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Brownian motion of a quantum particle
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Proposed here is an exactly soluble model for the field-free motion of a quantum particle interacting with
a heat bath. The heat-bath interaction includes a fluctuating random force and a frictional force of
Langevin type. The momentum and position distributions obtained in the model have a close relation to
the corresponding solutions of the Fokker-Planck equation of a free classical particle.

The study of the motion of a quantum particle in interac-
tion with a randomly fluctuating medium is of importance in
several different contexts and has received much attention
in the past. ' For a particle moving in a lattice according to
a single-band tight-binding Hamiltonian, whose parameters
have the Gaussian, 5-correlated randomness in time, the
problem has been analyzed exactly and the solution exhibits
a diffusive behavior for the mean-square displacement
(x2(t)) in the long-time limit. 6 However, for the corre-
sponding problem in continuum, (x'( r ) ) instead of being
diffusive grows like t, if the effect of the medium is taken
into account by introducing a time-dependent, random,
Gaussian 5-correlated potential in the Schrodinger equa-
tion. As is well known, the classical diffusive behavior
arises only on introduction of a Langevin-type frictional
term in the equation of motion. The introduction of fric-
tion in quantum mechanics has been done in a number of
ways. The principle approach has been to develop operator
versions of the Langevin equation with analogs of
fluctuation-dissipation relations (see Refs. 1 to 5 for further
references to the extensive literature). The quantum
Langevin equation (QLE) approach has been questioned by
Benguria and Kac, who point out that most of the deriva-
tions fall short of being rigorous. More bascially, there is a
question regarding the approach towards quantum canonica1
distribution which has not been resolved satisfactorily. Tak-
ing QLE as the starting point, much work has been devoted
to deriving and solving the corresponding Schrodinger
representations. ~ Early on this led to the introduction of a
time-dependent Hamiltonian, and its early treatments en-
countered serious difficulties which have only recently been
resolved. 2' Kostin introduced a nonlinear wave equation
representation" for QLE which is satisfactory in many ways,
but suffers from the conceptual disadvantage that the super-
position principle for the wave function is lost. Many other
attempts, reviewed by Messer, 2 employ Heisenberg
representation directly in various ways. In short, the results
in different approaches differ more or less, and as such
there is no unique treatment for QLE. A somewhat dif-
ferent approach is due to Agarwal, " who uses quantum-
classical mapping to derive equations for the phase-space
distribution functions, which are close parallels of Fokker-
Planck equations.

Our purpose here is to introduce quantum friction in a

direct way into a time evolution equation for the quantum-
mechanical density matrix. Since our method avoids the
use of QLE and utilizes a conceptually simple picture of the
role of the heat bath, we believe it affords a fresh perspec-
tive on the problem. We also use some stochastic assump-
tions which amount to putting in the principle of detailed
balance. '3 Since the method is applicable in any dimension,
in the following we describe it for one dimension. The ran-
dom interactions due to the heat bath are visualized as a
series of momentum impulses of fixed magnitude, bp, and
variable sign, occurring in time according to a Poisson se-
quence. '4 This implies that the probability of an impulse oc-
curing between time t and t+dt is A. dt, and the probability
p(r(, t~) that no impulse occurs between times t( and r2 is
exp[ —

A. (r2 —t()]. The action of impulses on the wave
function is described in terms of unitary impulse operators
I+ such that

I+ I p) =
I p + &p),

where Ip) and Ip+Bp) are normalized momentum eigen-
states. Clearly, (I+) = I . A given impulse is positive or
negative with probabilities w+ and w, respectively, which
we allow to depend upon the momentum state of the parti-
cle, in order to simulate a systematic force due to the heat
bath. The parameters A. , Sp, w+, and w are arbitrary at
the moment, but a limiting procedure carried out below en-
ables us to replace these by conventional heat-bath parame-
ters such as temperature and diffusion coefficient. The im-
pulses of a given sequence are independent of each other,
and we would like to average the density matrix operator
over all possible impulse sequences in a given interval of
time '

In the absence of the medium, the density matrix
operator p(t) =I t((i))r( i((ti)I obeys the equation

p(t) =exp ——'8"t p(0)

where 0" is the Liouville operator' associated with 0,
which is the free-particle Hamiltonian. When the effects of
the heat bath are considered, we have to include the possi-
bilities that the quantum evolution is interrupted by
0, 1, 2, . . . , ~ force pulses with appropriate probabilistic
~eights. Thus

(,g~)Hx t' —z(i —i() —(i/i()H "(i—i() g —i) i) —(i/a)H "i(
p rj= e "'e ' '+&I dt(e e &I e e

~ t r t2 -(~+IH "It)(t—t2) S -(~+IH "It)(t2-tl) S -(X+tH "It)tl+ i dr, dk(e 'lI e ' ' hl e '+ p(0)&0 0 i

0( t, )0p( )0
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where

( 0)=„(t,0) = dt„& dt„~ J dt~e
~Jo aJO 0

Here I is the Liouville operator such that I p=lpl, and I is one of the operators defined in Eq. (1). Since the various
impulses are independent, we can preform a further averaging and replace I by I = w+I+ + w I in Eqs. (3) and
(4). Comparing these equations with standard perturbation expansion, one can equivalently write Eq. (3) as

Bp(t)
Bt

-0x
+) (I - I) P(t) . (5)

In momentum-space representaton, Eq. (5) can be written as

p(p—q, t) = — ' (p' —q')p(pq, t)+X[ w (p+Sp, q+Sp)p(p+Spq+Sp t)
at 2mb

+ w+(p —hp, q —Sp) p(p —hp, q —"op, t) —p(p, q, t) ]

where we have made use of Eq. (1) and let w's depend
upon the momenta associated with the density matrix at the
moment of impulse. We now take 5p to be small and make
a Taylor expansion to second order. Terms in the square
bracket of Eq. (6) yield

r

—asap' + [[w+(p, q) —w (p, q)]P(p, q, t) j
Bp Bg

+ (op)'x —+ p(pq t) . (7)
Bp Big

We now let X ~, Sp 0 in such a way that A. (5p)' D,
where D has the usual interpretation of the momentum dif-
fusion coefficient, and

I

acquires the form

P{p.q. t—) =—8
Bt

r

(p' q') p +-— + [(p+q) p]2mB
'

2 ap eq
[

+ D 9 + 9 (9
2 Bp Bg

2i — 8 D 82—
uvp+y (up)+ —,p . (10)

mh Bu Bu

Equation (10) can be reduced to an oscillatorlike equation
with the help of the transformation

It can be easily verified that the procedures done between
Eqs. (9) and (5) are such that the probability is conserved.
Equation (9) can be solved exactly for arbitrary initial condi-
tions. The convenient variables for solving the equation are
u = (p +q)/2 and v= (p —q)/2, in terms of which Eq. (9)
becomes

—p(u, v, t) =—6—
Bt

Z(w+ —w )Sp f(p, q) = —y(p+q)/2, 1

p(u, v, t) =exp — + ——yu y
2D 2 , t W(u, , t) . (11)2Dv2

ymt '
where f is the systematic force for which we choose the
form shown in Eq. (8). y is the Langevin friction coeffi-
cient and in the case of thermal bath y=D/2mkT. This
particular form for force is chosen so that, for an initially
pure momentum state, we obtain the Uhlenbeck-Orstein
(UO) {Ref. 15) distribution for momentum. Equation {5)

p(u, v, 0) =5(u —uo)5(v —vo)

the solution G(u, v, t~uo, vo, 0) of Eq. (10) is

(12)

With use of this fact it is simple to write the solution of Eq.
(10). For the initial condition

&/2

G (u, v, tl uo. vo 0) = — exp—I
vr

2Dv2 2i v(u —uo) 2t'Dv
, t+ —I u+, (1 —e «') —uoe «' 6(v —vo)(ymt)' ymt y'mt (13)

where we have set I =y/D(1 —e «'). The physical significance of the solution comes forth nicely, if we study the evolu-
tion of a Gaussian wave packet given by

p(x, 0) = (7r' 4o' 2) 'exp[ipx/t —x2/2a2]

With use of the equation

(14)

p(u, v, t) =
&

G(u, v, t~uo, vo, 0)p(uo, vo, 0)duodvo

it is seen that, for the wave packet of Eq. (14), one has

(15)

r r ]/2
I"( '

p(u, v, t)) =
m'

I' r

2+ 2Dt v + 2iuv
exp —o- +

(ym)' t' ymt

2 —2 2—
—I r'+«lI &(I —e '«')

ymh A2
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exp[ —I ~(p —pe 'r') 2] (18)

and

I p(x, t) I
= „& p(u, v, t) e '""i du du/ir

7r exp —x — (1 —e &') /N(r)
ymN(r)

where
(2O)

N(r) =~'+, [2yr —3+4e ~' —e-»~+&(I
my

(21)

Th«oliowing points about results contained in Eqs. (16) to
(21) are worth indicating:

(i) As r- ~, Eq. (16) shows the off-diagonal elements
of the density matrix in momentum space (i.e., v &0) van-
ish.

(ii) The momentum distribution function (MDF) js like
that obtained from the solution of the Fokker-Planck equa-
tion and, in fact, reduces to it exactly when parameter q is
set to zero. For times of order t » y ', one obtains the
Maxwell distribution.

(iii) The position distribution function (PDF) is Gaussian.
At short times,

N(t) =o-'+
m o-

where q =t2y/o. 2D is a dimensionless parameter,

r = u+(2iDu/y mf)(1 —e 'r')

and

I = (y/D) [1 +(q —1)e ~'] -'

From Eq. (16), the probability densities for momentum and
position can be derived. These are given as

which is what one gets from the Schrodinger equation. For
large times,

N(t) = o. +f /(myo. ) +2kT(2yt —3)/my

the last term of which is the classical result (neglecting
terms of order e 'r'). Thus for y t » 1, the solution
reduces to the classical UO solution. ' Considering the fact
that the procedures employed for obtaining PDF in classical
theory and our theory are very different, ' this feature of
the theory is indeed surprising.

(iv) Using the nonlinear Schrodinger equation, Messer'
has derived results for MDF and PDF which can be com-
pared with our results. For an initial Gaussian wave packet,
Messer also finds that MDF and PDF are Gaussians with
mean values the same as classical values. In the short-time
limit, the widths of these Gaussians are the same as ours,
but for t » y ', the widths of MDF and PDF go to values
(t/o)2+2m. kT and o2+(4kT/my) +t2/m2yo2) r, respe. c-
tively. This is different from ours, as our widths exactly ap-
proach the UO limit.

To summarize, we have presented a model for the
Brownian motion of a free quantum particle. The model
yields explicit expressions for the momentum and position
probability distributions. Though classical concepts are not
used at any point, the incoherence of the stochastic process
leads to classical distributions in the long-time limit. We
feel that this approach may open the way to investigations
where quantum and thermal effects compete. There is an
obvious need to generalize this work to include an external-
ly applied potential on the particle, and work is in progress
in that direction.
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