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Eigenvalue problem of the square of the pulse area for two-level systems
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This paper analyzes the dynamics of two-level systems from a new perspective. The notion of
eigenvalues (EV) of the pulse area squared, which was introduced in a previous paper, is developed

further. Integral expressions for the eigenvalues in terms of eigenfunctions are exhibited, and it is

pointed out that these formulas also enable one to estimate EV variationally. Examples are given of
how the method may be used to predict qualitative features of two-level spectra without solving

equations of motion. Finally, an expression for the transition amplitude in terms of an eigenfunc-

tion expansion is derived. It is suggested that this expansion may be useful for both numerical

determinations of transition probabilities and for analytic, variational calculations of these parame-

ters. As an application, an expression for the transition probability at small detunings for a rather

general class of coupling functions is derived, and its predictions compared to exact numerical cal-

culations in a specific case.

I. INTRODUCTION

The study of the dynamics of a two-level atom coupled
by an external, time-dependent field is more than 50 years
old, but continues to be of interest to physicists. ' ' This
is the simplest, explicitly time-dependent problem in

quantum mechanics, yet it represents an accurate approxi-
mation to a variety of actual systems in different physical
contexts, Our purpose in writing the present paper is to
deepen an approach to this problem first presented in a re-
cent article. This is the A eigenvalue method.

With the exception of a few particular pulse shapes,
closed-form solutions to two-lcvcl problems ale not
known. ' Recently, Bambini and Herman (BB)
discovered a set of coupling functions for which the two-
state equations of motion could be solved analytically.
The hyperbolic secant of Rosen and Zener is a special case
of their family. All members of the class, with the excep-
tion of the hyperbolic secant, are temporally asymmetric.
For these functions, Bambini and Berman found that
there are no coupling strengths where I', the transition
probability generated by the external potential, vanishes,
unless the system frequency is resonant with the field.
This 1S 1n sharp distinction to thc hypcrbo11c secant, where
P=O for pulse areas that are integral multiples of tr, re-
gardless of the detuning. It is also known from numeri-
cal solutions, for example, that temporally symmetric
pulses other than the hyperbolic secant possess pulse areas
for which nonresonant transition probabilities vanish.

The foregoing raised the question of whether it was true
in general that symmetric pulses possess, and asymmetric
pulses lack, nodes in the transition probability as a func-
tion of pulse area. Robinson addressed this question by
reexpressing the equations of motion in terms of an eigen-
value (EV) problem for A, the square of the pulse area.
By determining under what conditions these EV weI'e real
or complex, it was possible to generalize the BB result to
all smooth pulses. I showed that the syInmetric-

asymmetric dichotomy is a consequence of the structure
of the equations of motion for a two-level system, and was
not peculiar to pulses of the BB type. My conclusions
were that symmetric pulses always have nodes, but asyrn-
metric pulses do not, except under over-determined cir-
cuIIlstanccs.

This generalization of BB rested upon some trivial
properties of the EV which could be discerned by inspec-
tion. This was a much easier task than actually solving
equations of motion. It is to the problem of calculating
EV that I address my attention in the present paper. I
shall point out how one may perform accurate, approxi-
mate calculations of those A for which P vanishes, and
present exaInples where this know1edge provides partial
understanding of the spectra of two-level atoms. While
more involved than determining whether or not A is real,
these EV calculations are still much simpler than the corn-
plete determination of the two-level amplitudes, especially
since, in some cases, i.t may not be necessary to actually
evaluate those integrals which appear in expressions for
EV. One may be able to infer the relevant dependence of
the spectrum on coupling potential parameters and detun-
ing from the form of the integrals alone.

Finally, I shaH demonstrate how to express transition
amphtudes in terms of the eigenvalues and their associat-
ed eigenfunctions. This may prove useful in future nu-
merical calculations where one wishes to determine the
probability of absorption for a very large number of pulse
areas. It also serves as the basis for variational estimates
of transition probabilities.

II. THE EIGENVALUE PRQBLEM AND ITS
VARIATIONAL APPROXIMATION

For convenience, I review the basic theory. The timc-
dependent Schrodinger equation for a two-level system is
a pair of coupled first-order equations for the state ampli-
tudes a l and a2. For real potentials, these are
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iQ I
——V(t)e' 'Q2,

iQ2=V(t)e ' 'Q, , (lb)

where we have set fi= 1, and made the rotating wave ap-
proximation. The detuning of the system from exact reso-
nance is designated by h. Equations (1) are to be solved
subject to the initial conditions that a1 ——1, a2 ——0 as
t~ —oo. They may be written as a pair of uncoupled
second-order equations

QI — +IS Q I + V Q I =0,
V

J

a2 ———iA a2+ V a2 —0.
V

(2b)

where the prime denotes differentiation with respect to z.
Recalling the transformation

I ~ dz
a2 ——b2exp

2 o f(z')
=b2exp( i ht /2), —

I ~ Z
a1 ——b1exp +—

2 o f(z') = &I exp(+i b I/2),

we obtain the normal form of Eqs. (3)

if'b,
b,"— —— bl ——A bl,4f' 2f' (4a)

—b2—
4f2 2f2

Equation (3a) is to be solved subject to the initial condi-
tions Q2( ——,

'
) =0, Q2( ——,

'
) = iAe'&, p real b—ut arbitrary.

For certain A, which we designate A„, the EV of Eqs.
(3b) or (4b), Q2( —,

'
) also vanishes. Now the A„are real if

f(I) is temporally symmetric, while they are ordinarily
complex for asymmetric potentials and 5&0. We desig-
llatc tllc clgc11fllIlct1011s colYcspolldlng to A„as Q 2„aIld
b2„, respectively, in the representations of Eqs. (3) and (4).
I shall restrict the remainder of the discussion to poten-
tials that are symmetric in the time (and in z).

Equation (4b) resembles a one-dimensional, time-
1ndcpcndcIlt Schrodinger equation for a partlclc moving
under the influence of a complex "potential. " Because of
the non-Hermiticity of the operator that plays the role

Consider now only envelope functions which are of a sin-
gle algebraic sign, a somewhat weaker restriction than that
imposed in Ref. 9, where it was assumed that f varied
smoothly. The imposed condition guarantees the single
valuedness of the transformation z= f f(t')dt'+ —,,
where f is the reduced envelope, f(t)= V(t)/A, and A is
the pulse area defined as A = f V(t)dt. In the z plane
Eqs. (2) become

iA
a1 a1 +3 a1 —0

analogous to the Hamiltonian, there may be a lack of fa-
miliarity among physicists as to which integrals express
the orthogonality of eigenfunctions, of how to calculate
expectation values, etc. A brief discussion of these prop-
erties is given by Morse and Feshbach, " and we summa-
rize the relevant portions for the convenience of the
reader.

Thc opcI'atoI's

d 6 if'5
d 4f 2f

k

r

if 'b,

4f2 2f2

have eigenfunctions, respectively, b„and b„, with clgcn
values An and Ari Thes«orm a co~piete, biorthogonal
sct, whcIc thc orthogonality condlt1on Is

1/2f b*„b dz=0, m~n .

If the b„are normalized according to
1/2f b '„b„dz=1,

the eigenfunctions form a complete biorthonormal set,
and the eigenvalues may be expressed as expectation
values.

In general, if I. is a non-Hermitian operator, its eigen-
functions and those of I.* are not complex conjugates of
each other. In the present case, b„=b„,so that the ortho-
normallty coIldltlo11 ls f (6g ) &ypgdz =fl~pg = f &gbppgdz

As I have indicated, the discussion will be restricted to
the case of temporally symmetric pulses. A„ is given by

If b„ is exact, the expression in Eq. (5) gives A„without
error. One may also interpret Eq. (5) as a variational prin-
ciple for the square of the pulse area eigenvalue, with b„a
trial function containing adjustable parameters. If b„ is
allowed to be arbitrarily flexible, the Euler-Lagrange
equation that is generated is just Eq. (4b). If b„ is a func-
tion of a finite number of parameters, Eq. (5) provides a
variational approximation for the eigenvalues of (4b). One
may also write the variational principle in terms of the
function Q„=b„exp( i ht/2) as—

1/2 .~ 1/2 a„a„
Q~Q„e dz —lk f e dz—I f2 —I /2 f

f 1/2
a e dz—1/2

or, integrating the first term by parts

1/2f Qge dZ—1/2

f Q e'a'dz
—1/2

where the tilde indicates an unnormalized eigenfunction.
Note that the quadratic factors involve the squares of a„
and its derivative, and are not squares of absolute values.
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III. APPLICATION OF THE EIGENVALUE METHOD
a,(~)= g ( —1) a',

k=0
(9a)

In this section, I shall demonstrate how the eigenvalue
method can be useful in helping to predict the qualitative
dependence of two-level spectra on the parameters of the
coupling potential. I shall address the question of the va-
lidity of the Rosen-Zener conjecture for temporally sym-
metric pulses and small detunings.

When Rosen and Zener solved the two-level system for
the hyperbolic secant coupling pulse, they found a very
simple expression for the transition probability as a func-
tion of detuning and pulse area, namely,

P=2m
i

V(A)
i

where V is the Fourier transform of V(t)=Af(t). They
surmised that Eq. (8) might be true for all smooth cou-
pling functions, provided that the Fourier transform of
the actual potential is used in place of that of the hyper-
bolic secant. This is an attractive idea, since Eq. (8) does
hold for all coupling potentials on resonance, and off reso-
nance in the limit where first-order perturbation theory is
valid. It is now known that their suggestion is incorrect.
It is manifestly false for temporally asymmetric poten-
tials ' and has been explicitly shown not to apply to sym-
metric pulses at large detunings for couplings other than
the hyperbolic secant, where asymptotically exact expres-
sions have been derived. ' Since it does hold for b, =O,
however, one might expect a region of approximate validi-
ty of the conjecture for symmetric pulses at small detun-
ings. I shall establish that this is indeed the case, in the
sense that corrections are O(b ) for many, but not all,
f(t). Some preliminary analysis is necessary before we ar-
rive at the role the eigenvalue method plays in this.

We may write a perturbation series for the transition
amplitude

(1) ~

Q2 = —l

(2k+1)a2

f V(t) )e 'dt),

—i Vt1e
2k+1

X g f' V(t)e
J=2

(9b)

This series converges absolutely for all A finite. ' For
symmetric pulses, each term in Eq. (9b) is a pure imag-
inary (see Appendix C), so that one may replace the ex-

ponential factors in the integrals by cosines, so that the
a 2

+ ' are all invariant under a change of sign in b, . It is
convenient to rewrite Eq. (9a) in the form

/

( 1)k (2k+1)
Q2

Q2 k=1R: (1):1 +
Q2

(1)
Q2

(10)

a2(b, )= a2" (6)+O(b, ) .

One can easily show that a sufficient condition for R to
be differentiable at resonance is that V(co), the Fourier
transform of V(t) be differentiable at co=0. Recalling
that third- and higher-order terms of the perturbation ex-

pansion may be written in the frequency domain, in
terms off(co), the Fourier transform of f(t), we have

The ratio of the amplitudes a2/a2 ' ——R is similarly an
even function of the detuning. If a representation of R as
a power series in 6 exists, it is clear that only even powers
of the detuning are present. In general then, if R is dif-
ferentiable with respect to 6, at 6=0, we may write
R(h)=R(b, =O)+O(b, ). Since R(b, =O)=(sinA)/A for
arbitrary coupling potentials, we immediately find that if
the derivative with respect to b, of R at b, =O exists, then
the Rosen-Zener conjecture is valid with a correction term
of order 6, i.e.,

1 2k+1 2k+1

{co, i A+ —,
' [—1+(, —I)'+']XI

l=j

Making the change of variable b,vj=coj,

(12)

(2k+1) ~ j DO 2k+1
aq ——hm

k dv2 dvzk+g g
)k —1/2

f(bvj )2k+1

2k+1
g I v, i A+ ,

' [1+—( —1,
)'+—']

I

(13)

The derivative of the transition amplitude with respect to
b, contains factors proportional to f'(bv). Since if f'(0)
exists, it is zero by symmetry, the leading correction will
be of second order.

The foregoing implies that if the first derivative of the
Fourier transform does not exist at zero detuning, the

I

leading correction to the Rosen-Zener conjecture will be
first order in

~

b,
~

. An exception will occur if the contri-
bution to the linear terms in the derivatives of a2 and a2"
exactly cancel. Intuitively, the possibility of this happen-

ing seems to be remote, but it would be useful if one could
nonlaboriously verify the presence of linear corrections.
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The variational method for calculating the eigenvalues
provides an opportunity to check the dependence at small
detumngs of the corrections to the Rosen-Zener conjec-
ture, since these will manifest themselves in EV shifts.
The presence of an eigenvalue shift proportional to b, can-
not be the signature of quadratic corrections to the expres-
sion for the transition amplitude.

As Rn example, wc examiIlc thc case of thc I orcntzian,
whose Fourier transform, f=e /V2~ is manifestly
nondifferentiable at b, =0. At resonance, the first node in
the transition amplitude occurs, of course, for a pulse area
of rr. For the purpose at hand, it is sufficient to demon-
strate that, for small b., there is a linear correction in this
first eigenvalue. The resonant normalized eigenfunction is
~2/[m(1+t )]'~ . Off resonance, we choose a trial un-
normalized eigenfunction of the form

e
—iht 1

( I +t2)1/I 1+ 2t2

[The factor (1+a t )
' is needed to render one of the in-

tegrals in Eq. (7) convergent. No such factor is required
on resonance, since inverse powers off are removed when
a is differentiated with respect to time. j We have thus
constructed a single-parameter trial function. In general
then, our variational estimate of A will be a function of u
and A. If we were interested in maximizing the accuracy
of the calculation of the EV, we would optimize with
respect to u. In the present case, it is much simpler and
sufficient to perform a nonoptimal calculation by evaluat-
ing the integrals, passing to the limit of a~0, and retain-
ing only terms linear in h. The results for the integration
RI'c glvcIl ln Appcndlx A. I find that thc smallest 3 that
corresponds to a vanishing transition probability is given
by

~2 21+31~ I

1+ (b,
J

It turns out, incidentally, that this crude trial function
glvcs 8 lcsUlt that ls 8 surprlslngly accurate RpproxlIYlatlon
to the eigenvalue. For 6=0.1, Yeh and Herman' have
performed numerical calculations of the transition ampli-
tude for a Lorentzian pulse as a function of pulse area.
Their values aI'e exhibited in Table I. To within the
author's ability to interpolate, the eigenvalue deduced
from the table is in exact agreement with that calculated
from Eq. (15).

The EV method is also of value in establishing certain
characteristics of the spectrum for potentials whose
Fourier transforms are differentiable at 6=0. I have pre-
viously shown that the leading correction term to the
Roscn-ZcIlcl con)ccture ls of order 6 by IDcans of 8 pcI'-
turbation expansion for the transition amplitude. That is,

An important question that remains is whether or not the
coefficient of b, remains small for all pulse areas, or
whether for sufficiently large A, it grows and eventually
dominates ovci' flic term (slIL4 )/A. SIncc tlM Roscil-ZcIlc1
surmise is exact in the limit where first-order perturbation

0. Im

0.2m'

0.3m.

0.4m.

0.5m

0.6m

0.7m

0.8m

0.9m

1.(br

l. 1m

1.2m

1.3m

1.4~
1.5m

0.077
0.282
0.546
0.782
0.911
0.892
0.731
0.483
0.229
0.050
0.002
0.093
0.286
0.511
0.689

theory is valid, the leading correction term in the coeffi-
cient of 5 is proportional to A, and so that it is trivially
tlUc that, foI' sIDall 5, onc may Usc thc Roscn-ZcIlcI ex-
pression for transition amplitudes with impunity, provid-
ed that one is in a regime of interaction strengths where
third-order theory would be correct. Our goal is to go fur-
ther than this lcvcl of approximation. Wc again Usc oUI'

variational method for estimating A eigenvalues to show,
approximately, that the coefficient of b, does not grow
with 3 relative to (sinA)/2 so that the smallness of the

coefficient applies to general theories, not just those
correct to third order.

Again, let us choose a trial function which reduces to
the known resonant a„,

ar ——e ' 'sin nor f f(t')dt' p(a, t) .

The factor p(a, t) assumes the role of guaranteeing con-
vergence that I/(I+a t ) did in the specific case of the
Lorentzian. If the Fourier transform f(co) has a vanish-
ing derivative at zero detuning, the eigenvalue will be of
the form n m —s 6 where the limit +~0 is taken after
the integrals are performed. We obtain

f e ' 'dt n rr f(t)cos

f e '~'dtf(t)sin'

nerf f(t')dt'—

For n ~ ao (large pulse areas), we replace
slIl n&z, cos nmz by thclr Rvclagcs, so that thc corrcctloIl
tcrlDs ln thc clgcnvalUc cxplcssloIl bccoII1c lndcpcIldcnt of
n. That is, the correction terms do not depend on pulse
area to the extent that the variational approximation is
vahd, i.e., the roots of a2/a2 are all displaced essentially
the same. This could hardly be so if the full correction
term grew strongly with pulse area. Robiscoe has recent-

TABLE I. Transition probability
~
a2( «a )

~

for a Lorentzian
pulse, V={A/m)(1+t )

' at detuning 6=0.1.

Transition probability
~
a2(0D )

~

'
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ly studied this question perturbativcly through third order.
He also gives an expression for the leading term of the b,

correction.
I checked my conclusion by performing calculations of

the transition amplitude as a function of detuning and
pulse area for the potential,

IV. AN EIGENFUNCTION EXPANSION
FOR TRANSITION

AMPI. ITUDES

As noted above, the set of functions b„(or, equivalently,
Q~) is colllplctc. Accordingly, ollc Illay llsc lt, as a basis fol'

expanding unknown functions. In particular, if b2 is the
solution to Eq. (4b) for a value of A that does not corre-
spolld to all clgcilvaluc, wc nlay express tllls fllllctloll 111

terms of. the eigenfunctions in the range ——, (z & —,. The
transition amplitude b2( —, ) may be deduced from the ex-

pansion by standard mathematical proccdurcs. This ap-
proach may prove more efficient, for example, than direct
solution in calculating transition amplitudes numerically,
if one wishes to find transition probabilities for a very
large number of pulse areas, since the amount of numeri-
cal work will depend on the number of eigenfunctions
needed for convergence, not on the number of pulse areas
to be analyzed. The formal methodology is strongly rem-
iniscent of the R-matrix approach to scattering theory. '

Let b„represent an eigenfunction that is normalized to
unity. The expansion of b2 may be written

b2(z) = g a„b„(z)= g b„(z) J b„(z')b2(z')dz' .

The equations of motion for b„,b2 are

if'b, b, 2—b2' — + b2 ——A b2,
2f 4f

+2

2f2 4f2

(20a)

Multiply Eq. (20a) by b„, Eq. (20b) by b2, subtract and in-
tegrate over all allowed z. This yields

V=A sech
2T T'

thc squa1c of thc hyperbolic secant. For th1s potcnt1al, thc
equations of motion Eq. (2) can be solved analytically, '

although no simple formula for a2 analogous to Eq. (8)
for the Rosen-Zener linear hyperbohc secant has been de-
rived. Our results indicate that for sech m r /T, the
Rosen-Zener conjecture is an accurate approximation, at
least for pulse areas up to 6' and b, T ~ 2m. (If one wished
to solve this problem perturbatively for 3 =6m, a series of
about 50 terms would be required for convergence, so that
it is evident that the smallness of 6 correction persists
beyond low order. )

a result obtained from Green's theorem. We have, for the
boundary conditions b2( ——,

'
) =b„(——, ) =b„(+—,

'
) =0,

b2( —,
' )b„'( —, )

A

b2(z)= ga„b„(z)

b„'( —,
' )b„(z)

=b, (-,') g
A —A„

b2(z)
b2( —,)=

y [b„'(—,
' )b„(z)/(A' —A„')]

Now for sufficiently early times, first-order perturbation
theory holds for all pulse areas, so that

AC2(z)
b2( —,

'
) = lim

z —1/2 g [b' ( —)b (z)/(g g )]

g [b„(z)b„'(z')/ —A„]
lim

g [b„(z)b„'(z')/(32 —A2)]
z' —++1f2

We may approach Eq. (24) from two perspectives. For
numerical calculations, it clearly provides an alternative to
a direct solution of the equations of motion. Instead of
solving Eq. (3) anew for each pulse area, one solves for a
sufficient number of eigenfunctions and eigenvalues to ob-
tain convergence in Eq. (24). This procedure yields the
transition amplitude for all pulse areas at once, and, if it is
desired to obtain answers for a large number of coupling
strengths, is much more efficient than repetitive, direct
solutions.

Equation (24) also leads to an approximation scheme
for b2( —,'). The summations are very closely related to
Green's functions. That is, the Green's function G(A, ,z,z')
is defined by

b„(z)b„(z')
G(z,z,z') = g X—A~

so that Eq. (24) for b2( —,
'

) may be written

(25)

Equation (22) holds for all pulse areas, so that it is valid in
the limit of weak potential strengths where first-order per-
turbation theory holds. If we designate b2 '(z)=Ac2(z),
the first-order approximation to b2(z), then

c2(z)
c2( —,

'
) =

y [b„'(—,)b„(z)/( —3„)]

—(bzb. —b2b") =(~'—~')b2bn (2la)
1/2

(b2b„b2b„')
~

=+if=(A —A„) f b (z)b„(z)dz,

(2lb)

, G(0,z,z')

b2( —,
'

) =b2" ( —,
'

) lim
z —1/2

, G(A, z,z')
(26)
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The Green's function satisfies the equation
r

(27)

It is, of course, at least as difficult to solve Eq. (27) for
G(A, ,z,z') exactly as it is to solve Eq. (3). However, there
exist variational princip1es that enable one to approximate
Green's functions. " If G and GT represent the Green's
function and a trial estimate, respectively, with
AG =6—GT, then

1/2
6=26T+ z" GT A, ,z,z" L. —A, G~,z",z'

+O((&G)'), (2g)

where i. is the operator on the left side of Eq. (4b).
As a simple application of Eq. (28), I present an expres-

sion for the transition amphtude at small detunings for
pulse shapes that are symmetric in time, and whose
Fourier transforms are differentiable at zero frequency.
At 6=0, the eigenvalues A„=n m, while, for small de-
tunings, it is shown in Appendix 8 that they are given by
A„=n m —s 6, where the shift parameter s is approxi-
mately independent of n, and is a function of the pulse
shape. For the hyperbolic secant of Rosen and Zener,
s=0, while for the rectangular pulse, s is rigorously in-
dependent of n and there are no correction terms of higher
order than second in A. It is shown in Appendix 0 that
the transition amplitude for this case is approximately
glvcn lay

b2=b'2" I [sin(A +6 s )'~ ]/(2 +5 s )'~ I(hs)/stnhs,

(29)

a formula which is exact for the hyperbolic secant and
rectangular pulses and for all symmetric pulses with dif-
ferentiable Fourier transforms in the weak coupling re-
gime. To test its usefulness in other cases, I have com-
pared its predictions with the numerical calculations of
Yeh and Herman' for the case of the envelope function
f(t) =(m /2)sech ~t, at detuning 5=4. The results, which
are prcscntcd ln Table II, show 1cmarkably good agree-
ment, cspcciaHy considering that the detuning parameter,
6/2m, is not vanishingly small compared to unity. %C
note that the range of pulse areas in the table is entirely
outside the weak coupling regime.

I have dcvclopcd thc 1dcas of clgcnvalUcs of pUIsc area
squared ln two-lcvcl systclTls lntroduccd ln a prcvlous pa-
per, pointing out the existence of a variational principle
for estimating these quantities. Examples have been given
where knowledge of the dependence of the eigenvalues on
potential and dctuning parameters may assist one in
understanding the qualitative behavior of two-level spec-
tra. First, Using nor eigenvalue methods, I sho~ed that if
the derivative of the Fourier transform of a symmetric po-
tential with respect to detuning does not exist at 6=0, the
small-detuning correction to the Rosen-Zener conjecture is
linear in b„unless cancellation of the nondifferentiability
between exact and first-order transition amplitudes occurs.
I then proceed via eigenvalue methods to show that this
cancellation does not occur in the case of a Lorentzian po-
tential. Similarly, the eigenvalue method was used to
demonstrate that the quadratic correction to the Rosen-
Zener conjecture that exists in the case of potentials with
Fourier transforms that are differentiable with respect to
6 remains small for large pulse areas. Thus, the low-

detuning form of the conjecture applies more generally
than to the coupling regime where the two leading terms
of perturbation theory suffice.

Furthermore, since the zeros of the transition amplitude
as a function of A occur for A =n m +0(b, ), it is clear
that the nodes considered as a function of A are

no[i+0(b, )/n m J'~ =nm+O(b, )/2nm, .

i.e., the shift in the position of the roots with A decreases
as I /n

Finally, I demonstrated that transition amplitudes could
be expressed in terms of the A eigenvalues and their cor-
responding eigenfunctions, and derived the relevant ex-
pansion. This expansion may be used both in numerical
calculations of b2( —,), and in analytic, variational approxi-
mations. A simple application of the latter is presented
for the case of a symmetric pulse whose Fourier transform
is differentiable at zero frequency.
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4/n
6/~
8/m-

16/w

0.273
0.248
0.069
0.311

'Numerj. cal calculations of Yeh and Herman (Ref. 12).

TABLE II. Transition probabi1ity
I
a2(+ oo )

I
for the pulse

f=(m/2)sech'm. t at detuning 6=4.
Pulse area 2 Iaz(oo)'I (exact)'

I
a~(~)'I [Et). (29)]

0.269
0.245
0.068
0.295

APPENDIX A: VARIATIO)NAL CALCULATION
QF THE SMALL DETUNING DEPENDENCE

OF THE EV FOR A LORENTZIAN PULSE

In this appendix, I shall use Eq. (7) to calculate, for a
Lorentzian pulse, the shift due to detuning of the value of
the EV. I calculate displacement of the node in transition
probability that occurs at A =m on resonance.

The unnormalized eigenfunction for b, =0 is
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e
—'~'

2t2 (1+t2)1/2 (1+t2)3/2 (A2)

Terms proportional to a will not be carried any further.
The integrands of numerator and denominator become,

respectively,
iht-2

N= 2iht t
2+1+t' (1+t')'

(A3)

D=e a f=- e-'~'
~ (1+a't')' (1+t')' (A4)

where we recall f= (1/1r)(1+ t )

We may evaluate f X dt and f D dt in the com-
plex plane, choosing contours that include the real axis
and are closed by semicircles, whose contributions to the
integral vanish, in the upper (lower) half-plane for nega-
tive (positive) detuning. The results are

a=sin a f(t')dt'
( 1+t2)1/2

I base the trial functions for the slightly off-resonant case
on this function, choosing

—iht
a= (A 1)

( 1+t2)1/2( 1 +a2t2)

The e ' ' factor mimics the Rosen-Zener eigenfunction.
%'e shall later pass to the limit a—+0. The contribution
(1+a t )

' makes every integral which appears in Eq. (7)
convergent under all definitions. The omission of this fac-
tor renders one of the integrals divergent in the ordinary
sense, although it is expressible in terms of delta func-
tions. I prefer to retain this convergence factor partially
because an analogous feature is employed in the next ap-
pendix, where integrals are not explicitly performed, and
where it is desired that ambiguities related to convergence
not arise.

The time derivative of the trial function for small b is

D t= 1+

I have omitted the effect of poles at t =+i /a which make
contributions proportional to e ~

'
~ ~0. Thus the vari-

ational approximation for the EV is

21+3l~l
1+ lb,

l

(A5)

which contains a correction term to the resonant eigen-
value that is manifestly linear in the detuning.

APPENDIX 8: ON THE APPROXIMATE CONSTANCY
OF THE 5 CORRECTION TERM TO THE EV

In this appendix, I shall apply the variational method,
Eq. (7), to symmetric pulses whose Fourier transforms are
differentiable at 5=0. This will demonstrate that the
term in the expression for the EV quadratic in the detun-
ing is approximately independent of pulse area.

At resonance, the eigenvalue and unnormalized eigen-
function, for "quantum number" n are n vr and
sin[n1r f f(t')dt']. We choose the nonresonant trial
eigenfunction to be

t

a=&(a, t)sin niff. (t')dt' e

Then
ta=e ' 'p(a, t) ihsin nor f —f(t')dt'

J

t
+ nerf cos nor f f(t')dt'

where p is a convergence factor equal to unity for finite
time, ~0 as

l

t
l
~ao. Integrals whose integrands con-

tain derivatives of P are neglected. The integrands be-
come

ei ht [y(a 't)]2e iht—2

sin n m. t' dt' —i An m sin 2~n t' dt'

+ n n f(t)cos nm f f(t')dt'

t
D=a fe' '=[/(a, t)] f(t)e ' 'sin nor f f(t')dt' (B2)

Integrating the second term in the numerator by parts, and combining it with the third term, we have

r

f Ndt= f e ' 'dt n Hf(t)cos niff(t')dt'. Q2
[P(a,t)]

t
The second integral is independent of n. If we replace the factor cos [nm f f(t'dt'], in the first integral by its average
value of —,, and make a similar substitution for sin [mn f f(t')dt'] in the denominator, the eigenvalue becomes
n m. +O(b, ), where the O(b. ) term is independent of n This appro. ximation clearly improves with increasing n We.
also note that the scheme of replacing the squares of the sinusoidal function by their averages gives the exact eigenvalue
on resonance.
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We have assumed that f is of a single algebraic sign. If this is true, and if the ansatz of replacing the squares of
sinusoidal functions by their averages is valid, the shift in the eigenvalue from its resonant value is negative semidefinite.
That is, the zeros off resonance occur for pulse areas that are never larger than the corresponding zeros at resonance.
This differs from the I.orentzian case, whose nonresonant transition probability nodes occur for larger pulse areas than
do the resonant nodes.

APPENDIX C: PROOF THAT THE TRANSITION AMPLITUDE IN A TWO-LEVEL SYSTEM
DRIVEN BY A SYMMETRIC PULSE IS PURELY IMAGINARY

It was shown in a previous paper' that the perturbation expansion for the transition amplitude in a two-level system
00 00 t t'

ia2 —— V(t)e ' 'dt —V(t)e ' 'dt f V(t')e+' 'dt f V(t")e ' ' dt" +.
is convergent for finite pulse areas. Therefore, if we show that each individual term on the right-hand side is real, az
will be imaginary and unchanged by reversing the sign of b, . Accordingly, if (da2/d b, )

~ ~ =0 exists, it will vanish.
For V(t)=V( t), —the first-order term, f V(t)e ' 'dt, is clearly real. We shall indicate how to demonstrate

the reality of the term
I

~ ~
I

~ I I ~r
~

I I ~ ~ I I t I
~

00 t'
V(t)e ' 'dt V(t')e+' 'dt' V(t")e ' ' dt" .

The method used may readily be extended to fifth- and higher-order contributions.
Robinson and Berman' showed that the terms in the perturbation series could be explicitly written in the frequency

domain. The third-order term ia2 ', is proportional to

f(~yi)f(~yz)f [~(yi+yz —1)]
I3 ——lim dyldy2 ~

o —~ —~ (y ~
—1 —iA)(y ~ +y2 —iA, )

where, for f(t ) temporally symmetric, the Fourier transform f(co), is real for all co. Using the identity

f $(x)dx p f P(x) + .
~( )

e—+p x —xp+l 6 X —Xp

and integrating with respect to y &

f(~y i )f

(~ye�)f

[~~~ i +y2 —1)]
I3 —— dy 2I' dy]

00 00 (y i —I )(y i+y2)

(C2)

(C3)

dy Q Qy
2

Q~p —00 +yp —l

1

1+y2+ I, A,
(C4)

where the P for the first integral should be understood to
indicate that the integration excludes the neighborhoods
of bothy~ ——1 andy~ ———y2. This first term contains only
real factors and is manifestly real. If, in the terms propor-
tional to i~, we partition both contributions according to
Eq. (C3), the principal value portions exactly cancel, leav-

ing only a contribution proportional to 2(i~) [f(b,)],
which is also obviously real.

That the transition amplitude is inherently imaginary
has been explicitly shown to be true for all symmetric
pulses, whether or not the perturbation expansion con-
verges. '

I

metric and whose Fourier transform is differentiable at
zero frequency. I shall use Eq. (26) to obtain bz( —,

'
), es-

tirnating the Green s function from the variational princi-
ple, Eq. (28).

As a preliminary, it is convenient to write down the
Green's function Go(l, ,z,z') for the case of 5=0, in terms
of its eigenfunction expansion, and in explicit form as
well. These are, respectively,

sin[no. (z ——,
' )]sin[n~(z' ——,

'
)]

Go ——2g
A, —n m

APPENDIX D EVALUATION OF THE TRANSITION
AMPLITUDE FQR A SYMMETRIC PULSE

WITH DIFFERENTIABLE FQURIER TRANSFORM
BY THE GREEN'S FUNCTION METHOD.

SMALL-DETUNINGr CASE

sin[V A, (z& + —,
' )]sin[~A(z &

——,
'

) j
V ksinV A,

(D2)

In this appendix, I derive an approximate formula for
the small-detuning transition amplitude for a two-level
system driven by a pulse whose shape is temporally sym-

We choose the following form for the trial Green's func-
tion
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sin[nsr(z ——,
' )]sin[nor(z' ——,

'
)]

GT ——e ' "+' ' P(a, t)P(a, t') pa„,&2
e ' ' sin [nsr(z" ——,

' )]dz"
(D3)

where a„ is an adjustable parameter, and P(a, t) is a con-
vergence factor with the property that it is unity at finite
times and approaches zero sufficiently rapidly as t~+ ee

to rid integrands of any divergences. We assume, in per-
forming parts integrations, that integrands which contain
derivatives of P may be neglected.

This trial function is then substituted into Eq. (28), and
optimized with respect to the a„. The integrals are
evaluated by making an ansatz similar to that of Appen-
dix 8—squares of trigonometric functions are replaced by
their average values, and products of trigonometric func-

I

tions of arguments nvrz, m~z, m+n, are neglect. =d. With
these assumptions, we find

a„=(A,—A „)

where 3 „ is the approximate eigenvalue calculated in Ap-2

pendix B, given, to quadratic terms in the detuning, by
A „=n m s5 . T—he shift parameter, as indicated previ-
ously, is approximately independent of n It .does, of
course, depend on the particular pulse shape. The Green's
function is given by

e ' "+' '~ P( a, t)P( a, t')sin[nm(z ——,
' )]sin[nor(z' ——,

'
)]

—n2~2+s2
(D5)

where the normalizing factor

1/2
Pz(a, t")e ' ' sin [nor(z" ——,

' )]dz"=N
—1/2

is independent of n in our approximation, and will drop
out when the ratio given in Eq. (28) is calculated. The
Green's function of Eq. (D5) has the explicit form

G= —P(a t)P(a t')e ' "+''1V

2

sinA (z & + —,
'

)sinA (z ——,
'

)

3 sinA

where A=(A, +s b, )'r . If G(O,z,z'), G(A, z,z') are dif-
ferentiated with respect to z', and one passes to the limit
z~ ——,,z'~+ —, as in Eq. (26), we obtain Eq. (29).
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