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The quantum motion of a periodically kicked rotator is shown to be related to Anderson s prob-
lem of motion of a quantum particle in a one-dimensional lattice in the presence of a static-random
potential. Classically, the first problem is nonintegrable and, for certain values of the parameters,
exhibits chaos and diffusion in phase space; in the second problem, diffusion takes place in configu-
ration space. Quantum phase interference, however, is known to suppress diffusion in Anderson s

problem and to produce quasiperiodic motion. By establishing a mapping between the two systems
we show that a similar effect determines the dynamics of the quantum rotator. As a result its wave

functions are localized in phase space and their time evolution is quasiperiodic. This result explains
the quantum recurrences and boundedness of the energy found in recent numerical work.

I. INTRODUCTION

In recent years the study of the effects of quantization
on the properties of classically nonintegrable systems has
attracted increasing attention. ' The understanding of the
nature of quantum behavior of these systems is not only
of fundamental importance but it is also a problem of ex-
perimental relevance in fields as diverse as photochemi-
stry, electron dynamics in microstructures, and other
contexts. Understanding the relation between quantu~
problems and their classical limit may also shed light on
the zero wavelength approximation to other wave equa-
tions, for example the eikonal approximation to the mag-
netohydrodynamic equations that are of great interest in
plasma physics. In the context of applications to photo-
chemistry various model systems described by time-
independent Hamiltonians have been recently studied.
Some of the evidence from these studies suggests that
changes in the quantum behavior may take place when the
corresponding classical system undergoes a transition to
chaos. It is still unclear, however, whether these changes
are only quantitative or if there is a sharp qualitative
change in the nature of the long™time behavior as is the
case in the corresponding classical system. Considerable
effort " has also been made in order to develop semi-
classical quantization rules for systems that are chaotic in
their classical limit. These calculati. ons involve many
mathematical subtleties and their physical conclusions are
still unclear to us.

As with the classical case, much insight into the proper-
ties of quantum nonlinear systems can be obtained from
the study of simple maps. These are recursion relations
defining the coordinates and momenta of the system at
discrete time steps. The most studied area-preserving map
is perhaps the Chirikov or standard map. ' ' This map
can be generated from a Hamiltonian that describes a pla-
nar rotator kicked at regular time intervals with a
position-dependent f'orce. It depends classically on a sin-
gle parameter K, the dimensionless strength of the kick.

For each value of K the motion is chaotic or periodic de-
pending on the initial conditions. For small E the chaotic
regions are isolated and are separated by Kolmogorov-
Arnol'd-Moser (KAM) trajectories' ' and consequently
the motion is bounded. For K=K,=0.97164 the last of
these trajectories disappears' and for K )K, diffusion in

p space takes place, namely, p o: n, for large n.
Starting with the early work of Casati et al. ' the quan-

tized version of this map has been studied by several au-
thors. ' ' These investigations showed drastic differ-
ences between the classical and quantum motions. In par-
ticular, Chirikov et al. ' found that (except in the special
case of the quantum resonances' ) the energy remains
bounded and does not increase with time even for K & K, .
Later, Hogg and Huberman' showed numerically that the
energy is quasiperiodic in time. This is in sharp contrast
with the behavior in the classical case as described above.

Surprising as it is, this situation is quite reminiscent of
the one encountered when studying a seemingly unrelated
problem in solid-state physics, that of finding the motion
of wave packets of electrons in a random lattice. The
physics of this system is, by now, well understood. It has
been known for a long time' that, in one dimension,
all the eigenfunctions of a one-electron random Hamil-
tonian are exponentially localized in space and, conse-
quently, are normalizable. As a result the electronic dif-
fusion coefficient and the electron mobility vanish at zero
temperature. The energy spectrum is pure point. It is,
however, dense, so that in the thermodynamic limit the to-
tal density of states is continuous. Nevertheless, the local
density of states, i.e., the density of states weighted by the
wave function, is discrete. As a result, an electron initially
localized around a point in the lattice undergoes quasi-
periodic motion. These are pure quantum effects caused
by destructive interference: If the electron were classical
it would diffuse through the lattice.

It appears therefore natural to ask whether quantum in-
terference effects can also destroy classical diffusion in
momentum space and produce quasiperiodic motion. In
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this paper we will present evidence that the answer to this
question is affirmative. We show that each of the two
problems, the quantum rotator in a periodic time-
dependent external field and a quantum particle moving in
a static aperiodic potential, can be mapped into the other.
By llsc of tllls InRpplllg wc sllow tllRt tllc qllall'tunl

dynamical system is, in effect, localized in angular
momentum space and can therefore only reach a limited
number of momentum states in the course of its time evo-
lut1on. This in tUI'n 1IIlp11cs qUas1pcriodlc1ty and thus
boundedness and recurrence of the energy in time. '

This is of course very different from the recurrence one
would obtain ignoring these interference effects and con-
sidering the motion as an unrestricted random walk in
momentum space. '

Thc organization of thc 1cst of this pRpcI' 1s as follows.
IIl Scc. II wc intI'odUcc thc quantum dynamical model
studied 1Q this work. Thc conncctlon between 1t Rnd thc
problem of electronic conduction in one-dimensional lat-
tices is derived in Scc. III. In Sec. IV we exploit this con-
nection to discuss the dynamics of the quantum system
and present the results of numerical calculations. This is
fo11owed by a summary and concluding remarks in Sec. V.
A preliminary account of part of this work was reported
earlier.

tion. At the kicks, the force is so strong that the kinetic
energy is unimportant and Eq. (2.2) is readily integrated.
The time evolution of the wave function between kicks is
most easily expressed in the angular Inomentum represen-
tRtloI1. Wc CR11 thc wRvc fllIlctloll 111 tllls I'cprcscntRtloll

f„(t), where pP„=nP„. The relation of the angular
momentum representation to the angle representation,
I)'i(8, t) is g(8, t)=pe'" gn(t). Since the time dependence
between kicks is trivial, it is only necessary to consider
times infinitesimally before or after the rth kick. We thus
regard t as an integer and Usc the subscript + to mean be-
fore or after the kick. We also absorb k into the definition
of V.

The free propagation is thus represented by

iK(—n)y+ {I) (2.5)

Equations (2.5) and (2.6) are easily combined to obtain

p+(I+ I ) = g 5 „exp( in r/2—)f+(I),

Direct integration of the Schrodinger equation over a kick
gives

(2.6)

II. THE MGDEL

In this section the specific quantum dynamical model to
be used in the rest of the paper will be defined. We study
the quantum motion of a system defined by the Hamil-
tonian

H = — + k V(8)h(t) .
2J ()g2

(2.1)

(2.2)

One can readily generalize this class of Hamiltonians by
replacing the kinetic energy ——,'r() /()8, by a general
function E(p) where p = —i()/B8 and deal with the opera-
tors

This is the Hamiltonian of a planar rotator with moment
of inertia I driven by a time-dependent potential assumed
to be factorizable into angle- and time-dependent parts.
We shall assume that V is a periodic function of 8 with
period 2' and 6 has period to (and dimensions of inverse
time). Choosing to as the unit of time the Hamiltonian
depends on two dimensionlcss parameteI's ~=%to/I and
k=k/fi. In these units the time-dependent Schrodinger
cqUatlon ls

2m'

(2 )
—1 d8 i(m —n)8 —iV(8) (2.8)

O

Note that the matrix J depends only on the difference
m II. This featur—e generally is lost for more general free
Hamiltonians than E(JI). The recursion relations (2.7) can
be solved numerically for various initial conditions. In or-
der that this be feasible, it is necessary that J, become
suitably small for large

~

r ~. This in turn requires that
V(8) be sufficiently smooth and small. The notation of
Eq. (2.8) was chosen because J is a generalization of the
Bcssel function. Indeed, in the best studied case, '

V=kcos8, it is essentially just a Bessel function of the
first kind.

In this section we will show that the problem defined by
(2.7) is equivalent to a tight binding model for electronic
conduction known as the Anderson model. Since the
Hamiltonian is periodi~ in time, ~a~~ly, ~(I)=~(1+1),
wc call classify tllc solutloIls of (2.7) Rccol'dlllg to flic way
the wave function transforms under translations in time.
This leads to the introduction of R new quantum number,
the quasienergy, which is the only good quantum num-
ber in this problem. The states of fixed quasienergy co

have the form

H =IC(p )+k V(8)h{I) . (2.3) P„(8,t)=e '"'u„(8,t), (3.1)

h{r)= g 5(I n) . — {2A)

The reason that (2.4) is a particularly simple choice is
that, between kicks, the time evolution is that of free rota-

A simple case is that in which b, (t) is a sequence of 5-
function kicks

where u„(8,t)=u„(8,t+I), and we have momentarily re-
verted to continuous time. Notice that this is an analog of
the well known Bloch-Floquct theorem familiar in the
case where potential is periodic in space. States of dif-
ferent quasienergies are orthogonal. It is also believed
that they form a complete set, but we know of no rigorous
proof. In what follows we will expand arbitrary functions



in quasienergy states. Due to the periodicity of the
quasienergy states in time it is sufficient to study these
states just before or after the kick, which we denote as be-
fore by u~. We suppress, except when necessary, the
dependence of the wave functions on cu. Again we use
both the angle and angular momentum representations.
Substitution of Eq. (3.1) into Eqs. (2.6) and (2.7) with I in-
teger gives

iu iK(m) +
Qm =8 e Qm

u+(8) =e-"&"u-(8),
(3.2)

(3.3)

+ 4) ~ J /VC(5) + (3A)

The transformation we wish to make uses an alternative
1'cpI'cscIltRtlo11 of tllc opcratol V 111 terms of RI1 HcrmItlan
operator W, namely, we define

& y( e) 1+i W( 8 )

1 i W(—8)

or cqulvalcntly

W(8) = —tan[ V(8)/2] .
Defining

u(8) =[u+(8)+u (8)]/2

we reformulate (3.3) as

u +(8) u (8)
1+i W(8) 1 —i W(8)

(3.5)

(3.6)

(3.7)

(3.8)

where u (written without the bar for convenience) is the
angular momentum representation of u(8). Here W is
the Fourier transform of W(8), and E =m —E(m). Fi-
nally, (3.9) can be rewritten in the form

Tu ++ Wu+, Eu-—
r (&0)

with

(3.10)

(3.12)

Equation (3.10) describes a one-dimensional tight-
binding model, with hopping 8; to the rth neighbor and
"diagonal" potential T . This equation establishes there-
fore the correspondence between the quantum dynamical
problem and the solid-state problem with the angular
momentum in the quantum problem corresponding to the
lattice sites in the solid-state problem. We will refer to
(3.4) as the quantum dynamical problem or the rotator
problem while (3.10) we will refer to as the tight-binding
problem oI' the lattice problem.

Substitution of (3.8) in (3A) yields the equations for the
Fourier components

u +i+W, u„= u i+W— „u„e

In the tight-binding problem Eq. (3.10) is an eigenvalue
equation for the energy E. In contrast, in the dynamical
problem, E is a fixed parameter determined by the pertur-
bation V [cf. (3.12) and (3.6)]. The quasienergy, on the
othcI hand, w41ch 1Q thc 1Rttlcc problem s1IIlply deter-
mines which of several more or less equivalent sequences
T is used, is the eigenvalue in the rotator problem.
However, the relation between them is simple. Indeed, by
applying the Feynman-Hellman theorem to Eq. (3.10) we
find that dE/dco=g(sec E )/2 is positive implying
that E is a monotonic function of co. Second, eigenvalues
E„(co) belonging to distinct states v will not become de-
generate as ro is varied because the low symmetry of the
system will, in general, prevent level crossing. Thus the
functions E„(co) giving the lattice eigenvalues for fixed co

can in principle be inverted to give co„(E), the rotator
quasienergies for fixed E, i.e., for fixed V(8), and vice ver-
sa. The wave functions are, of course, essentially the same
in the two pictures. The character of the spectrum is the
same, as well.

The properties of the solutions of the lattice problem
depend on the nature of the sequence T~. Three cases are
of g1'cRt 111tcrcst. Thc slIIlplcst. of tllc111 occll1's 1f T 1s

periodic in rn. Then the corresponding eigenstates are
Bloch states. These states are extended and unnormaliz-
able giving rise to electronic propagation, thus diffusion
and conductivity in solids. In the dynamical problem this
case corresponds to the quantum resonances. ' Next in
complexity is the case in which T~ is periodic, but with a
period incommensurate with the (unit) lattice period. We
discuss this case in detail elsewhere. Finally, if IT~ I
constitutes a random sequence, each of its elements being
chosen independently from a given fixed distribution,
Anderson's model of localization in a one-dimensional
1andom potcntlal 1S obtalncd.

The properties of the solutions in the random case fol-
low from rigorous results on the asymptotic behavior of
products of random matrices. It is known that all
the eigenstates of (3.10) are localized around some lattice
site and decay exponentially away from that site with a
characteristic length y '(E) which is solely determined by
the probability distribution of the potential. Eigenstates
with nearly identical energies are, however, generally lo-
calized around centers which are far apart. Conversely,
two eigenstates localized at centers close compared with

y
' will typically have eigenenergies separated by a finite

energy spacing which is of order y( ~ W„~ ). The local
density of states (i.e., as weighted by the square of the
wave function) is discrete and, at a given site n, it consists
of about y 5-function peaks at certain energies e„. The
existence of a discrete local spectrum implies quasiperiodi-
city of the motion and absence of diffusion.

One can certainly arrive at the Anderson model by
choosing for IE~ I a random sequence. However, there is
yet another possibility that, to our knowledge, has not
been studied before in any detail and is of importance to
understand the dynamics of the quantum rotator, namely,
the one in which the sequence tK~ I is Jpseudorandom, i.e.,
IE I has some but not all the properties of a truly ran-
dom scqucncc. Th1S 1S of I'clcvancc foI' thc problem at
haQd bccausc, as w111 bc scen shortly, thc scqucncc
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K =am (mod 1) that corresponds to the rotator prob-
lem is, indeed, pseudorandom.

As an example of a pseudorandom sequence consider
the case of {K~=a2 (mod 1) I where a is a given irra-
tional number. This sequence reflects the random proper-
ties of the sequence of zeros and ones that occurs in the
binary representation of a. It can be easily shown that, if
a is irrational, the elements of {K~I are uniformly distri-
buted in [0,1]. They are not independent, however, as the
correlation function (K E +, ) -=2 " in this case. The
existence of correlations of this type is a main difference
between random and pseudorandom sequences. Little is
known about the effect of these correlations on localiza-
tion because the theorems mentioned above apply only to
the case of independent random variables. While indepen-
dence is certainly a sufficient condition for localization in
one dimension, it is unlikely that it is necessary. For ex-
ample, it is obvious on physical grounds that the funda-
mental results should still remain valid in the presence of
weak, short-range correlations between the elements of
{T~ I. The existence of localized states in a related quasi-
periodic potential can be taken as an indimtion that the
conditions as stated in the relevant theorems are too re-
strictive. These considerations are important because the
numerical evidence that we present in Sec. III indicates
that the sequence {T ) is "random enough" to localize all
the solutions of Eq. (3.10).

The only rigorous result known to us which bears on
this question has been provided recently by Bellissard
who shows that if W„ is of short range and small enough,
and K~ is of the form r(m+0), then for all k (0 & k ~ 1)
in a certain (Cantor) set C of measure approaching unity
as W approaches zero, the spectrum of (3.10) is pure
point, and the wave functions are exponentially lomlized.
The theorem says nothing for larger 8 s or for k not in C,
in particular for our case, k =0. Bellissard conjectures
that the spectrum in this mse is singular continuous, or, at
least, has a singular continuous component. It is almost
surely true, however, that there is no absolutely continu-
ous part of the spectrum. Although the mathematical
problems posed are interesting and it is important that
these issues be cleared up we expect, from a physical point
of view, that it will be next to impossible to detect, in this
case, any singular continuous part of the spectrum if finite
size, finite time, finite temperature, dissipation, small ran-
dom deviations from the m law, etc., are taken into ac-
count. The main reason for this belief is that we always
find numerically that the wave function drops off by 20 or
30 powers of e with no sign of comeback at large distances
from the ostensible center. A singular continuous spec-
trum would imply that the apparent 5-function spikes in
the local density of states (see Sec. IV) are really almost
infinitely degenerate with the largest splittings of relative
order e or less. It must be a good approximation to
neglect this if any other source of broadening is present.
The numerical results may be an artifact of roundoff er-
ror, but this error probably mimics crudely the finite tem-
perature effects mentioned above. In other words, we be-
lieve that the computer version of the model is more in ac-
cord with possible real systems than the idealized model
is. Further, Bellissard s results provide evidence for this
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view, since with the finite smearing effects taken into ac-
count, the physical results surely mnnot depend sensitive-
ly on whether k is zero or some small number in the set C.

IV. THE PSEUDO ANDERSON MODEL

We start this section by examining some statistical
properties of {E =~m (mod 1)I for irrational r. This
sequence is ergodic with uniform distribution in the inter-
val [0,1]. This is a rigorous result of a theorem by Weyl.
We have checked numerically that, for finite sequences of
N elements, the deviations from uniformity follow the
large-number behavior of random sequences, i.e., the fluc-
tuation b,N in the number of elements of the sequence that
fall on any interval of fixed length contained in [0,1] is
b,N =-V N. The pair-correlation function is defined as

C(r)= —g K Km m+r (4.1)

Its Fourier transform,

i(2mr IN)PC (— (4.2)

is the power spectrum of the sequence. In Fig. 1(a) we
plot C(p) for a sequence of about 10 elements with
r= V 5. For comparison we show in Fig. 1(b) a plot of the
Fourier transform of Eq. (4.1) with K replaced by "ran-
dom" numbers as generated by a standard computer algo-
rithm The general structure of the two plots is quite simi-
lar, the most important feature being the absence of corre-
lations at any particular length scale. The statistical pre-
diction for random numbers is that C(p) is, on the aver-
age, independent of p with fluctuations of size v N. We
observe this behavior in both the random and pseudoran-

(b)
I I I I

t
I I I I

{ I I I I
I

I I I I { I I I

0 l00 200 300 400
P

FIG. 1. Power spectrum of (a) the sequence K„=W5n' (mod
1) and {b) a sequence of random numbers with uniform distribu-
tion in [0,1].
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FIG. 2, Distribution of air correlations for the potential
T =tan(x„) with (a) x„= 5n and (b) [x„j a sequence of ran-

dom numbers with uniform distribution in [0,1].

dom sequences. Notice, however, that the peaks in the
pseudorandom case are more numerous than those of the
random one which shows that there are more correlations
in the former case.

The statistical properties of I T j follow from those of
IK~ j. In particular, since IK~ j is uniformly distributed,
tllc11 I T~ j w111 follow tllc Cauclly oI' LorcntzIan dlstrlbu-
tion:

CU /27l
FIG. 3. Local quasienergy spectra as obtained from the time

evolution of states with initial angular momenta (a) i=46, (b)
1=48, and (c) 1=5D. The potential is the one shown in Eq. (4.8)
and the parameters are a =2.8, &=4.867.

values of the quasien'ergy and of r and is uniquely deter-
mined by V(8). In contrast, the center of localization de-
pends upon the quasienergy. This dependence is not
smooth, with states belonging to nearby quasienergies be-
ing centered, in general, around angular momenta that are
far apart and states centered at nearby angular momenta
having, in general, quite different quasienergies.

To see the effect of these properties on the time evolu-
tion of the quantum rotator, consider the expansion of the
time-dependent wave function in terms of the quasienergy
eigenstates. We have

(4.3) p„+(I)=g C,u„+„e (4.4)

The correlation function for the potential can be comput-
ed by an expression like Eq. (4.1). In Fig. 2(a) we plot the
distribution of the values taken by the correlation function
for the same sample as used before. Figure 2(b) shows the
same function in the case in which the argument of the
tangent is a random number. In one sense both plots are
similar: the correlations are of statistical nature (as op-
posed to systematic) and the widths of the distributions
follow the law of large numbers for large sequences. The
distribution function is, however, wider in the pseudoran-
dom case, which shows again the presence of larger corre-
lations.

If one is now vvilling to make the assumption that this
degree of randomness is sufficient to localize all thc solu-
tions of Eq. (3.10) then, by virtue of the correspondence
between the two problems established in Sec. III, the fol-
lowing picture of the quasienergy eigenstates emerges.
For a given potential V(8) [fixed E and 8', in Eq. (3.10)],
each of the solutions of Eq. (2.12) is localized around
some value of the angular momentum. Away from the
center of localization, the solutions decay exponentially
with an exponent y(E) which is independent of both the

The expansion coefficients are determined by the initial
coIldltlo11S. If, fol. slIIlpllclty, wc start wltll Rll clgcllstRtc
of the angular momentuin, Itj„+(0)=5~, the time-

IG
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FIG. 4. Two quasienergy eigenstates for the same potential as
in the previous plot. Quasienergies are co =2m j/2'o with j=323
(solid circles) and j=621 (open circles).
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dependent wave function is

g„+(t)= g (u,+„)*u„+,e (4.5)

and its spectrum,

3„'(co):—I P+(t)e'"'

= g (u,+, )'u„+„5(co—to, ) . (4.6)

A quantity of particular importance is 3,'(co), the projec-
tion of tlj on the initial state. It is determined by the local
density of quasienergy states,

3,'(co)= g i u,+,
i

5(co—co, ) . (4.7)

Although the sum in Eq. (4.7) is over all quasienergies the
exponential decay of the wave functions implies that only
a few states will effectively contribute to the sum: those
centered on angular momenta within a distance of order

y
' from the initial state. Since there is one quasienergy

state for each angular momentum state, 2,'(co) will consist
of about y

' peaks. The structure of Eq. (4.7) implies
that 2,'(t) is an almost-periodic function. Thus the state
vector returns infinitely often to any given neighborhood
of the initial state during the course of its evolution.
Similar considerations show that, if the locahzation pic-
ture is correct, the expectation values of all observables are
almost periodic functions. Notice that in these arguments
no use is made of any properties of V(8) other than that it
produces a 8'„of finite range.

To support these ideas we present results of numerical
calculations. They consist of direct iteration of Eq. (2.7)
for two different potentials and various initial conditions.
The most efficient method to solve these equations that
we found takes advantage of the translation invariance of
the kernel in Eq. (2.8) and uses a forward-backward fast
Fourier transform (FFT) technique. In this way one can
easily include up to about 10 angular momentum states.
Once a time series for the state vector is obtained, the
FFT can be used again to calculate A,'(co). From the
latter, the spectrum and the eigenstates may be computed
«om Eqs. (4.6) and (4.'7). In applications we took 2' time
steps.

The two potentials that we considered are

refer to this case in most of the remainder of this section.
Figure 3 shows three quasienergy spectra obtained from

the time series for state vectors that start with well de-
fined angular momentum i=46, 48, and 50, respectively.
The parameters for this plot are ~=2.8, E=O, and
v.=4.867. The main features to notice are that, as predict-
ed above, (i) only a few peaks contribute effectively to the
local spectrum, (ii) the same quasienergies appear in all
three cases, and (iii) the amplitudes are very sensitive
functions of the initial conditions. Although the initial
states are closely spaced in angular momentum there are
large differences in the weights of the peaks. The inverse
of the localization exponent for this example is

y '(E)-1.5. Thus quasienergy states that peak at more
than a few units from a given one, l (say), make a very
small contribution to the evolution of a state that starts at
l. Conversely, from the localization of the peak of largest
amplitude in the spectrum we see that states with very dif-
ferent quasienergy may be centered at nearby angular mo-
m enta.

Figure 4 shows two typical quasienergy eigenstates ob-
tained as described above. These states peak at angular
momenta I =0 and 50 and rapidly decay away from their
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FIG. 5. Quasienergy eigenstates corresponding to co =2m j/2'
with j=50, 325, 614, and 810. Parameters are the same as in

Fig. 3.

VL (9)=—2 arctan (Ir cosl9 E)—(4.8)

V, (8)=k cos0 . (4.9)

V, (0) corresponds to the familiar standard map. VL(0)
has no obvious motivation in the rotator problem. It has,
however, the advantage that it corresponds to the simplest
case of Eq. (3.10), namely, a tight-binding model with
hopping limited to nearest neighbors [see Eq. (3.6)]. For a
diagonal potential with Lorentzian distribution this is the
so-called Lloyd model of disorder. Many exact results are
known for this model. In particular, the localization ex-
ponent y(E) (Ref. 29) is

2ir coshy(E) =[(E—ir) +1]'~ +[(E+ir) +1]'~ . (4.10)

Since this provides a quantitative test of our ideas we will
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FIG. 6. Two nearby quasienergies with eigenfunctions cen-
tered at widely different angular momenta. co=2'/2' and
j=323 (sohd circles) and j=325 (open circles).
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Slope of these curves is the same as in Fig. 5.

centers. The decay is exponential as predicted. The
dashed lines are the theoretical slopes calculated from Eq.
(4.10). There is good agreement. Notice that the localiza-
tion exponent is the same for both quasienergies. To fur-
ther illustrate the independence of y(E) upon the quasien-
ergy we plot in Fig. 5 four states all of which have appre-
ciable weight at or near I=10. Their quasienergies are
quite different but they all have the same long-distance
behavior. The case of nearby quasienergies is shown in
Fig. 6. We plot two eigenstates whose quasienergies differ
by only 0.6%. Their centers are displaced by ten units of
angular momentum. Thus, in general, the relation be-
tween quasienergy and center of localization is not
smooth. This situation is familiar in the locahzation
pIOblem.

Results obtained for other values of r are similar, pro-
vided it is not too small. Figurc 7 shows three eigenstates
corresponding to v=0.1, the rest of the parameters being
fixed at their previous values. The states are localized
with the same localization exponent that we found before.
If r is very small the short-distance behavior of the wave
function may be considerably modified with respect to the
one found for larger values. This is shown in Fig. 8 where
we plot several states for r=0.01. The states are still lo-

2 2m
cxp —p ln

k

(4.11)

Thus the hopping potential is of finite range and we
wiB find the same behavior as before. Since the localiza-
tion exponent is unknown for this case we have no quanti-
tative test of the theory. We have obtained numerical re-
sults for several values of k and r. As an example we plot
in Figs. 9 and 10 quasienergy spectra and wave functions
computed from the time series for state vectors that start
out at 1=0 and 50, respectively. There is no qualitative

300—

calized and drop off rapidly as a function of distance but
now we find relatively flat regions in between those in
which the wave function decays exponentially. This can be
understood by noticing that the origin of the pseudoran-
dom behavior of IK„I lies in the discontinuities intro-
duced by the operation of taking the modulum. If r is
small, however IK„I is smooth over distances of the order
of the location of the first discontinuity. In the present
example this occurs at n, =30. Thus the phase of the
wave function is coherent over about ni sites before in-
terference effects set in. This coherence shows up as a
plateau in a logarithmic plot of the amplitude of the wave
function. Similarly, there are additional plateaus over
scales corresponding to the distances between successive
discontinuities. The phase of the wave function is
coherent within each such region, but the correlation be-
tween the overall phases in different regions is rapidly
lost. As n increases thc distance bctwccn discontinuities
becomes smaller and smaller and hence the width of the
plateaus decreases until, at large distances (of order r '~ ),
they disappear completely. These features are clearly seen
in Fig. 8.

The usual standard map corresponds to the potential of
Eq. (4.9). The associated hopping potential may be calcu-
lated in closed form for k ~ m. For our present purposes it
is sufficient to note its form for long distances:
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Notice the presence of plateaus of decreasing extension in be-
tween regions of exponential decay.

FIG. 9. Qnasienergy spectra for the potential of the standard
map, Eq. (4.9) for states starting with I =0 (dashed line) and
I=50 (solid line). Parameters are k=2.8 and ~=4.867.
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km ~ irqk v
~m ~ e Um —rq (4.12)

Here k is the continuous crystal momentum,
—m/q &k (rrlq, and v is the band index. The energy can
be found by taking the expectation of H in this state. The
bandwidth will be of order e r~, the spacing between
bands of order 1/q.

V. CONCLUSIONS

We have presented evidence that the motion of the
periodically pinged rotator is bounded and almost periodic
in phase space if the natural frequency of the system is
not rotationally related to that of the external field. The
qualitative features of the motion are independent of the
detailed form of the pinging potential as long as it is suffi-
ciently smooth. These results are a consequence of pure
quantum interference effects with no counterpart in classi-
cal mechanics. A mapping of this problem into the An-
derson problem of localization of electronic states in ran-
dom lattices allowed us to identify the mechanism respon-
sible for the absence of diffusion and recurrence phenome-
na reported earlier in numerical work. ' ' We have also
presented numerical evidence in support of the ideas put

difference between these and our previous results. The
same is true for all other sets of parameters as well.

If r/2m is a rational, p/q, the system is periodic, since

Tm+q
——T~. However, if qy ~&1, the wave function will

not realize that the potential is periodic until it has al-
ready become very small. The bands in this case can be
estimated by the following procedure. Find approximate
localized eigenstates, Um centered at site v, v=1, . . . , q,
say, by replacing p/q by a nearby irrational. Then the
wave function will be approximated by

forward in this paper.
Several generalizations of this work are possible. Since

the effective randomness in IT~I is produced by the
operation of taking the modulus in Eq. (3.11), it is clear
that all Harniltonians E(p) with E an increasing function
of p will be associated with pseudorandom diagonal poten-
tials in the lattice representation. We have shown else-
where that even if K(p) is linear the amount of random-
ness is enough to ensure localization. Strong nonlinearity
in the unperturbed Hamiltonian can only improve upon
the randomness of the sequence. If V(8) is not smooth
the associated hopping potential will have a long-range
component. There are no exact results for localization in
this case. However, it is believed that IV, = I/r [i.e., a
discontinuous V(8)] constitutes the dividing line between
the cases of localized and extended solutions. The sim-
plest Hamiltonian that produces long-range hopping is the
quantized version of "Arnol'd's Cat." ' We have per-
formed numerical calculations of the type reported here
for this potential. Our preliminary results indicate that,
indeed, the states are extended in this case and there is dif-
fusion in phase space.

It is of interest to consider the case in which the unper-
turbed spectrum has a continuous component, for this sit-
uation is closer to the one present in experimental systems.
In these cases either there is a finite number of bound
states or the spectrum has an accumulation point at the
dissociation threshold. An example of the latter class was
recently studied in the classical limit. If one confines
the attention to the bound states the same formal manipu-
lations that we used in Sec. II of this paper can be per-
formed to get a new type of equivalent lattice problem.
This turns out to be that of the motion of a quantum par-
ticle in a semi-infinite chain with a diagonal potential that
is nonrandom at long distances from the "surface. "
Under these circumstances one expects richer behavior
than that found here because now, depending on the pa-
rameters, the states can be either extended or localized in
the "surface region. " The existence of extended states
would make diffusion possible but quantum effects (ie.
the presence of localized states) will most likely introduce
corrections to the classical results. We do not know at
this stage whether these corrections are of quantitative or
qualitative nature.
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