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Flory-type approximation for the fractal dimension of cluster-cluster aggregates
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We consider the structure and fractal dimension of aggregates formed by cluster-cluster diffusional en-
counters. Both the fractal dimensions and symmetry properties of these aggregates are found to differ sig-
nificantly from those found in the case of a single aggregating cluster. We find for the fractal dimension
D(d) = d(4d +3)/(9d —2) for d ( d, =8 and D(d) = d/2 for d ) d, .

Witten and Sander' have introduced a model for single
aggregates formed by the irreversible clustering of individual
particles: These particles execute isotropic random walks on
a lattice toward the origin where a seed particle has been
placed. If the random walker reaches a nearest-neighbor
site, it becomes part of the growning cluster; if not, it is
killed off. These clusters can be characterized in part by the
scaling behavior of the number of particles in the aggregate
N with its radius of gyration R as N —(R/a)D'~', where a
is the length scale of the diffusing single particle, D is the
fractal dimension, and d is the Euclidian dimension of the
space in which the walk is occurring. Meakin' carried out
computer simulations in two to six dimensions which sug-
gested D =5d/6. While theoretically using a Flory-type ar-
gument we have found4

size 2 N/4 of size 4. . . ). Computer simulations on this
model' agree with the quite different kinetic model of Kolb,
Botet, and Jullien and Meakin.

This explains why the fractal dimension D is found in the
simulations to be independent of the kinetics. Irrespective
of how clusters move between collisions, when two clusters
collide the only relevant length scale l is the average inter-
penetration distance of the clusters. We estimate l by con-
sidering the probability that any lattice point in the overlap
region is occupied by particles from both encounter clusters.
By smearing out particles over their respective volumes we
see this probability —[N/(R/a)4]'. So that for the entire
overlap volume the total probability of contact is—(I/a)~[N/(R/a)~]2. The scale l is determined by re-
quiring that this total probability is of order unity or

D(d) =(8+sd')/(6+5d) . g [N(R/g) —d] —2/d g(R/g)2(d D)ld-(2)

D(d) =(d'+1)/(d+1) has also been suggested'6 by mak-
ing different assumptions about the structure of the aggre-
gate.

However, for coagulation, precipitation, and flocculation
one expects that growth by cluster-cluster aggregation is of
importance. This suggests a model where an initial concen-
tration of particles moves on a lattice according to some
given kinetics; encounters lead to growing clusters, and any
time two clusters touch they become part of a larger cluster
until a single network forms.

Recently, simulations have been undertaken for this
model. Here we present an argument for the fractal
dimension D(d) and structure of the resulting aggregates.

Examination of the simulation results shows the aggre-
gates formed by cluster encounter to be much more "strin-
gy" than those formed by single-particle addition. Their
fractal dimensions are much smaller: D (2) = 1.38 + 0.06
(Ref. 9), D (2) = 1.45 + 0.05 (Ref. 8) compared with
D(2) =1.67 +0.05 (Ref. 3); D(3) =1.82 (Ref. 10), D(3)= 1.85 (Ref. 7) compared with D (3) =- 2.49 + 0.06 (Ref. 3);
and D (4) = 2.7 (Ref. 11) compared with D (4) = 3.34
+0.01 (Ref. 3) for the case of single-particle diffusion. In

addition, the results for D (d) seem to be independent of
the kinetics.

These simulation results become understandable when we
recognize that essentially the aggregate is growing by the ad-
dition of pairs of equal-sized clusters. Sutherland and
Goddarz-Nia' introduced exactly this model which they
called the maximum chain model where W particles collide
to form doublets, all doublets collide to form quadruplets,
and so in a hierarchial manned (i.e. , N of size 1 N/2 of

The kinetics do not appear in this derivation. This is very
different from the case of single-particle diffusion-
limited clusters where the relevant length scale4 is

(e —D)/~„I' —a (R /a ) " and the fractal dimension of the
particle's walk d makes a specific appearance. From Eq.
(2) we can immediately see that there exists an upper criti-
cal dimensionality d, given by

D(d, ) =d/2 . (3)

For d ( d, the clusters cannot interpenetrate macroscopical-
ly, i.e. , as R oo, I/R 0. While for d ) d, we shall ar-
gue D(d) = d/2 and complete interpenetration occurs, i.e. ,
1/R is finite as R ~ oo. This excluded volume effect for
d & d, will also have important consequences for the macro-
scopic structure of the aggregate, which we shall consider
first.

In this paper we argue that the stringy appearance of the
clusters and their fractal dimensions can be estimated from
the hierarchical process shown in Fig. 1. We assume that on
a large enough scale, r )& l, the properties of the cluster can
be understood in terms of the "macroscopic collision pro-
cess, " whereby at each collision the clusters are replaced by
spheres of the average maximum radius R. This assump-
tion can be justified in a "mean-field" way by arguing that
on a large enough scale one may replace the average of
many two-cluster collisions by a single collision between ro-
tationally averaged clusters. Thus, in contrast to the case of
single-particle cluster formation, the aggregates here are an-
isotropic, at least for d & d, . What do we mean by this
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FIG. 1. Macroscopic collision process for cluster-cluster aggrega-
tion.

statement~ Consider first the case of single-particle
diffusion-limited clusters. %e say that they are isotropic be-
cause when we calculate the radius of gyration tensor

(8 ) =I/W X r~ r/

where r
&

is the position vector of the ith particle from the
center of mass of the aggregate; then on averaging over
many clusters as N~ ~ we expect (8') Ir A~'(N)bu/3.
In the case of cluster-cluster aggregation, however, if we
calculate (8') &, in the limit N ~ ~, and if we average the
principle moments, we expect that

(R2) p
~ R j~ 5nP + (R 2))

—8 j~ ) k k p

where k is a unit vector along some unique symmetry axis.
In order to estimate the relative sizes of A 2~~ and 8 j~, we ar-
gue that the anisotropy of the principal radii of gyration R ~[

and 8q is the same as that between maximum distances
between parts of the cluster according to the macroscopic
collision encounter shown in Fig. 1. In this case 8 s/Aq =2
which agrees very well with the results of Sutherland and
Qoodarz-Nia who found, for clusters of 256 particles„ that
A~~/Rq=2. 04+0.15. The anisotropy is also apparent in

Fig. 2. In this sense the cluster-cluster aggregates have a
limiting behavior (R') Is~Rq(N)(8np+3k k&), which
also accounts for the stringy appearance of the clusters. For
d & d„on the other hand, if complete interpenetration does
occur the aggregate should be isotropic.

To estimate the fractal dimension of the cluster, we em-
ploy the length scale I given by Eq. (2). We divide a typical
aggregate into blobs of size I" and look on length scales
r &( I and r » I. We assume that a typical blob on a
length scale r (( I behaves like a fractal of dimension D».
In other ~ords, the number of particles nI of size gd in a

D»
typical blob of size Id scales like n~

—(I/a) '. On the scale
r » I we assume that the blobs of size I~ form a fractal of
dimension D2. In other words, an aggregate of size 8 will

be covered by N~ blobs where Xl —(8/I) '. Since the
number of particles in the aggregate obeys the relation
N=N~nr —(8/a)~ we have, employing Eq. (2), a self-
consistent equation D =D2+2(d —D)(D& —D2)/dor

d(2D, —D, )B=
d +2(D) —D2)

Note that the reason the new fractal dimension D appears is
that I scales with R. If I had been a constant then we would
simply have found a crossover in behavior on scales r &( I
and r » I.

Next, we estimate D» and D2. One consequence of the

400 Lattice units

FIG. 2. An aggregate of 5000 particles from Ref. 11 formed by
cluster-cluster addition for d =2. 8 —440 lattice units. Since
I —a[N(A/a} d] 2/", one has I/a —39. Drawn also are cover-
ing circles of radii 8 =220, 110, and 55 lattice units.

macroscopic encounter process, assuming no interpenetra-
tion as 8 ~ ~, is that an aggregate of size 8 can be
covered by two blobs of size 8/2, four blobs of size R/4,
etc. This should continue down to length scales I where the
aggregate would be covered by a chain of (R/I) blobs of
size I. Thus D2 = 1. This scale invariance appears on the
aggregate of 5000 particles in Fig. 2. The maximum end-
to-end distance of the cluster =440 lattice units. Thus
I-39 lattice units. %e have drawn blobs of radius 220,
110, and 55 lattice units and see that a chain appears.

Ho~ever, the linear shape will break down for length
scales r && l, and a single blob appears like a branched ob-
ject as on these scales interpenetration can occur. To obtain
its dimension D», we appeal to the concept of universality.
Two choices for the universality class spring to mind: first,
randomly branched polymers'2'3 and, second, single-particle
diffusion-limited aggregates. ~ Initially, the second choice
appears tempting. After all, the aggregate is formed by a
diffusion process. Ho~ever, the aggregate is not formed in
the manner of single-particle diffusion-limited aggregation.
Even the small scale structure is formed by the inter-
penetration of large clusters. Thus the reasonable assump-
tion is to treat every configuration on the small scale as
equally likely. But this is just the definition of the lattice
animal or randomly branched polymer problem; and, ac-
cordingly, we assume that on the small scales we have its
fractal dimension Dr =2(d+2)/5 f«d ( d, =8 and D& =4
for d & d,', ~here d,

' is the branched polymer upper critical
dimensionality. Substituting these values for D» and D2 in
Eq. (4) we obtain D(d) =d(4d+3)/(9d —2) for d &8 and
D(d) =7d/(d+6) for d &8. Using these values in Eq.
(3), we see that d, =8 and that while D(d) & d/2 for
d & 8, and therefore self-consistently no interpenetration
occurs; for d &8 the value for D(d) given above obeys
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D(d) & d/2, which is not self-consistent, and interpenetra-
tion does occur for d & 8. At low dimensionalities

D(d) =d(4d+3)/(9d —2), d (8 (5)

From Eq. (5) we find D(l) =1, which is an exact result,
D(2) =1.375, D(3) =1.80, and D(4) =2.24. These values
are in excellent agreement with the simulation results quot-
ed earlier.

At high dimensionalities complete interpenetration does
occur. Thus we take D2 oo in Eq. (4) and find, indepen-
dently of D~, that

this is the case and gives us the lower bound D «d/2, for
during the process of forming the aggregate the initial small
clusters are of high density. Thus interpenetration is small
and a more tenuous object appears after the collision pro-
cess. However, when the aggregate gets too tenuous, inter-
penetration again occurs during collisions forming a more
compact object. Thus there exists a stabilizing mechanism
which will ensure that I & R and therefore D «d/2.

In summary, we have argued that the cluster-cluster ag-
gregates belong to a different universality class from single-
particle aggregates and have determined their structure and
and fractal dimension. We are now considering the dynam-
ics of this model and the properties of the infinite network.

D(d) =d/2, d )8 (6)

Equation (6) can also be derived from Eq. (2) by noting
that as interpenetration occurs I —R.

Equation (6) is derived on the implicit assumption that,
though clusters interpenetrate, they cannot simply pass
through each without touching like ghosts. We can see that
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