a
strongly detuning-dependent collision broadening rate

y, (b, ). Near resonance (
~

bT~
I

&1), y, (h) is well ap-
proxirnated by the impact broadening rate plus a linear
correction due to the finite collision duration:

y, (b.)=y, (0)(1+aid, T~). The linear term accounts for
the asymmetry in the near line wings, and it describes the
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dominant behavior of y, (h) in the intermediate zone
(

~

b, Td
~

—1) between the impact region and the far line
wings. The goodness of the linear approximation is relat-
ed to the presence of a smooth monotonic potential. For
systems where both the long-range attractive and short-
range repulsive parts of the potentials contribute, a more
colTlplex behavior is to be expected, even in the near line
wings (see for example the Na-N2 data of Jongerius
et al. ' ). The broadening rate for van der Waals poten-
tials makes a smooth transition (with no undulations)
from the linear behavior near resonance to the asymptotic

behavior of the far line wings (
~
ETd

~
&&1). The quasi-

static approximation is quite good even for moderate
values of

~

b.Td ~; the error is &3% for
~

b, Tq
~

&2.
Averaging over a thermal distribution of relative velocities
substantially affects the line shape near resonance and
particularly on the antistatic far wing.
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