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The dipole polarizability of F and the electron affinity of F are studied using full fourth-order
many-body perturbation theory (MBPT) and the infinite-order coupled-cluster single- and double-

excitation model (CCSD). It is shown that the fourth-order correlation corrections for the polariza-
bility of F are larger than second-order, raising questions about the suitability of finite-order
methods for including electron correlation effects on the polarizability of this system. MBPT CC
results in a variety of basis sets suggest that the experimentally unknown polarizability of F is
—18—20 a.u. , of which a large percentage is due to the inclusion of triple-excitation effects.

I. INTRODUCTION

Use of the many-body perturbation theory (MBPT) in
the calculation of second-order properties goes back to the
work of Kelly. ' The method proposed there is often re-
ferred to as a double perturbation theory, since the Hamil-
tonian contains an external field and a correlation opera-
tor which are treated as perturbations, while the unper-
turbed problem is the Hartree-Fock solution in the ab-
sence of the external field. Such an approach suffers from
the fact that single-particle excitation effects are very im-

portant for one-particle perturbations and these are often
inadequately included in lower orders of a double pertur-
bation expansion.

Considerable efficiency may be gained by assuming as
an unperturbed problem the Hartree-Fock solution in the
presence of the external field. As shown by Bartlett and
Purvis, this can be done by the so-called coupled
Hartree-Fock (CHF) method which requires the solution
of the Hartree-Fock equations in the presence of the field,
for finite field strengths, taking numerical derivatives with
respect to the field strength to obtain moments and polari-
zabilities. This has been shown to be equivalent to the
summation to infinite order of some classes of diagrams,
properly called "relaxation terms, " ' since these terms ac-
count for the change in the orbitals in the presence of the
external field perturbation. The "true" correlation contri-
butions may be found by performing ordinary MBPT cal-
culations subject to using the CHF finite-field, field-
dependent orbitals, followed by numerical differentiation
of the correlated energy.

The correlation contributions to electric properties are
usually the most time consuming part of the calculation.
In most cases, these corrections are only about 10% of the
total value. However, the electric dipole polarizabilities

of the negative ions are rather exceptional in this respect.
For instance, it has been shown that the CHF value of
the dipole polarizability of H is equal to 93.0 a.u. , while
the total correlated result is 206.4 a.u. , with the correla-
tion contribution more than doubling the CHF result.
Obviously, in order to achieve an acceptable accuracy for
the theoretical results, one has to take into account a sub-
stantial part of the correlation effects, which in the
present paper are calculated by using full fourth-order
MBPT and coupled-cluster theory.

The fluoride ion F is a particularly interesting case.
There is no reliable experimental value available for its di-
pole polarizability. Also, any theoretical calculation will
suffer from the difficulty in properly describing the ex-
treme electronegativity of F and highly important effects
of electron correlation in F

There are several papers devoted to the evaluation of
the dipole polarizability of the fluoride ion. ' Numeri-
cal CHF calculations' ' which exclude the true correla-
tion effects have provided a value of 10.66 a.u. for the di-
pole polarizability. However, other works that have in-
cluded the effects of electron correlation ' suggest a
value almost twice as large as the CHF results. The corre-
lated results obtained by these authors point to the rather
slow convergence of the perturbation series, which raises
pertinent questions about higher-order correlation effects.

In the present paper we investigate higher-order correla-
tion contributions using the coupled-cluster (CC) theory
for the dipole polarizability of negative ions. One can an-
ticipate that CC values, being a result of the infinite sum-
mation of certain classes of diagrams, would provide more
reliable values than finite-order perturbation theory. In
particular, we have recently extended the CC theory to in-
clude all contributions of T& and T2 in the CC single-
and double-excitation (CCSD) wave function exp( T,
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+ T2)
l
4p), thus the CCSD model contains the residual

single-excitation effects (i.e., those remaining after a CHF
calculation) that have been found to be significant
in other property calculations. The present results are the
first report of CC results for properties.

In addition, the previous correlated calculations were
limited to fourth-order correlation effects arising from
only single and double excitations. Consequently, since
triple-excitation effects could be expected to significantly
affect the correlation correction for one-electron second-
order properties, we report the full fourth-order MBPT re-
sult to the F polarizability. By combining CCSD results
with the fourth-order triple-excitation diagram contribu-
tion, the primary correction to the CCSD model, much in-
formation about higher-order correlation corrections for
the polarizabilities and electron affinity of F is obtained,
suggesting a theoretical value for the experimentally un-
certain polarizability of F

Section II of the paper presents a short theoretical
description of the applicable approaches, while Sec. III re-
views the theoretical results for the dipole polarizability of
the fluoride ion. Sectians IV and V discuss the present re-
sults.

Within the MBPT scheme we solve this equation per-
turbatively. The total Hamiltonian H (A, ) is split in a stan-
dard way:

H(A, )=H»(k)+ V(A, ),
v(x) = g r,, ' -g—U, (x), (4)

H»(A )C»(A, ) =Ep(A )@Hp(A, )

where

HHF(A, ) =HHF+AH'= g h;(A, ),

H'„F —gS, + g U, (X),

XH'= gF r; .

where U;(k) is a Hartree-Fock effective potential, deter-
mined in a self-consistent way in the presence of the exter-
nal perturbation.

The unperturbed —with respect to V—problem is set up
within the HF model:

II. SUMMARY OF THE THEORY

Here we present only a brief summary of the theoretical
background underlying MBPT and CC methods in con-
nection with finite-field perturbation theory. The more
detailed description is given elsewhere. '

The total molecular energy E can be expanded in a
series with respect to the external electric field F:

H(A, )P(A, ) =E(A, )g(k) . (2)

E =E(0) p;F; —, a,qF—;FJ — 13—,jkF;FJFk —.—. .
l l 2 lJ l J 3g lJ l J

where summation over repeated indices is implied. Thus,
being able to determine E as a function of the field
strength I', both the dipole moment p and the polarizabili-
ties a,P, y, . . . can be obtained by numerical differentia-
tion.

To find the total molecular energy E as a function of
some perturbational parameter A, we have to solve a A,-
dependent Schrodinger equation

The set of one-particle A, -dependent states is generated by
solving the one-electron HF equations

h;(A, )P;(A, ) =e;(A, )P;(A, ) .

All of these equations may be solved using either
finite-field techniques, where F is fixed at some small
value, or by prior expansion in A, , from which the CPHF
(coupled perturbed Hartree-Fock) equations may be ob-
tained. Because it is easy to use finite-field techniques in

computer programs written to calculate the energy we
take this option in the following. Hence the CHF energy
and orbitals are actually k dependent, so the correspond-
ing values are obtained by solving Eq. (9) for several
values of A, and then by taking derivatives evaluated at the
point A, =O. Any possible differences between finite-field
CHF and CPHF results are caused by the inaccuracies of
the numerical differentiation. The one-electron states re-
sulting from Eq. (9) form the basis for the MBPT-CC cal-
culations.

Within the finite-field MBPT scheme we find the corre-
lation contribution to the wave function and energy using
the Goldstone linked diagram formula'

Ar»T(~)=@HF+ g I[Ep(~)—H»(&)] 'l'(&)I
l @Hp(&))1. ,

k=1
n —1

E'~) = &@»IH I &M»T& =E»(~)+ g &~»(~)
I

1'(~)IÃp(~) —H»(~)~ 'l'(~) I"
I
@Hp(~) &i

where E„(k) is a total energy up to the nth order and the
subscript L, indicates that only linked terms should be tak-
en into account. Of course, differentiation relative to A, is
required to obtain the correlation corrections for proper-
ties. The energy diagrams through fourth order are
shown in Fig. 1. For reference, these are conveniently
separated into different classes of contributions by the ex-

I

citation level at the middle vertex.
Within the coupled-cluster method we solve Eq. (2) by

observing that the exact wave function PM»T can be ex-
pressed tn the form' '

qcc(X) =e T'~'C»(~)
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Since Tj and T2 occur in the exponential operator, the
final result for the wave function includes an infinite sum-
mation of all single and double excitation s in a
configuration-interaction (CI) sense, plus a part of the tri-
ple, quadruple, and higher excitations that can arise from
the various products involving T& and T2. This accounts
for all terms in the fourth-order energy except those aris-
ing from the T& operator, i.e., diagrams Tl T6—in Fig. 1.
Thus to include the principal correction term to CCSD we
include the fourth-order T3 contribution. This level of
calculation is denoted throughout the paper as
CCSD + T(4).

III. REVIEW OF THE PREVIOUS CALCULATIONS

(oa) (T2)

(T5)

0)g
(O2)

FIG. 1. Arrowless antisymmetrized Goldstone diagrams for
the (a) second- (b) third- and (c) fourth-order MBPT energy. By
providing arrows for each nonsymmetric loop, the full set of an-
tisymmetrized diagrams is obtained (Ref. 10).

and the energy is obtained from

& = &@HF
I

~
I +cc&

Substituting expansion (13) into (12), multiplying from
the left by e ' ', and projecting onto a subspace of sin-

gle, double, etc. , excitations we obtain sets of nonlinear
equations which give the coefficients t Jk' The im. por-
tant feature of Eq. (12) is that the energy arises always as
a sum of linked diagrams independently of the approxi-
mations introduced into T(A, ) in Eq. (13).

There are two types of approximations made in practi-
cal applications of the CC equations. One arises when we
truncate the series of Eq. (13), for example, to
T~(A, )+T2(A, ). We assume this approximation here which
defines the CCSD model. Other approximations are
often introduced into the resulting amplitude, It I, ttj I,
equations such as truncating the expressions to include
only selected linear contributions in the amplitudes. The
latter, however, violates the spirit and much of the advan-

tages of the CC technique, so we make no such approxi-
mation here. Instead, we properly include all nonlinear
terms that arise, such as quartic T] terms and quadratic
and cubic T] and Tq cross terms.

where the operator T(A, ) is a cluster operator that sums all
of the connected wave-function contributions in 'PMBPT.
The exponential expansion of exp[T(A, )] includes all other
linked but disconnected wave-function contributions to
VMBpT. Hence, coupled-cluster theory is a natural
infinite-order generalization of finite-order MBPT
methods. The cluster operator may be separated into
one-body, two-body, etc., parts,

(13)

T„(A)=(n!) g tjk' atbtct kji

The early studies of the fluoride polarizability which go
back to the 1960s were limited to the CHF level, ' ' and
in one case, to a small CI.' The results obtained there
range from 8.1 a.u. (Ref. 18) to about 12.2 a.u. (Ref. 17),
although the numerical CHF result is 10.66 a.u. (Ref. 16),
which should be the CHF limit. The experimental value
available at that time was considerably lower, i.e., about
6.4 a.u. (Ref. 19). The more recent empirical and sem-
iempirical estimates made by Coker' suggest the value of
the fluoride-ion polarizability to be greater than 10 a.u. ,
superficially close to the above "best" CHF values.

A thorough analysis of the quality of the theoretical
and empirical data on fluoride-ion dipole polarizability
given by Sadlej ' led to the conclusion that the experimen-
tal value given in Ref. 20 is still too low. The reason for
that is the large and positive correlation correction to the
polarizabilities of the negative ions. Similar situations are
found in the case of other negative ions, e.g., Cl
These conclusions found a confirmation in the several pa-
pers by Sadlej and others devoted to the determina-
tion of the F dipole polarizability with the inclusion of
some portions of the correlation energy.

In Table I we present a summary of the previous corre-
lated calculations of the dipole polarizability of the
fluoride ion. Two groups of basis sets were employed
there: the first one based on the paper by Kistenmacher
et al. includes sets denoted as 3, 8, and C while the
second basis was developed starting from Huzinaga's
( 1 ls 7p) uncontracted atomic basis and includes sets D, E,
F, and G. The basis sets within each group differ by a
number of additional diffuse s, p, d, and f functions and,
in the case of the second group, also by the contraction
scheme (see footnotes to Table I).

For relatively small basis sets the CHF values of the po-
larizability are rather sensitive to the addition of the dif-
fuse functions; see the upper values for the basis A, B,C.
For the larger basis, however, they practically remain the
same as the CHF values for the E, I', and 6 sets, and
equal to 10.7 a.u.,2 ' which is near the Hartree-Fock lim-
it. ' The lower row values for the 3, 8, and C sets refer to
calculations with field-dependent basis functions [electric
field variant (EFV)] which introduces extra flexibility into
a small basis set. These show significant improvement
over the standard basis sets.

The correlation corrections limited to single- and
double-excitation effects show a similar type of basis-set
dependence as do the CHF values. For the A, 8, and C
basis sets they increase with basis-set size, or when extend-



Basis
set

TABLE I. Summary of previous results on the F polarizability (a.u. ).

(13sSp 1d/7s 4p 1d)'

( 14s 9p 1d /8s 5p 1d)'

(14s 9p 2d/8s 5p 2d)'*

(12s 8p 4d/12s Sp 4d)'
(15s 10p 5d /12s 8p 5d )" ~

(15s 10p 5d 1f/12s 8p 5d 1f)"
( 13s 9p 5d /13s 9p 5d )"

3.25
9.23
4.65

10.57
6.05

10.62
10.33
10.67
10.67
10.68

0.79
3.35
2.91
6.27
2.74
5.92
5.13
6.13
6.22
6.32

—0.31
—1.58
—1.78
—3.91
—1.76
—3.98
—3.21
—4.06
—4.10
—4.19

3.55
4.96
5.04
5.08

3.73
11.00
5.78

12.93
7.03

12.56
15.80
17.70
17.82
17.89

'Taken from Kistenmacher et al. (Ref. 29).
Upper row values are obtained from the field-independent basis sets (Refs. 21, 23, and 24), while the

lower row values result from electric field variant (EFV) calculations (Ref. 21).
'Augmented basis set A.

"Employed in the present calculations and hereafter denoted as I.
'Taken from Huzinaga (Ref. 30) and augmented.
Dipole polarizability values are obtained in Ref. 25.

gEmployed in the present calculations and hereafter denoted as III.
Taken from Huzlnaga (Ref. 30), contracted and augmented.
Dipole polarizability values are obtained in Ref. 26.

ed via the EFV approach, whereas for the larger basis sets
E, I', and 6 they remain rather stable.

The correlation correction calculated for the basis sets

D, E, I', and 6 show rather large fourth-order contribu-
tions ranging from 3.55 a.u. for the smallest basis set D up
to 5.08 for the set 6, although only part of the total
fourth-order correlation was taken into account. Howev-

er, with a HF starting point, fourth order is the first time
that the residual single-excitation effects (i.e., those not in-

cluded in the finite-field CHF result) can contribute, and
these still are important for a one-particle operator.
However, to be thorough, two questions should be raised.
First, what is the size of the fourth-order triple and qua-
druple contributions? Second, what is the behavior of the
corrclstlon contr1but1ons wh11c summ1ng higher-order
correlation diagrams to infinite order by techniques of
coupled-cluster theory~ %c address these two questions in
the next sections.

Thr'ee basis sets were employed in the present calcula-
tions. The first, denoted as I, is taken from the paper by
%ilson and Sadlej. Basis II is that used by Bartlett and
Purvis, and the third one, denoted as III, was developed
by Diercksen and Sadlej. The basis sets I and III, con-
taining 35 and 66 basis functions, were previously em-
ployed for F and are denoted in Table I as C and E,
respectively. The reasons for choosing these two sets from
the eight used by Sadlej and others ' are as follows. It
was mentioned in Sec. III that the basis sets come from
two soulccs, Klstcnmacher et Ql. Snd Huz1naga, so 1t
is reasonable to use one representative of each group. Be-
cause the sets belonging to the first group (A, B, and C in
Table I) are rather moderate in size, we selected the larg-
est, believing it to be the best for this group. The basis
sets derived from Huzinaga's sei are more sizable. To

make our calculations economical, wc selected the basis
set which gives correct results, but is still reasonable in
size. It can be seen from Table I that the addition of a set
off functions to the basis E has only a slight effect on the
results, so from among four basis sets D, E, I', and 6 we
decided to use basis set E. Details of these basis sets are
described in Ref. 23 for I and in Ref. 25 for III.

The third basis set employed here, containing 46 func-
tions and denoted in this paper as II, was used in the cal-
culation of the hyperpolarizabilities for the HF molecule,
and its description is given in Ref. 2. Because all the
basis-set parameters were transferred without any change
from the HF molecule to the F ion, its quality with
respect to an F calculation might be poor'er than the oth-
er two. However, this basis has the advantage that it was
able to reproduce numerical HP results for the HF mole-
cule and it is intermediate in size between I and III.

The dipole polarizabilities were obtained by performing
two calculations for each basis set employed: one in the
absence of the electric field and the other with an electric
field equal to 0.005 a.u. , and by then taking the numerical
derivative of the energy with respect to the field. The
correlation calculations for the basis set III were carried
out by excluding the two highest-lying virtual orbitals.
Thc11 cnc1'g1cs SI'c equal to 266.7 and 1144.3 S.U. Snd be-
cause of their high values, the contribution to the correla-
tion is expected to be negligible (check footnote to Tables
III and IV). The coupled-cluster iterations were carried to
a convergence of 10 a.u. in energy. This was achieved
after 10 or 11 iterations.

The results presented in Tables II—V include the SCF
values and the correlation contributions to the energy and
electron affinity of the fluorine atom, as well as those for
the energy and dipole polarizability of the fluoride ion.

For all the basis sets considered, the correlation com-
ponents of the energy of the fIuorine atom, see Table II,
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TABLE II. Correlations contributions to the energy and electron affinity of the fluorine atom. SCF stands for self-consistent
field, Hartree-Fock basis set calculation.

Contribution

Basis set I
Energy
(a.u. )

Aff.'
(e&)

Basis set II
EncI gy
(a.u. )

Aff.'
(e&)

Basis set III
Encl gy Aff.'

(a.u. ) (CV)

—99.413 850
—0.206696
—0.009 221
—0.001015
—0.002078
—0.003200

0.001 699
—0.001 394
—0.004 594
—0.217 311
—0.220 511
—0.217592

—99.634 361
—99.634642

ESCF
ED

ES
ED
ET
EQ

ESDQ
4

zSDTQ(E )

E2+E3+E4
&CCSD

EMBPT(4)
tot

ECCSD+ T(4)
tot

1.222
2.349

—0.607
+ 0.133
+ 0.113
+ 0.252
—0.012
+ 0.234

0.486
1.976
2.228
1.874
3.450
3.348

—99.403 390
—0.204438
—0.008 943
—0.001 163
—0.002069
—0.003 458
+ 0.001 652
—0.001 448
—0.004906
—0.214 830
—0.218 287
—0.215 123

—99.621678
—99.621971

Experimental value of the electron affinity of the Auorine atom is equal to 3.4 CV (Ref. 43).

—99.413 189
—0.219176
—0.009 318
—O.Q01 112
—0.002 131
—0.003 612
+ 0.001 715
—0.001 389
—0.005001
—0.229 884
—0.233496

0.944
2.275

—0.607
0.131
0.114
Q.255

—0.017
0.231
0.486
1.899
2.154

exhlblt slxnllar structure. The order-by-ox'der contribu-
tions show satisfactory convergence: the second-order
value being =20 millihartrec, the third order =9 mil-
lihartree, and the total fourth-order component =, 5 mil-
lihartree. All contributions are negative.

One of the more interesting questions pertain to the rel-
ative magnitude of the fourth-order energy coming from
single, double, triple, and quadruple excitations. There are
several papers dealing with this problem, which stresses
the importance of the triple-excitation components. '

It follows from the series of atoms and molecules dis-
cussed elsewhere, ' ' ' that the relatively largest
triple-excitation contributions occur in systems containing
multiple bonds. ' For the atoms, an increasing value of

the triple component is observed when going from Li to
Ne in the first row atoms. ' The structure of the fourth-
order contributions to the correlation energy of the
fluorine atom obtained in this work supports the view of
the important role of the txiple-excitation contribution.
The results collected in Table II show the E~ component
as the prevailing one. It is equal to = —3.5 millihartree as
compared with = —2.1 and —1.1 millihartree for the E4
and E4 contrlbutlons, 1cspcctlvcly. Thc quadruplc-
excitation diagram component is here also large being
equal to 1.7 millihartrcc, aIld its slgIl ls posltlvc. Howev-
er, the effect of CI quadruple excitations is given by the
sum of the linked and unlinked quadruples, and this value
axnounts to —17 millihartree, which is clearly the dom-

TABLE III. SDTQ-MBPT(4) and CCSD correlation contribution to the energy of the fluoride ion
(a.u.).

Contribution
Basis set

II

—99.457890"
—0.302 793'
+ 0.013007'
—0.005 910
—0.006 306
—0.012 981
+ 0.002 335
—0.012 216'
—0.009 881
—0.022 862
—0.299 667
—0.312 648
—0.296 331
—0.309 312

—99.448 313
—0.290762
+ 0.013367
—0.006040
—0.006224
—0.012 712
+ 0.002 221
—0.012 273
—0.010052
—0.022 764
—0.287 447
—0.290 159
—0.283 998
—0.296710

Escjp —99.458 608'
ED —0.291 123'

+ 0.011991'
ES —0.005 394
ED —0.005 902
ET —0.011046

+ 0.001 877
ESD —0.011296

ZSDQ —0.009419
—0.020 465

z +E +E»Q —0.288 551
—0.299597

ECCSD —0.285 357
EccsD+E4 —0.296403

'Repetition of the results reported in Ref. 23.
Rcpct1tion of the I'csults rcportcd 1n Rcf. 25.

'The small difference as compared to the values given by Diercksen et al. (Ref. 25) originates from de-
leting the two highest-lying virtual orbitals in this calculation.
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lnant c011'cctloll fol R configuration-Intcractton slnglc- Rnd
double-excitation (CISD) calculation. The net E4+E4
contributions is here rather small, —0.4 millihartree,
which is slightly different from what is reported in Ref.
31 where E4 +E4~ ———1.0. However, those differences
may be assigned to the basis-set effect since the basis sets
used here are rather large compared to the DZ+P (double
zeta plus polarization) set used in Ref. 31. The open-shell
F atom is treated with an unrestricted Hartree-Fock refer-
ence function, but the CCSD multiplicity in basis I is
2.0002 so there is no appreciable spin contamination.

Going from the neutral F atom to the negative fluoride
ion we observe substantial changes in the structure of the
correlation contributions to the energy as in Table III. Be-
cause the total correlation energy is larger, the particular
contributions also increase their value. In the third order
thcrc ls a s1gn alternation with thc E3 value changed from
—9 millihartree for the F atom to + 13 millihartree for
the fluoride ion. The total fourth-order term is negative,
but larger than the third order, being equal to —23 mil-
lihartree ( —20 for basis set I).

The structure of the fourth-order energy contributions
ls Rlso mod1fllcd. Tllc dom1nant part of E4 Rrlscs from tllc
triple excitation: =—13 millihartree ( —11 for the basis
set I), then come single and double contributions which
are here nearly the same, = —6 millihartree, and the
smallest part is due to the quadruple-excitation diagrams,
= + 2 millihartree. Comparing those values with corre-
sponding ones for the fluorine atom we observe the largest
increase in the single components, a factor of 5, then, in
the triple one, a factor of 4, and the double contribution is
3 times greater, while the E~~ is affected only slightly.
Thus for the negative ion there is no useful cancellation of
the quadruple term against the rest of the fourth order.
The fact that the fourth-order energy is larger than the
third order, with the positive sign of the third order, leads
to the supposition that the fifth-order energy might come
with a positive sign, cancelling part of the fourth-order
contribution.

The pattern of the correlation contributions for the F
energy also affects the electron affinity of the fluorine
atoms, see Table II. The correlation part accounts for
nearly two-thirds of the total value of the electron affini-
ty. Most of it in the second-order component, =2.3 eV.
The third-order contribution occurs with negative sign
and 1ts value 1s = —0.6 cV. Total fourth-ordcI' com-
ponent amounts to about 0.5 CV (0.4 for basis set I) and
practically cancels most of the third-order increment. The
fourth-order structure is the same as for F, i.e.,
E4 -=E4+E4, and all are positive, whereas E4 -0, and isT S 0 Q

negative. Again, CI quadruples amount to a larger contri-
bution of -0.3 eV.

It should be stressed that the pattern of the correlation
contributions to the energy and electron affinity is re-
tained for all thlcc basis sets employed which points to a
comparative basis-set independence.

For the smaller basis sets, i.e., I and II, the CCSD cal-
culations were performed to estimate the correlated ener-
gy. The calculations show that Eccso is very close to the
E4 ~ value, cf. —0.217311 for E4 ~ vs —0.217592 for
Eccso, and similarly for the basis set II. Thi.s means that

TABLE IV. SDTQ-MBPT(4) Rnd CCSD correlation contri-
bution to the dipole polarizability of the Auoride ion (a.u.).

Contribution'

cHF 6.05b 10.39 10.67'

Correlation correcti. ons
5.34

—3.38
CK4 1.38 2.46
a4 0.72 1.39
A4 1.36 2.75

—0.10 —0.19
0!4. 2.10 3.85

2.00 3.66
3.36 6.41

Cfg+ F3+0,'4 2.98 5.61
A2+ CX3+A'4 4.34 8.36

CCSD 2.17 3.81
O'CCSD+ ~4 3.53 6.56

I otal polaAzablllty 1s +cHF ++~ for MBP f and ~CHF +~ccso
for CC theory.
Repetition of the results reported in Ref. 23. Numerical CHF

value is 10.66 (Refs. 15—17).
'Repetition of the results reported in Ref. 25.
Thc small diffcrencc as coIIlpared to the values given by

Diercksen et aI. (Ref. 25) originates from delete. ng the two
highest-lying virtual orbitals in this calculation.

6.14'
—4.07

3.25
1.72
3.36

—0.24

4.73
8.09
6.80

10.16
4.96
8.32

in the case of the fluorine atom, the inclusion of higher-
order diagrams does not substantially modify the fourth-
ordcl value.

The comparison of the theoretical value of the electron
affinity with the available experimental estimate shows
excellent agreement for the smaller basis sets used, but
poorer results for the largest basis, so there is no conver-
gence with size. Basis f orbitals are also likely to play an
important role in this property. Fourth-order perturba-
tion theory seems to overestimate the affinity as shown by
comparison with the infinite-oxder CCSD results in basis I
RIld II. Thc CC rlsults glvcll fol tllc clcctl'0II RfflIllty have
values 3.062 and 3.096 eV for the basis sets I and II,
respectively. The correction coming from fourth-order
triples increase these by 0.213 and 0.252 eV, respectively,
which gives —especially for the basis set II—a value very
close to the experimental one, compare 3.348 vs 3.4 eV.
However, we see no real convergence with basis sets, since
the affinity computed in basis III at the MBPT(4) level is
much smaller than in the smaller basis sets. A study of
the electron affinity of F as a function of basis set has
been published by Roos et al.

The results for the dipole polarizability, presented in
Table IV, show the basis set III to be considerably superi-
or to basis set I for this property, and somewhat superior
to II. (For the exact unperturbed wave function, a
second-order property satisfies a variational bound, which
is approximately true even for an inexact unperturbed
wave function. ) However, the trends among the dif-
ferent correlation contributions are the same for all the



basis sets considered, so the analysis of the structure of the
correlation corrections is common to the three calcula-
tions. The value of the dipole polarizability seems, how-
ever, to be most reliable for the basis set III and we will
refer to these results in the further parts of the discussion.

At first sight, the proportions of the different correla-
tion components of the dipole polarizability resemble
those of the F energy and of the electron affinity of the
Auoridc Rt01Tl. ThcI'c Is 8 ncgRt1vc Rnd lafgc third-order
contribution and also large but positive fourth-order one.
The perturbational series seems to be„ in this case, more
divergent than in the case of the energy and the electron
affinity. The fourth-order component, which is + 8.1

a.u. for the basis set III, is larger than the second-order
one, + 6.1 a.u. , and even more so compared to the third-
ofdcr, —4.1 R.U. To our knowledge, th1s ls onc of thc few
times fourth-order correlation corrections have exceeded
second order, ' although it is common for the fourth-
order energy to be larger than the third order.

Within the fourth order the most important contribu-
tions come from the triple and single excitations, both be-
1ng nc811y the same valUc: 3.4 Rnd 3.3 R.U., fcspcct1vcly,
The double-excitation part is about half that much, and
the quadruple part is, as usual, of the opposite sign, and
negligibly small, —0.2 a.u. Comparing different approxi-
rnation schemes, we observe that because of the large aiT
value, none of the approximations SD-MBPT(4) and
SDQ-MBPT(4) seem to work well, whereas both yield
Very SiIDllaf 1CSUlts.

Th1s 1s 1n gcnc181 agrcemcnt %"ith alfcRdy I'cpoftcd stUd-
ies on the fourth-order contributions to the electric prop-
erties of molecules. The values of the fourth-order
contributions to the dipole polarizability of the FH and
H20 molcculcs * sh0%' thc same IDUtURl p1 GpoI't1ons, 1.c,
af) a4=-2~zP while aP is negligible. There is a different
structure exhibited by the fourth-order correction to the
digole polarizability of the beryllium atom. In this case,
A4. becomes thc dominant part. ThcIc 1s not, however»
such 8 I'cgulaf pattern foI' other clcctric pfopcrtlcs such Rs
thc dlpolc and quadruple moment.

The total fourth-order polarizability of F is as large as
20.8 a.u. , see laMe V. This value, however, seems to be
exaggerated because of the aforementioned sign alteration
property of the MBPT series. Some estimates of the ex-
tent of the cancellation by the higher-order terms can be
made on the basis of the coupled-cluster results. The
CCSD correlation contribution accsD is equal to 5.0 a.u. ,
while the same diagrams summed only to fourth order,
1.C., &2+%3+&4 glVCS the VR1UC 6.8 R.U.

If the total fourth-order results u2+aq+u4 would be
corrected by the infinite summation in the same propor-
tion, we would obtain the final value of the dipole polari-
zability of F equal to =18 a.u.

From thc viewpoint of RccufRtc coffclatcd calculations,
the fluoride ion represents an interesting study. The
correlation contributions to the energy and the dipole po-

TABLE V. Summary of the dipole polarizability calculatioIl.
Total dipole polarizability values (a.u.).

10.67'
17.71'
17.47
20.83
15.63
18.99

CHF 6.05"
SD-MBPT(4) 9.13
SDQ-MBPT(4) 9.03
SDTQ-MBPT(4) 10.39
CCSD 8.22
CCSD+ T(4) 9.58

'Repetition of the results reported i.n Ref. 23.
Repetition of the results reported in Ref. 25. Numerical CHF

value is 10.66 (Refs. 15—17).
'The small difference as compared to the values given by
Diercksen et aI. (Ref. 25) originates from deleting the two

1ghest"ly1ng v1rtual orb1tals ln this calculat1on.

10.39
16.20
16.00
18.75
14.20
16.95

lari»bility a«qui«1«ge. Moreover, the first terms of
thc MBPT scrics sho% vcfy slav convcfgcncc Rnd cvcn 1n-
clusion of all fourth-order terms does not give results of
chemical accuracy (i.e., within 1 millihartree). Because of
the occurring sign alteration, the fourth-order results seem
to overshoot.

A reasonable estimate of the quality of the fourth-order
results can be obtained by performing coupled-cluster-type
calculations, i e , su.m.ming to infinity all diagrams that
derive from Ti and T2 and their couplings. The CCSD
energy for F is -3 millihartree above its fourth-order
equivalent, i.e., E2+E3+E4, while the polarizability in
thC 181gC baS1S SCt 1S —2 R.u. 1CSS.

Assuming also that the fourth-order triple contribution
would bc partially cancclcd by h1ghc1 onIcI's, %'c may cst1-
mate the total dipole polafizability to bc about 18 a.u.,
however» basis-sct cxpans10n coUlcl[ 1ntI'GdUcc 8 corrcctlon
1n thc other direction. HcIlcc GUI' best estimate foI' thc di-
pole polar1zab111ty of F 1S ~ 18—. 20 R.U. %'hlch 1s sub"
stant1811y 1RI"gcl than thc Rv8118blc cmplr1cal cst1matcs
and slightly larger than the theoretical estimates made so
far. It is also clear that more standard methods for elec-
tron correlation effects like single-reference CISD are not
likely to account for difficult problems like F or, in gen-
eral, negative ions due to the neglect of higher-order exci-
tat1ons.

The structure of the fourth-order contribution points to
the importance of the triple-excitation terms in energy cal-
culations, which in the case of F account for more than
half of the fourth-order component. However, it is still
important in such assessments to distinguish the value of
quadruple-excitation diagrams from CI quadruple-
excitation effects, which causes the largest single energy
correction to CITED. In the dipole polarizability calcula-
tions, triple-excitation terms are equally important as the
s1nglc-cxcltatlon contr1butlon» both ITlcasul cd 1clRt1vc to
field-dependent orbltals wh1ch supports a previous suppo-
sition and the conclusion of Diercksen er al. '

For systems like the fluorine atom and fluoride ion,
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even more reliable results could be obtained by developing
more advanced tools for approaching the corrdation prob-
lem. This may be accomplished within the MBPT scheme
by including fifth-order terms, or within the CC approach
by also taking into account connected triple-excitation
terms, as llas rcccIltly bccn accomplished. SOIIlc klIlds
of complex correlation corrections will also require rnulti-
reference-function MBPT-CC methods for very high ac-
curacy results (see Ref. 10 for a review).
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