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We apply displacement operator coherent-state (DOCS) methods to calculate coherent states of
systems subject to the potential V(x, t) =g2(t)x +g j(t)x. We call states which are initially coherent
and which preserve their coherence with time nondispersive, in contrast to those coherent states
which lose their coherence which we denote as dispersive or dissipative. We report necessary and
sufficient conditions for the time-dependent coefficients g~(t) and g2(t) for the DOCS to be non-
dispersive. We also show that there is no necessary connection between the nondispersive character
of coherent states and the ability of the DOCS to provide the quantum analog of the corresponding
classical dynamical problem. A number of simple examples are treated.

I. INTRODUCTION

By a coherent state' one normally means a state of a
physical system described by a wave packet which
preserves shape in time, which remains localized in posi-
tion and momentum about their classical quantities, and
indeed, which is the quantum analog of the corresponding
classical particle. Coherent states have been the focus of
intense study over the past two decades. ' '" At the root
of this activity has been the desire to provide for them a
general theoretical framework within quantum mechanics.
Different methods of generating coherent states such as
displacement operators, ' annihilation operators, '

minimum uncertainty conditions, ' ' etc., have been ap-
plied to a number of Hamiltopian systems. Examples in-
clude the harmonic ' ' and Morse oscillators, ' and
the Rosen-Morse ' and Poschel-Teller ' potentials.

The bulk of the work relating to coherent states has
been done in the time-independent domain (for exceptions
see Refs. 1, 2, 12, and 13). To investigate the time-
dependent behavior of coherent states, it would be advan-
tageous to work with a Schrodinger equation which has an
explicitly time-dependent potential and which is exactly
solvable. We have chosen a potential of the form
V(x, t)=g2(t)x +g~(t)x. This is a generalization of the
one employed by Hartley and Ray. ' Solutions of the re-
sulting Schrodinger equation may be obtained' indepen-
dently of the particular form of gz(t) and g&(t). Another
important feature of the Schrodinger equation with V(x, t)
is the existence of a six-dimensional space-time symmetry
algebra consisting of first-order differential operators, '

from which we can fashion ladder operators' which de-
pend explicitly on time, which form a Heisenberg algebra,
and which step eigenvalues of the corresponding number
operator (not necessarily the Hamiltonian). An outline of
the construction of these operators is provided in Sec. II.
These raising and lowering operators are ideal for the con-
struction of displacement operator coherent states (DOCS)
and annihilation operator coherent states (AOCS), as
shown in Sec. III. We demonstrate the equivalence of
these two representations.

Our main objectives in this research are to formulate

time-dependent wave functions of coherent states and to
determine under what conditions the wave function de-
scribes a nondispersive or dispersive wave packet. In ad-
dition, we see whether, in either case, the state is the quan-
tum analog of the classical system. More specifically, we
obtain necessary and sufficient conditions for the coeffi-
cients gq(t) and g~(t) so that the state coheres forever, and
when the wave function describes a dispersive or dissipa-
tive wave packet, we show further that the classical equa-
tions of motion and the classical trajectories are still ob-
tained. To argue and illustrate our points, we make use of
five examples. They include the harmonic oscillator (HO),
the harmonic oscillator subject to a uniform driving force
(HOUDF), and the everywhere nonconfining potentials
free particle (FP), linear potential (LP), and the repulsive
oscillator (RP). Finally, we end Sec. III by comparing our
results to predictions of the minimum uncertainty
coherent states (MUCS) and the number operator states
(NOS). We present our conclusions in Sec. IV.

II. KINEMATICAL SYMMETRY

Details of the calculation of the symmetry algebra' and
the number operator states' can be found elsewhere. We
include salient features here to define terms and to make
this paper relatively self-contained.

Let 6 be a Lie group with group element g which is
specified by a set of parameters. ' Let x =(x, t), and F(x)
a function of x. We define a representation T on 6 by the
action of the group element:

[T(g)F)(x)=v(x;g ')F( f (x;g ')) . (2.1)

L =A (x, t ) d, +B(x,t )B„+C(x, t ), (2.2)

Such a representation is called a multiplier representa-
tion' with multiplier v( x;g '). The function f (x~ ') is
a two-component, vector-valued, analytic function of its
arguments.

Generators of these space-time or kinematic symmetries
can be obtained by expansion of the right-hand side of
(2.1) in a Taylor series at the identity. A generator is a
first-order differential operator of the form
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where Q is the differential operator,

Q =B~+2iB,—2g2(t)x —2g~(t)x . (2.4)

If 'P(x, t ) lies in the solution space P Q of (2.3), then it can
be shown that L%', L given by (2.2), is also a solution, '

pmvided that L satisfies the commutation relation

wheIe the coefficients 3, 8, and C are yet to be deter-
mined. The set of all such generators„L, forms a Lie alge-
bra, 9. Exponentiation of elements of 9 will return us
to a subgroup of the Lie group, G according to standard
I ic thcoI'y.

The Schrodinger equation of interest in one dimension
IIlay bc written

QV(x, t) = [8 +2iB,—2g2{t)x —2gI(t)x]%(x, t)

Let X&(t) and X2(t) be two nontrivial, real solutions of (2.6)
with VAonskian'6

8'(XI,X2) =XIX2—XIX2=1

It ls advantageous to dcfinc thc complex solution

g(t) = [XI(t)+iX2(t)] .1

2

Then g(t), the complex conjugate, will also be a linearly
independent solution and the %ronskian will have the
form'o

~(4,F)=N —kF= —i . (2.10)

We can use the solutions g, g to {2.6) to construct solutions
to (2.7) in the following manner:

q, (t)=g'(t), q»(t)=g'(t), q»=2/(t)g(t).

[Q, L]=A(x, t)Q, (2.5) With these functions and the auxilary functions

where A,{x,t) is a function of the independent variables x
and l'.

Substituting Q fmm (2.4) and L from (2.2) into (2.5)„we
obtain a set of coupled partial differential equations for
the coefficients A, 8, and C.' We can solve these equa-
tions in general, without the knowledge of the specific
forms of the time-dependent functions gI(t) or g2(t) [ex-
cept that gI(t) and g2(t) must be real].

Instrumental 1n that analysis al'e the ordinary differen-
tial equations

(2.12a)

(2.12b)

wheI'e

K= I, g((s)g(s)ds (2.13)

wc then obtain thc gcIlcrators~

+ 4V'j+'~j]~ 1&J&3 i (2.14a)

4

MJ' = t [QJ' dJ' + ( 2 gg x +MJ )8» —
~ l gJx —t ddt Jx

b+2g2(t)b =0 (2.6) J =gB» ixg+iÃ, —J+ ———gB»+ixg i@, I= 1—.
(2.14b)

A +Sg, (t)A =4g, (t)A =0 . (2.7) Their commutation relations have the structure

[J,J+]=I,
[MI, M2]=M3, [M3, M)]= —2MI, [M3„M2]=2M2,

[M( J ]=0, [Mp J ]=J+, [M3 J' ]=—J, [M), J+]=—J, [M2J+]=0, [M3 J+]=J+ .

(2.15a)

(2.15b)

(2.15c)

[Q I]=[Q J-]=[Q*J+1=o {2.16a)

[Q, M~]= j&JQ, j=1,2, 3 .

Since

Our motivation for going to the complex solutions of (2.6)
and (2.7) will become clear in a moment.

Because of (2.5) and (2.14), we have the identities

I

forms a Hilbert space, the operators M3,I are Hermitian,
but M

&

——M2 and J =J+ are Hermitian conjugates.
The motivation for the complex transformation will

now become clear. If we choose the subalgebra

IM3+ g+,II of WI, having the Casimir operator

C=J+J M3I = ——,
'

(y3Q—+1),
then wc cRQ constl Uct an lrI'cduclblc I'cpl cscntatlon
space, a Hilbert space of square-integrable functions
h„(x,t), such that

=t( )+([r.,H]&=0, (2.17) J „h=( n+1)'~ „2h„J„h= 'n~~ „h

(2.19)

where L, is any of M&, j=1,2, 3 oI' J+, J, or I. Hence
thcsc gcIlcI'RtoI's al c constants of thc motion» UIlUsUal

peI'haps, in the sense that they have an explicit time
dcpcndcIlcc. Furthermore, oQ this sUbspacc of M g, which

for n a non-negative integer. This representation we shall
denote by g —~,1 as in Miller. Since M3 is self-adjoint,
its clgcnvalUcs alc leal and its clgcnfUnctlons arc orthogo-
nal. IQ Qo~allzcd form they can bc wrlttcIl
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h„(x,t) =(mcp3) '~ (n!) ' '2 " expIi [x'c'p3/4cp3+x&3/cp3 —A —(n+ —,
' )4]}

XH„(x/q)3 —A)exp[ ——,
'

(x/y3 —A) ],
where

(2.20)

'p y (s) y (s)
'

'p y3(s) 2

and

M3(s) gg gg
I& =t

tp ~2/3(s )

(2.21)

The functions y3, W3, &3, g, and Ã are defined by (2.11),
(2.12a), (2.12b), (2.9), and (2.13), respectively.

The wave functions h„(x,t) form a complete set, by hy-
pothesis, of eigenfunctions of the operator M3 and of the
number operator J+J, i.e.,

J+J h„=nb„.
In addition, they satisfy the Schrodinger equation Qh„=0,
and because of (2.18), Ch„= ——,'h„. Note that on W(2,
M3 —J+J + —,, i.e., M3 is the number operator plus a
constant.

Different choices of the time-dependent function g2(t)
will yield different solutions g. The auxiliary time-
dependent functions X, MJ, &J, A', and A will only be
nonzero if g~(t) is nonzero. In Table I, we have put the
values of these functions for the choices of gz(t) and g, (t)
appropriate for the Hamiltonians of interest. The authors
believe that the existence of a set of discrete states for the
systems FP, LP, and RO (see Table I} is not well known,
and may have computational advantages over convention-
al bases.

The space-time symmetry algebra (2.14) with commuta-
tion relations (2.15) is the complexification' of the
Schrodinger algebra of Ref. 16. The Schrodinger algebra,
denoted P'~, is constructed from the real solutions X~ and
X2 of (2.6) and (2.7). There is some merit at this point to
outline properties of P'~ and to provide a further motiva-
tion for the complexification step. If we construct the
generators of P'&, from the real solutions of (2.6) as in
Ref. 16, then we obtain the operators L &, L2, L3 8} 82,
and E, where L/, 1&j&3, generate the sl(2, R) algebra

I

while 8~, 82, and E generate the Heisenberg algebra m~.
The Schrodinger algebra W&

——sl(2, R)Ulcc&. The adjoint
action of the corresponding Lie group' on this algebra'
partitions the algebra into disjoint classes called orbits.
There are five such orbits with representatives L ~,
L f +Lp L3, L

~ +82, and 8~. To each of the four orbits,
represented by L &, L

&
+L2, L3, and L

& +82, there corre-
sponds a separable coordinate system. ' ' In this paper
we have chosen to separate variables in the coordinate sys-
tem associated with the orbit represented by L

& +L2
where we have set M3 i (L &+L——2 }. Because of the struc-
ture of the algebra IM3,J+,I gI and the calculations of
Ref. 15, just outlined above, the spectrum of M3 in the
basis (2.20) is discrete. The other four-dimensional alge-
bras of the type I0,8~+2,ZI, i e., I0ICltn~ where 0 is an
orbit representative, are all of special interest for (2.3) be-
cause each of these Lie algebras will characterize a separ-
able coordinate system and solution space for the
Schrodinger equation (2.3). However, only in the case that
0=L

& +L z will the complexification of this four-
dimensional solvable algebra yield ladder operators (2.14b)
which step the eigenvalues of the orbit representative 0.
For all other orbits the spectrum of the orbit representa-
tive is continuous (cf. Hartley and Ray ). The energy
operator for the system HO lies on the orbit represented
by L ~+L2. To see this, construct the operator M3, from
(2.14a), in the Heisenberg picture. This can be done by
letting I;~f0 and replacing iB, by the Hamil. tonian. For
the systems HQ, HOUDF, and RO,

M3~(p +co x )/2co .

TABLE I. Potentials and auxiliary time-dependent functions for model Hamiltonians.

System

HOUDF

HO

FP

LP

RO

V(x, t)

~2x 2

2
+g)(t)x

cd x
2

Kx

N x
2

sin[co(t —tp)]
1

sin[co(t —tp) ]
1

t —to

cosh[co(t —tp)1
1

t —to

sinh [co( t —
tp )]

1

cos[co(t —tp)]
1

cos[co(t tp)]—1

1+(t—t, )'

1+(t—tp)

1—cosh[2co(t —tp)]

+i sinh[co(t tp)]]—

iso(t —tp)

~2co
ia)(t —tp )

~2co

[1+i (t t, )]—1

2

[1+i(t—t, )]
1

2

[cosh[co(t —tp)]
1

2co



For the systems FP and LP we get

M~(p +x )/2.
Note that for the system HO, MI (——i /co)d, is the energy
operator, i.e., in the Heisenberg picture M3 is proportional
to the Hamiltonian. With these remarks as background
we can proceed to the analysis of coherent states in Sec.
III.

jII. COHERENT STATES

We shall divide our discussion into three parts. Section
IIIA will deal with the calculation of coherent states by
the DOCS and AOCS methods. In Sec. IIIB, we shall
calculate the time evolution of MUCS for the systems FP,
LP, and RO. The computation of expectation values for x
and p and the uncertainty product will be made in Sec. III
for the number operator representation.

A. DOCS and AOCS

According to Perelomov's (or Gilmore's ) definition of
coherent states, we require a Lie group 6, which in our
case is the group obtained from the exponentiation of the
I Ic algebra jM3,J,J+g j. Wc need Rll Irreducible I'cprc-
sentation of G, namely t ——,, 1, and a fixed vector in the
representation space; we choose the extremal weight func-
tion ho(x, t). The stationary group of ho(x, t) will consist
of elements of the subgroup exp(ioMI+i st):

exp(ioM3+irI)ho e' ~ +'ho——

by (2.19). The displacement operator is the coset represen-
tative

D(a)=exp(aJ+ —aJ )

which 1s a un1tary opelatoI' aIld 0', =p.+iv 1s a complex
parameter.

The DOCS f (x,t) is defined to be

f (x, t)=D(a)ho(x, t) .

By standard arguments, " it can be shown that f (x,t) is
also an eigenfunction of the lowering operator J, with
e1genvalues A, 1.e.,

J f (x, t) =af (x,t) .

This is the definition of the AOCS; the equivalence of the
DOCS and AOCS definitions is peculiar to the structure
of the I.ie algebra [MI,J p+,I], and does not hold for
all Lie groups.

We shall now construct a space-time realization of the
DOCS, f (x, t). To begin, the Baker-Campbell-Hausdorff
relation allows'

f~(x, t) =exp( ——,
'

i
a

i
)exp(aJ+ )exp(aJ )ho(x, t)

=exp( ——,
'

i
a

i
)exp(aJ+)ho(x, t)

since J ho ——0. From (2.20) we have an expression for
ho(x, t):

r

X g3 XM3
Xexp i — + —A ——

I X
&(exP ———

1&2
—A

where @I, A, A, 4, and WI are given by {2.11), (2.21),
and (2.12). Now the action of the group element
exp(aJ+ ) on ho(x, t) [multiplier representation, Eq. (2.1)]
can be determined from the form of J+ [see (2.14b)].
We have (see the Appendix)

{'

f (x, t) =exp
a'g xa 2ag&

2 2g

f (x,t) =g(t)exp x — +i( 2 iKx ax
2

(3.9)

where g(t) is an arbitrary function of t To fix g(.t), we
demand that f satisfy the Schrodinger equation (2.3).
This places the constraint

2ig = ——~———(a —i@) g
2g2

on g. Integrating this equation and substituting the result
into (3.9) yields the AOCS

r

f~(x, t)=JIig 'i exp x — +E 2 EKX A'X

,

2g

i ' (a iK)'—
ds

2 ~o
(3.10)

where X is the normalization constant. That this expres-

(3.6)

where the properties of the Wronskian (2.10) have been
used. That f (x,t) also satisfies (3.3) and the Schrodinger
cqllRtloll (2.3) CRII bc scc11 by subsfltutlon. SIIlcc D(a) Is
unitary, we get

(a ia}=f f (x,t)f (x, t)dx

= f ho(x, t)D (a)D(a)ho(x, t)dx

= f ho(x, t)ho{x,t)dx=l, (3.7)

and f (x, t) is normalized.
The AOCS approach requires that we solve the eigen-

value problem (3.3). In this case, (3.3) reduces to a first-
order partial differential equation for f~,

gf „+(iK i' ——a)f =0 . (3.8)

This equation can be solved, in part, by the method of
characteristics, where the characteristic equations are

dt dx df
(i K i' a)f— —

Integrating we obtain



sion for f is equivalent to the DOCS f, up to normali-
zation, can be seen from exploiting the properties of the
time-dependent functions g, K, W3, A, A, and 4 (see
Appendix).

Here we have two nice methods suitable for obtaining
wave functions for coherent states. Their value lies in
their generalization to other groups and to differential
equations of higher dimensions.

Let us establish some properties of the states f (x, t).
From (3.4), we can expand exp(aJ+) and from (2.19) we
get

which corresponds to the usual expansion of the oscillator
coherent state "in the basis for the number operator rep-
resentation. Naturally, (3.11) and (3.6) provide us with an
identity

a"e ™~ x a'g xa
Hyg ~y2

A exp
~

+
o 2" n!

f (x,t)=exp
2

=exp
2

(aJ+)"
ho(x, t)

n!

h„(x,t),
nI

(3.11)

which generalizes the standard identity for Hermite poly-
From (3.7), the DOCS are normalized. Howev-

er, they are not orthogonal since

+ 00 + ooI „f (x t)fp(x t)dx= I ho(»t)D (a)D(P)ho(x t)dx

i'f-h, (x, t)D(P a)h,—(x, t)dx=e '~ ~'-+~ t~'-'. t~~'

which arises because of the overcompleteness of the
DOCS."

Let us work in the bra-ket notation and set

la)=D(a) lo& .

By (2.18), the DOCS
l
a) satisfies the Schrodmger equa-

tion, for

p=gJ++gJ +i(gC —gX),

p =g J++gpJ2 —(gK —gK) +2g'J+J +g
+ 2i g(gÃ —-gC )J+ +2i g(gF gK )J— . (3.17)

(3.16)

From the properties of the coherent states computed
above we have

C
l
a) =CD{a)

l
0) =D(a)C

l
0) = ——, a)

= ——,(y3Q+1) l
a) ~Q

l
a) =0,

(x(t)) =(a
l
x

l
a) =a)+a(+i(gF' gC)—

=X2{~2p+Cz)+Xz(~2v —&)), {3.18)

since F3&0 for any t
We shall need a number of matrix elements which can

be obtained from the property J+ ——J'

&al J+ la&=a.
From the casimir operator (2.18).

&al~3 la&=&al{J.J -C) la&= lal'+-,'

(3.12)

(3.13)

Now we wish to evaluate some properties of the DOCS,
(3.6); first, in general, and then for the special systems
HO, HOUDF, FP, LP, and RO. Specifically, under what
conditions will the DOCS give rise to a wave packet
which preserves its shape in time, which remains localized
in position and momentum about their classical values
and which follows the classical equations of motion and
has the classical, phase-space trajectory. To discover this,
we must evaluate expectation values for x(t), x (t},p(t),
and p (t) as well as the variances (dec) and (bp) . The
operators x, p, x, and p can be expressed in terms of the
13dder operators J and J+ as follows:

x =gJ++gJ +i(gC—g'K), '

(3.14)

x'=g'J', +g'J —(gV —g&)'+2g J,J +g
+2ig(ging@)J++2i' g—(gY' g&)J, (3—.15)

K (t) = g)(s)X (s}ds, o =1,2
~o

( '(t)&=&
l

'l &=& (t)&'+g,
(p(t)) =(a lp l

a) =a/+a(+i(gP gK)—
=X)(v 2p+K2)+X2(V2v —K)),

&p'(t) &
= &a

l

p'
l

) = (p(t) )'+g .

Therefore, from (3.20) and {3.22) we get

(hx) =(x (t)) —(x(t)) =g'= —,y3,

(&p) =(p (t)) —(p(t)) =g,
and the uncertainty product is

(~)'(&p)'=gg'= —,
'

(X~+X~)(X &+X 2) .

(3.19)

(3.20)

(3.23a)

(3.23b)

and see that the uncertainty relation is satisfied and, in

But the Wronskian W(X~,X2) =X~X&—X&X2——1. Expand-
ing (3.24), squaring the Wronskian, and substituting into
the expanding (3.24) we get

r

(M) (&p) = 1+ —(X~+X2)



particular, if Xi+Xz——gg is a constant then the muumum
uncertainty holds. What are the conditions for Xi+Xz to
remain constant in time Since g&+gz is a solution of
(2.7), we get a necessary condition gz ——0 or gz(t) =const.
If gz(t) is constant, it can be positive (HO), zero (FP), or
ilcgatlvc (RO). Iil wllat follows, wc sliow tllat tllc sllffl-
cient condition for the minimum uncertainty is that gz(t)
be a positive constant. Surprisingly, the uncertainty rela-
tion is independent of gi(t). Therefore, only for the sys-
terns HO and HOUDF will the minimum uncertainty
condition be realized for all time, i.e., the coherent states
are nondisperslve.

Expression (3.25) is analogous to that obtained by Hart-
ley and Ray' for the potential V(x, t)=co (t)x using the

method of Lewis-Riesenfeld invariants. They concluded,
as we have, that the wave packet is dispersive in time, but
they did not address, other than for the system HO, the
nature of the coefficient co(t) and the conditions for coher-
ence. Nor was the impact of a uniform driving force on
coherence examined. ' * '

%e can readily establish that the classical equations
(Newton's equations) of motion are obtained. From (3.18)

d&x{t)) 0 ~

dt
=Xi(v 2p+ &z)+Xi(v 2v —&1)+Xi&z—vz& i

=&p(t))

since XiÃz —XzÃ, =0 by Eq. (3.19). The force is

d&p(t)) 1 4 ~ ~

dt
=Xi(v 2@+&z)+Xz(v 2v —@1)+Xiez —Xze 1

= —2gz{t)[XI{v2p+&z)+Xz(v 2v —&i)]—(Xiiz —iixz)gi(t)

= —2gz(t) &x(t) ) —gi (t)=- BV
Bx

since by (2.6), X = —2gz(t)X for o.=1,2 and the property
(2.8) of the Wronskian, W(X', X ).

To obtain the sufficient condition for minimum uncer-
tainty we require the detailed solutions for three specific
cases: the systems HO, FP, and RO. In addition, we treat
two other examples: the systems HOUDF and LP. The
first three have gi (t) =0 and the latter two have gi (t)&0.
We refer to Table I for appropriate values of the time-
dependent functions X (t), g(t), and y&(t). We treat HO
and FP in detail and sketch the derivations for the
remaining examples. The results are summarized in Table
H.

HO. For the harmonic oscillator the coherent-state
wave function has the form

Po 1 5'o
&p(to) )=po V2co——v ~v=

v 2' 2 Ap

If we set tano =p/v, then
' 1/2

(3.31)

&x(t)) = —IaI' sin(cot+cr), (3.32)

At t =to, the initial values are obtained
. 1/2

= 2 dp 1 &0
&x(to)) =xo= p ~p=xo = (3.30)

2 2'

f (x, t)=(rr/co)
—2ia)(t —to )x exp( ——,

I
a

I
——,a e I

a I'=s '+~= —
2

+ —

2
(3.33a)

+v 2coxae ' ——,coax ) . (3.26)

This has a form similar to that given by Nieto and Sim-
mons and Santhanam if (dec) = 1/2co and (bp) =co/2 is
substituted.

The minimum uncertainty product is satisfied:

=&aIMz Ia) —&OIpzI0) . (3.33b)

The analogous expression for the momentum, from Eq.
(3.21), is

(hx) (bp)z= —,
'

(3.27)
&p(t) ) =(2'

I
a

I

)'~ cos(cot+g) . (3.34)

The average position, from (3.18), is
1/2

&x(t))=—2
Ip cos[co(t to)]+v sin[co{ —t —to)] I

(3.28)

&p(t)) =v 2cgI —p, sin[co(t —to)]+vcos[co(t —to)]/ .

(3.29)

Ehminating the time dependence from {3.34) and (3.32) we
have

&p(t)) +co &x(t)) =2'
I
a

I
=pa+co xo, (3.35)

a constant. Equation (3.35) is the equation for an ellipse
in phase space and the trajectory is closed. This is the
classical trajectory. The HO satisfies the definition of
coherent states in all its aspects.

HOUDE. This case resembles in many respects the pre-
violls oilc. Tllc varianccs OI' llllccrtR111tlcs (M) Rnd (lip)
(Table II) are independent of time and the minimum un-
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certainty condition holds. From (3.18) and (3.21) we get 3'(t) =—[(v 2@+@2)'+(~2v—@g) ] . (3.39)
(x(t) ) =A(t)sin[co(t —to)+o(t)]

(p(t) ) =a)A(t)cos[co(t —to)+o(t)],
where

tano. (t) =(v 2p+ &2)&(v 2v —&1)

(3.36)

(3.37)

(3.38)

The phase o(t) and the amplitude 3 (t) are clearly time
dependent. The trajectory

will depend upon the nature of g&(t). The trajectory will
be closed if g ~ (t) is periodic.

EP. The wave function for the coherent state can be
rcpI'cscntcd by

I
a

I

' ~'[1—i(t —to)] W2xaf (x,t)=In[1+(t —to) ]I '~ exp — — . +
2 1+i t to — 1+i t to—

x (t —to)
cxp /

22[1+(t—t, ) ] 2[1+(t—t, ) ]

i tan '(t —to)

2
(3AO)

The variances from (3.23) are shown in Table II with the
uncertainty product. It is clear that initially the state is
coherent, satisfying the minimum uncertainty condition,
but with the progression of time the coherent state dissi-
pates (Fig. 1).

The (x(t)) and (p(t)) given by (3.18) and (3.21) have
the form

(x(t) ) =x,+p, (t t, ), —

&p(t) & =pa,
where xo ——V2p and po ——W2v; the equations are for a
particle moving in uniform rectilinear motion with con-
stant momentum po.

The requirements of the coherent state are not met in
full; we have the classical equations of motion, the classi-
cal trajectories, but the dispersion is time dependent. The
same observations hold for the next two examples: the
systems Lp and RO.

LP and RO. The calculations for these cases are the
same as above and a summary of results can be found in
Table II. The dispersions axe time dependent as are the

B. MUCS

For the algebra f x,p,I I with commutation relations

[x, p]=iI, (3.41)

we can compute the minimum uncertainty states accord-
ing to the equation

X /P

(Ax)o (Ap)o

Xo /po

(3.42)

uncertainty products. The initial state is coherent in the
full sense of the term but dissipates in time.

The trajectory predicted for the system LP is parabolic,
which is the classical one. For the RO the trajectory is
hyperbolic as can be seen by eliminating the time depen-
dence from (x (t) ) and (p(t) ).

This brings us to the evolution of the MUCS, the details
of which are provided next. To anticipate, we shall find
similar predictions for the systems FP, LP, and RO from
those calculatIOIls.

07—
where p = —iB~ and the subscript 0 refers to the time to.
The coherent-state function calculated from Eq. (3.42) has
the form

Pcs ——[2'(M )o]
'~ exp

X —Xo +ipox . (3.43)2(xx,
0.4x

Cl

0P

t=5

'l0

t =30

50 70 80

For any time-independent Hamiltonian (for example,
the systems FP, LP, HO, and RO), we can obtain the
dynaI11ics from thc wave fuIlctioIl

q'cs(x, t) =e ' Pcs(x» (3.44)

where 0 is the appropriate Harniltonian. Let 0 be some
opcI'atoI. Then its time dcpcIKIcncc IQay bc exprcsscd

&0«)&=&q'CSIo
I pcs&=&ecsI«t) Iecs&

FIG. l. A plot of the DOCS density as a function of x and t.
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iH(, t —t()) —iH(. t —to )
O(t) =e Oe

=0+i (r rp—)[H, 0]
[i(t—rp)

'
[H, [H, 0])

Nieto and Simmons have performed these calculations
for the systems HO and we have done them for the sys-
tems FP, I.P, and RO when Oisx, p, x, andp . Theun-
certainty products were then calculated. The results are
displayed in Table III.

In each case the phase-space trajectories are identical to
those obtained by the displacement operator method. Ex-
cept for the system HO which is truly coherent, the
MUCS are "dissipative, " the amplitude of the coherent
state spreads in time. We can see by comparing Tables II
and III that the DOCS and MUCS predict the correct
classical equations of motion in each case.

It is instructive to contrast the dynamics of the DOCS
and MUCS to those predicted by the number operator
representation of Sec. II. This we do next in Sec. III C.

(x(t)) =i(gÃ —gÃ),

(p(t) ) =i((YgK')—,
and the force is given by

d(p) . — — BV
dt

=2igzC&
Bx

(3.45)

(3.46)

=2gz (x (t) ) —g, (3.47)

which is Newton's equation of motion. The uncertainty
relation is

(b,x) (bp) =(2n+1) g'g ) —,
' (3.48)

(hx } =(2n +1)gg, (hp) =(2n+1}g' . (3.49)

The correct classical trajectories cannot be calculated
from (3.45) and (3.46). For example, for the systems HO,
FP, and RO, n =0 and so

(x(&) ) =0, (p(r) ) =0 .

In these cases, the trivial solution of Newton's equation of
motion is obtained. Even for the HOUDF the classical
trajectory is not obtained. The minimum uncertainty is
obtained only for the state n =0 and only for the harmon-
ic oscillator.

IV. CONCLUSION

C. Number operator representation

Details of the calculations for (x) and (p) may be
found in Ref. 15. We have

dispersing in both position and momentum about the clas-
sical values as well as the minimum uncertainty product.
If the first requirement is met but the wave packet, initial-

ly coherent, disperses with time, we call it a dissipative
coherent state. It is dissipative in the sense that the proba-
bility of locating the particle in a small volume at a point
in space decreases with time but the total probability over
all space at any time remains unity.

We have clearly shown for a Schrodinger equation with

potential V(x, t)=g2(t)x +g&(t)x that Ax, hp, and the
uncertainty relations depend only on the nature of the
function g2(t) and not on g&(t). Furthermore, the neces-
sary and sufficient condition for hx, bp, and the
minimum uncertainty product to be independent of time
is that g2(t)=const~0, regardless of g&(t). Thus for the
systems HO and HOUDF we get a nondispersive coherent
state; for the everywhere nonconfining potentials (FP, LP,
and RO), we have dissipative coherent states.

Also, it is apparent that even dissipative coherent states,
such as those described above, are quantum analogs of
their classical counterparts. Therefore, this property is
not tied to the minimum uncertainty condition. Thus, in
each of our examples, dispersive or nondispersive, the
classical picture is reproduced by the DOCS or MUCS
method. This conclusion is supported by the work of
Hartley and Ray, ' and by Roy and Singh. '

In each case, in our analysis, the constant of motion in
which the number operator representation is diagonal has,
in the Heisenberg picture, the form p +ex where c =co
for the systems HO, HOUDF, and RO or c =1 for the
systems FP and I.P. For the system HO, p +co x corre-
sponds to the Hamiltonian whose spectrum is discrete
with equispaced eigenvalues. For the other systems,

p +cx does not correspond to their respective Hamil-
tonians which have continuous spectra.

In summary, we have constructed coherent states for a
system subjected to a potential of the form V(x, t)
=g2(t)x +g, (t)x by the displacement operator method.
This technique provides a natural mathematical frame-
work because the number operators and the ladder opera-
tors which define them are symmetries of the time-
dependent Schrodinger equation (2.3). Indeed, they are
constants of motion. This displacement operator formal-
ism is readily extended to other groups and to differential
equations in higher spatial dimensions.
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APPENDIX

To obtain the DOCS wave function (3.6) we must com-
pute the action of the group element exp(aJ+) on the
ground-state function (3.5). By using Eq. (2.1) we have

We require of a particle in a coherent state that it, first
of all, follow the classical equations of motion and the
classical phase-space trajectory. In addition, we expect
that the wave packet describing the particle would be non-

exp(aJ+)hp(xp rp)=v(xp rp'a)hp( f(xp rp'a)),

where

J+ ———gB„+ixg iK—
(Al)

(A2)
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and xo, to are some "initial values. " We shall drop the
subscript 0 later. The group action can be calculated by
integrating the equations lnv=i (xoa —,' g—a2)g i—Va .

Going back to (Al)

(A3b) exp(aJ+ )ho(xo, to)

dlnv =ixg iÃ —. =expli[(xoa ——,
'
ga )g' —Ka]Ih, (xo —ga, to) .

First we integrate (A3b) to get t =to. Then, Eq. (A3a) has
the solution

X =XII—pa=f1(Xo, tc,a) .

Substituting t =ttl and (A4) into (A3c) we have

dIQv =i (xo ga—)g'i 4' —.

Dropping the subscripts on the variables x and f and mak-
ing use of (3.4) and (3.5) we obtain the DOCS, (3.6).

To be able to identify the DOCS, Eq. (3.6), and the
AOCS, (3.10), we need some relationships between the
auxiliary time-dependent functions g, tp3, K, A, A, and
@. ln full form, the DOCS, (3.6), is

V

f (x,t)=(mq») '~ exp — — + — exp i
a a xa 2a A
2

=(1rtpl) exp ——,
~

a
)

a/ xa

r

x' ~f3 1
Q exp -- — +x

2 2+3

I MI-+—
1/2 + ( 'A i A) ——tll— —

%e Q0% develop the needed identities.
(1) Fllst,

~ 0

li(4k+kb —i(N —Eked
2+3

i A= — — ds-
2 'o

(iv) Next,

(Alo)

(A 1 1)

where we have used the Wronskian (2.10).
(ii) From (2.12) and (2.21),

I A' —(igF +gC ) I'

(gg gg )

by (2.21). Substituting (AS)—(Al 1) into (A7) we obtain
' I/O

f (x,t)=
(21rg)'~

ja i
a2$' xag exp — — +

2 2$
2agAP

1/2

(iii) A is defined in (2.21) which when expanded and us-
ing (2.12) we get

t ($2+ 2+(2g 2)A=

and so %ve have by lnteglat100 by parts

,'3F iA= ——fd—s AA i f 2
— ds .($2C 2+$2@2)

2 f fo q3

Sllbstltutlllg (2.21) alld tllc dcfllmtloll of +2 wc llavc

ix2$ ix K i
Q exp — — — — dS

2$ g 2 '0

Other 1dent1tles %'e 1equire are the fo110%'iIlg.
(v) From (2.10),

' ds . ' ds(g —g) ig
to $2 to $2

(»)»tegrating by parts, and using (2.10),

(A12)

(A13)
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2(&
r 4

3/2
P3

+ 2 dS
g3 f (x, t)=(2m) '

g
' exp( ——,

'
~

a )

4

ix g ixK xa
2$

(a —tÃ)
ds

fo 2

Putting (A13) and (A14) back into (A12) and rearranging
which is equivalent to the AOCS (3.10) up to normaliza-
tion.
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