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Kolmogorov entropy from a time series
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A practical algorithm for estimating the Kolmogorov (E) entropy directly from a time series is present-
ed. In a11 the cases studied, we verify the conjecture that E is the sum of the positive Lyapunov ex-
ponents.

The E entropy is then"

K = —lim lim lim XP(II) ln1 P(I,)
C 0 I oo Lit 0 I —1

(2)

where II t
= {/(1),i (2), . . . / (/ —1)]. When M( e) and /

are large, as required by Eq. (2), the calculation of K re-
quires the examination of a very large number [which can
reach M( e) ] of distinct sequences L For simple low-
dimensional systems, the need for large M(e) in Eq. (2)
can be circumvented by constructing "generating" two-
element partitions. " In such a case, the number of distinct
I's is considerably reduced and convergent values for K in
the range 5 « l «15 have been obtained, using a reasonable
amount of data, for the logistic' and the Lorenz' maps. In
experimental situations, however, typically high-dimensional
systems exist and procedures for the construction of gen-

The Kolmogorov, or E entropy, ' is an important measure
for the study of nonlinear dynamical systems which are
characterized by changes from regular to irregular behavior
upon variation of parameters. Examples of such changes
are the transition to irregular internal dynamics in polyatom-
ic molecules at high levels of excitation and the appearance
of chaos or turbulence in jhighly nonlinear dissipative sys-
tems. ' ' Qualitatively, the K entropy permits to distinguish
between regular and irregular systems: E is zero in regular
systems, positive and finite for irregular (chaotic) systems.
Quantitatively, K provides a measure of the rate of uncou-
pling of correlations in phase space. 8 It turns out, ho~ever,
that it is very difficult to measure K from the time series of
points, representing a system's trajectory at regular time in-
tervals. An estimate of K for systems of two degrees of
freedom has been obtained by Benettin. For higher de-
grees of freedom, an algorithm for calculating a quantity
K2 «E has been proposed recently. '

The E entropy is defined as follows. Consider a dynami-
cal system whose trajectory x(/) is confined to a well-
defined subspace (called "attractor") of some arbitrary d-

dimensional phase space. Let that attractor be partitioned
into small boxes of volume ed and labeled 1, 2, 3, . . .M(e).
Let {x(i +1),x (/ +2), . . . , x (i + /) ] denote a time series
of l successive points representing the state of the trajectory
at discrete time intervals At, i.e., x(/) =x(to+id/). As-
sume that the first point falls into box /(1), the second into
box /(2), etc. , so that the series of points leads to the se-
quence of boxes I&= {/(1),i(2), . . . /(/)]. The total number
of distinct sequences II which might occur is M(e). Let
P(I&) denote the probability of a given II, where

XP(I) =1 .

crating two-element partitions are computationally intract-
able. ' In the present Rapid Communication, we propose a
practical algorithm for the calculation of K through Eq. (2)
in the large M(e) limit. The efficiency of that algorithm
has been tested for various chaotic systems ' and, in all the
cases, our results verify the conjecture' ' that E is the sum
of the positive Lyapunov exponents.

Our algorithm is based on the following considerations:
(i) The P(I)'s in Eq. (2) have been originally defined for

a given partitioning of the attractor's volume into boxes,
which is extremely difficult to realize for the high-
dimensional systems encountered in experiment. For that
reason, we assume that those P(I) 's can be estimated
through a division of the attractor's volume into (possibly)
overlapping balls of radius e centered around each of the
data points. In that representation, a point x(j) is said to
"fall in the same box" as a point x (/) if it lies inside a ball
of radius e centered around x(/), i.e., if Ix(j) —x(i) I

~e.
A similar technique has been used in Ref. 10 for the es-
timation of E2 and also in previous calculations" of the
attractor's dimensions.

(ii) The ensemble average in Eq. (2) requires the labor of
constructing a frequency histogram for the occurrence of all
the possible sequences II of length l. In practice, it is not
necessary to go to the large /limit in Eq. (2), that limit be-
ing already reached when l is of the order of the correlation
length between successive box numbers. Assuming that the
ergodic limit can be attained for those short sequences, we
then propose to replace the ensemble average in Eq. (2) by
a time average over a very long series of length N &) l.

Our algorithm thus proceeds as follows. Consider a very
long time series X= {x(/)]; t of length X )) /. Since the
ensemble average in Eq. (2) has now been replaced by a
time average, K is to be evaluated through a random sam-
pling of ln[P(II)/PII t)] over X. We thus start by picking
a sequence {x(/+1),x(i +2), . . . x(/+/)] of / points at
random out of X. P(II) for that sequence is estimated
from the frequency of occurrence in X of sequences
{x(j+1),x(j+2), . . . x(j+/) j, such that Ix(j+n)
—x(/+n)I ~e for n=1, 2, . . . /. For the estimation of
P(It t), n runs from 1 to / —1 only. The process is then
repeated for another sequence picked at random until the
(time) average value of In[P(I~)/P(II t) ] converges. Typi-
cally, a few hundred repetitions suffice.

Before presenting our results, we turn to give a rough es-
timate of the amount of data required by our algorithm for
calculating E in a high-dimensional system. For the sake of
simplicity and without any loss of generality, our argument
will be presented for a partitioning of the system's attractor
into M( e) boxes and not, as actually done, into overlapping
balls centered around data points. Consider a sequence
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TABLE. I. Kolmogorov entropy for various chaotic systems. Values listed in the second column are those obtained from the Lyapunov
exponents. K is the sum of the positive Lyapunov exponents (Refs. 14-16). i has been determined visually from the value of lat which a
plateau in our X vs I curves (see Fig. 1, for example) starts to appear. The error bars have been calculated from the standard deviation of
the EC values for different e in the plateau region, i.e., at several I ~I .

System
E

(Lyapunov exponents)
E

[Our algorithm based on Eq. (2)]

Henon map
(a =1.4, b=0.3)
Kaplan- Yorke map
(n =0.2)
Lorenz equations

(R =28, cr=10, b =
3 )8

(R=40, ~=16, b=4)
Rabinovitch-Fabrikant equations
(y=0.87), n= 1.l)
Mackey-Glass equations
(a =0.2, b =0.l, v=23)
(a =0.2, b =0.1, v =30)

0.417 +0.006 (Ref. 21)

0.69315 (Ref. 22)

0.907 +0.006 (Ref. 23)
1.373 +0.005 (Ref. 15)

0.0095 +0.0005 (Ref. 14)
0.0090 +0.0005 (Ref. 14)

0.414+0.010 (N =3.104, I'=5)

O.ti89+0.007 (N=3.10~, I"=3)

0.901 $0.007 (N=6.104, I =9)
1.36 %0.05 (N=7. 104, I =5)

0.303 t0.006 (N=6.104, I =10)

0.0092 +0.0010 (N =4.10', I'=5)
0.0086 X0.0009 (N=4. 104, I =5)

{x(i+1),x(i +2), . . .x(i+i)) of points picked at random
out of a long time series X. That sequence of points leads
to a sequence of boxes II= {i(1),i(2), . . .i(i)] and we
focus on the number N of data points in X that are neces-
sary in order to obtain a reliable estimate for P ( II) . As-
suming that the points in X are uniformly distributed on the
attractor, the probability of finding a point in i(1) is
P[i(1)]= I/M(a). At small resolution [M(a) large], box
numbers are strongly correlated in time and, for example,
our results for the Mackey-Glass7 map at v=30 indicate
that P[i(1),i(2), . . i(i) ] .decreases with i roughly as
P[i(1)]/I. Therefore, the number of points that must be
examined to make it likely to find a single series of points
falling in the given I& is N = IM(e). For a reliable estima-
tion of the P(II)'s, at least ten occurrences of a given II are
needed. The number N of data points that must be taken is
therefore N =10lM(e). In order to quantify these ideas, let
us consider our example of the Mackey-Glass map with
r =30, which is a typically high-dimensional system ( d = 10,
see below). The fractal dimension of that system is around
3.6. Suppose e is of order a tenth the maximum variation
in x(i). The number of boxes necessary to cover the at-
tractor is then M(e) =10'6 =4X10'. The amount of data
required for that system at 1=5 is therefore N 2X10.
Very often, however, the points on an attractor do not have
uniform distribution, i.e., different sequences I of box
numbers have widely different probabilities. In this case,
only the most probable I's are of importance in Eq. (2) and
this considerably reduces the number of data points that
must be gathered. ' Indeed, our study of the Mackey-Glass
equations at v =30 shows that N =4X104 points (see Table
I) already suffice for a reliable estimation of K. Such
amounts of data are readily obtainable from experiment. '
A last remark on the application of our algorithm to experi-
mental situations should be made. Indeed, typical experi-
mental data are in the form of a time series of a single vari-
able. To apply our method, one must construct from the
time series a set of points of dimension d greater than the
dimension of the attractor. This is relatively easy to do us-

ing derivatives or time delays. '
Our algorithm has been tested for various chaotic sys-

tems which have been widely studied in the literature.
The dependence of E on the length I of the sequences being
examined is depicted in Fig. 1 for the Henon' and the
Kaplan-Yorke4 maps. Inspection of the figure shows that
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FIG. 1. Dependence of the Kolmogorov entropy E on the se-
quences length I for the Kaplan-Yorke (A) and the Henon (B)
maps. The values were obtained using our algorithm based on Eq.
(2). Values of the parameters are as follows: 5 t = 1 and

= 10 (0), 5 && 10 2(V), 10 2( 0), and 5 x 10 3(V). The
curves are drawn to guide the eye.
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the large-i limit in Eq. (2) is rapidly attained (results for the
other maps studied below are similar, see also Table I). A
typical calculation of E took, depending on the system
studied, between 30- and 60-min central-processing-unit
time on an IBM 370/165.

Our results for K at the large-/ limit are presented in
Table I. Integration of the differential equations for the
Lorenz, Rabinovitch-Fabrikant, 6 and Mackey-Glass sys-
tems were performed using a fourth-order Runge-Kutta pro-
cedure. The time step bt for the numerical integration and
the time interval At chosen between successive measure-
ments were as follows: 5t =0.05 with At =0.5 for the
Lorenz map and At =0.75 for the Rabinovitch-Fabrikant
equations; or = r/100 and Ar = 7 for the Mackey-Glass
equations. For the latter, the d-dimensional vectors in the
time series were chosen as x ( t) = [x( t),x( t + r),
x( t +2r), . . . x(t + dr) ] with d =10. Inspection of Table I
shows that our E values are in excellent agreement with
those obtained from the conjecture' ' that K is the sum of
the positive Lyapunov exponents. This is in contrast with
the method proposed in Ref. 10 which led, for example, to
E2=0.325 for the Henon map. As already observed in Ref.
14, the E entropy for the Mackey-Glass equations, in con-
trast to the fractal dimensionality, '4 is rather insensitive to
the delay time 7. The constancy of K, as parameters are
varied, however does not seem to be a general property of a
chaotic system. This is exemplified by the Lorenz equa-

tions, for which two widely different values for K are ob-
tained (see Table I), depending on the system's parameters.

To conclude, the numerical results presented above show
that the Kolmogorov entropy can be computed with great
ease using our algorithm based on Eq. (2). A comparison
of that algorithm with previous ones seems appropriate
here. First, comparing our method with that proposed in
Ref. 10 for the calculation of E2, we note that the amount
of data required by each method is about the same. Howev-
er, in addition to providing, in principle, the exact value of
K, our method is also more convenient than that of Ref. 10.
Indeed, the calculation of E2 requires the additional labor of
a scaling analysis for the estimation of the correlation
dimension v, which is often problematic due to the presence
of systematic errors. ' Second, in contrast to the method
based on Lyaponov exponents, the application of our algo-
rithm to any experimental signal does not present any diffi-
culty. Thus the present method should be also useful in
laser-induced selective chemistry2 where the K entropy is of
great importance in studies of the rate of intramolecular en-
ergy relaxation. Work in that direction will be published
elsewhere 25
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